
ECS 127: Cryptography Handout ps7
UC Davis — Phillip Rogaway 27 Feb 2019

Problem Set 7 – Due Wed, 6 Mar 2019 at 12pm

Problem 20. Consider using the CBC MAC of a 256-bit blockcipher as a cryptographic hash
function: fix a permutation π = EK on 256 bits for some fixed, known key K; append to M
some 10∗|M |64 padding; then hash M by applying the raw CBC MAC, over π, to the padded M .
Is this method collision resistant? Explain.

Problem 21. Read the specification document for an AEAD scheme. Choose one of the six
schemes in the “Final portfolio” from the CAESAR contest:

http://competitions.cr.yp.to/caesar-submissions.html

After understanding how the scheme works, write a coherent essay that describes the high-level
idea of the scheme. Your essay should be at most one page (not including any drawings, which
you may lift, with credit, from any source you like). For writing this, imagine you’re speaking
to someone who knows cryptography well, including authenticated encryption, but he or she
just never saw the particular scheme you’re describing. Omit unimportant details and explain
what’s interesting. Your writing will be graded on how clearly/grammatically/insightfully it
gets across the high-level ideas.

Problem 22. Suppose you’d like to realize an associative array (also called a dictionary)
whose contents will live in the cloud. You will use operations Insert(K,X) and Lookup(K).
The Insert(K,X), also written A[K] ← X where A is the associative array, associates to the
key K the value X. If some other value X ′ had already been associated to the key K, then
the new association will overwrite the old one. The Lookup(K) operation, also written A[K],
returns the value associated to K. If there is no value associated to K, it returns a special
symbol ⊥.

Your dictionary might be huge, holding terabytes of data. You want to access it from a client,
perhaps an old smartphone, with very limited memory. Thing is, you don’t trust the answers
you back from the cloud. After all, the cloud is just a feel-good word for some computer you
have no control over. So your client—despite not storing the dictionary itself—should detect if
the server gives you a bogus answer. The client must have a small memory footprint no matter
how big the dictionary grows.

Describe a solution to this problem, explaining what Insert and Lookup do on both the client
and server side. You don’t have to actually implement anything, but clearly describe how a
solution could work. The anticipated running time for operations, both client-side and server-
side, should be O(lg n), where n is the number of items in your dictionary. In stating that bound,
I am assuming that keys and values are strings whose length is bounded by some constant, say
1 MB.

Problem 23*. Let E be an n-bit blockcipher. Find a string whose CBC MAC over E you can
forge without asking any queries whatsoever. Explain.

This problem is hard enough that I will consider it extra-credit. Don’t feel obliged to think about
it. No questions will be answered about it. The only hint I am going to give is that the string
you forge is super long.

