RC4

Ron Rivest 1987

RC4: BYTE^k \rightarrow BYTE^{∞} for any $k \in [1..256]$

```
Algorithm RC4(byte string K)
byte i,j //all arith involving these mod 256
for i \leftarrow 0 to 255 do S[i] \leftarrow i
j ← 0
for i \leftarrow 0 to 255 do
     j \leftarrow j + S[i] + K[i \mod |K|]
     S[i] \leftrightarrow S[j]
i, j \leftarrow 0
repeat
     i \leftarrow i + 1
     j \leftarrow j + S[i]
     S[i] \leftrightarrow S[j]
     output S[(S[i] + S[j]) mod 256]
```

Algorithm ChaCha20(key, ctr, non) state \leftarrow con | key | ctr | non $s \leftarrow state$ for inl to 10 do QR(s[0], s[4], s[8], s[12]) // col 1 OR(s[1], s[5], s[9], s[13]) // col 2 OR(s[2], s[6], s[10], s[14]) // col 3 QR(s[3], s[7], s[11], s[15]) // col 4 QR(s[0], s[5], s[10], s[15]) // diag 1 QR(s[1], s[6], s[11], s[12]) // diag 2 QR(s[2], s[7], s[8], s[13]) // diag 3 OR(s[3], s[4], s[9], s[14]) // diag 4 od state += s return state

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
con0	conl	con2	con3
key0	key1	key2	key3
key4	key5	key6	key7
ctr	non0	non1	non2

ChaCha20 Dan Bernstein

2008

ChaCha20: BYTE³² × BYTE¹⁶ \rightarrow BYTE⁶⁴

Algorithm QR(a,b,c,d)
a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;</pre>

ChaCha20

Nice design

- 1. Good choice of signature PRF with 32, 16, 64 byte key, input, output
- 2. Security has held up very well no remotely damaging attacks
- 3. Very fast in SW, with no special HW instructions (eg., 2.3 cpb Sandy Bridge)
- 4. Spare use of operations "ARX" (add-rotate-xor are only ops used)
- 5. Constant time no tables
- 6. Open design, no intelligence-agency involvement

DES

IBM/NSA 1975

DES: $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$

Definition of DES S-Boxes

TABLE 2.6 Definition of DES S-Boxes

							Col	umn	Nun	nber							
Row	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Box
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
7	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	S1
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
.3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	1
7	3	13	-4	7	15	2	8	14	12	0	1	10	6	9	11	5	52
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15	
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9	1
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	1
7	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	S3
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7	1
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12	
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15	1
7	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	S4
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	1 1/3
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14	1
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9	1
7	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6	S.
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14	
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3	1
0 [12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11	1
7	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8	SG
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6	
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13]
0 [4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1	1
7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6	S.
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2	
3	6	11	13	8	1	-4	10	7	9	5	0	15	14	2	3	12	
0	13	2	8	4	6	15	11	7	10	9	3	14	5	0	12	7	1
7	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2	Sa
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8	SUMA
3	2	1	14	7	-4	10	8	13	15	12	9	0	3	5	6	11	1

DES

- Historically important but outmoded design
- Politics by way of mathematics

- 1. Has held up well for its key length
- 2. But key length is was chosen to permit governmental breaks
- 3. Other political choices, too: hardware requirement, IP/FP, standardization obstructions
- 4. Secret, non-competitive process. Design criteria secret (although eventually disclosed by Don Coppersmith, after everything had been figured out)
- 5. Led to the advances in cryptanalysis, particularly differential and linear cryptanalysis
- 6. Led to advances in theory, starting with Luby-Rackoff result

AES Rijndael

Joan Daemen and Vincent Rijmen 1998/2002

DES: $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$

AES

Another nice design

- 1. Good signature
- 2. Security has held up very well no remotely damaging attacks
- 3. Hardware support has emerged on Intel and other platforms, making the algorithm extremely fast (like 0.625 cpb when usage mode permits parallelism)
- 4. Not great without hardware support
- 5. Open design, minimal intelligence-agency involvement

What exciting event will happen Friday, Feb 8, in this very class?!

Question #1

Why is it preferred for a PRF/PRP to run in constant time?

Question #2

2

Consider the PRG G: $\{0,1\}^{100} \rightarrow \{0,1\}^{200}$ defined by

 $G(x) = x \parallel x$

An adversary A can do well in breaking G by taking in a 200-bit string $y = y_1 y_2$ (where $|y_1| = |y_2|$) and answering 1 if

Question #1

and answering 0 otherwise. This adversary gets advantage

Question #2