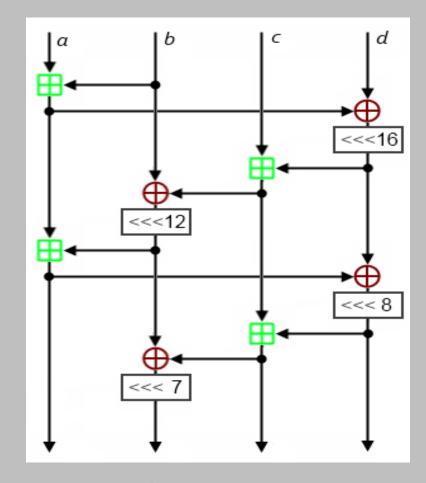
## RC4

# Ron Rivest 1987

RC4: BYTE<sup>k</sup>  $\rightarrow$  BYTE<sup> $\infty$ </sup> for any  $k \in [1..256]$ 


```
Algorithm RC4(byte string K)
byte i,j //all arith involving these mod 256
for i \leftarrow 0 to 255 do S[i] \leftarrow i
j \leftarrow 0
for i \leftarrow 0 to 255 do
     j \leftarrow j + S[i] + K[i \mod |K|]
     S[i] \leftrightarrow S[i]
i, j \leftarrow 0
repeat
     i \leftarrow i + 1
     j \leftarrow j + S[i]
     S[i] \leftrightarrow S[j]
     output S[(S[i] + S[j]) mod 256]
```

```
Algorithm ChaCha20(key, ctr, non)
state ← con | key | ctr | non
s \leftarrow state
for in1 to 10 do
OR(s[0], s[4], s[8], s[12]) // col 1
                            // col 2
QR(s[1], s[5], s[9], s[13])
QR(s[2], s[6], s[10], s[14]) // col 3
QR(s[3], s[7], s[11], s[15]) // col 4
QR(s[0], s[5], s[10], s[15]) // diag 1
QR(s[1], s[6], s[11], s[12]) // diag 2
QR(s[2], s[7], s[8], s[13]) // diag 3
OR(s[3], s[4], s[9], s[14]) // diag 4
od
state += s
return state
```

```
0 1 2 3 ChaCha20
4 5 6 7 Dan Bernstein
8 9 10 11 2008
12 13 14 15
```

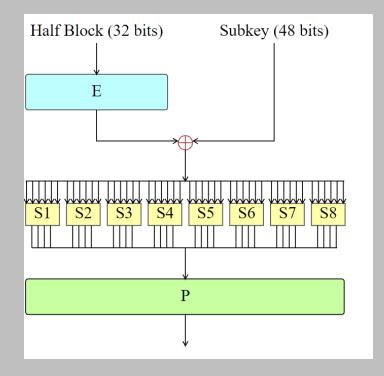
```
con0 con1 con2 con3
key0 key1 key2 key3
key4 key5 key6 key7
ctr non0 non1 non2
```

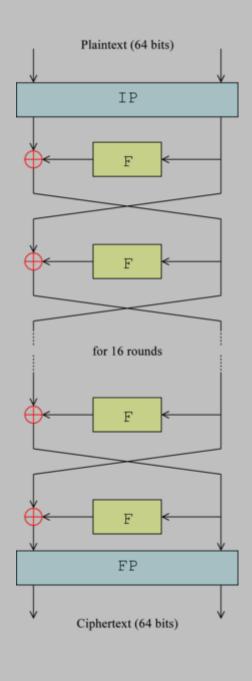
## ChaCha20: BYTE<sup>32</sup> × BYTE<sup>16</sup> $\rightarrow$ BYTE<sup>64</sup>

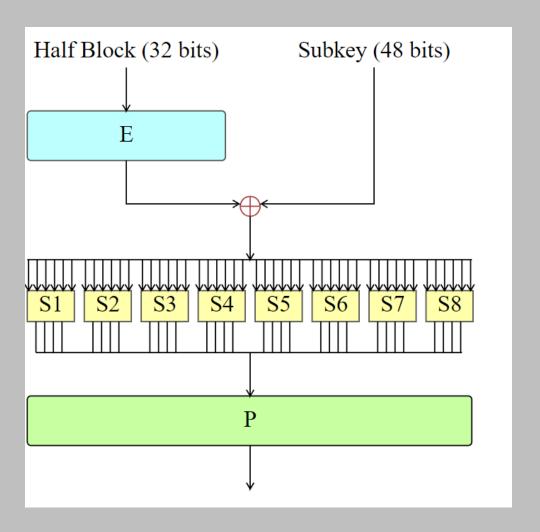


```
Algorithm QR(a,b,c,d)
a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;
```

#### ChaCha20


### Nice design


- 1. Good choice of signature PRF with 32, 16, 64 byte key, input, output
- 2. Security has held up very well no remotely damaging attacks
- 3. Very fast in SW, with no special HW instructions (eg., 2.3 cpb Sandy Bridge)
- 4. Spare use of operations "ARX" (add-rotate-xor are only ops used)
- 5. Constant time no tables
- 6. Open design, no intelligence-agency involvement
- 7. No key-setup, no subkeys


## **DES**

### IBM/NSA 1975

DES:  $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$ 





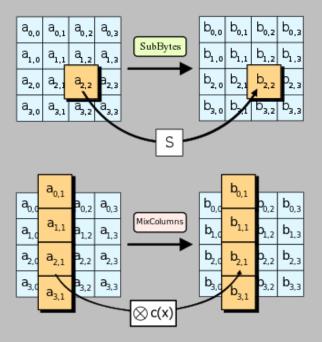


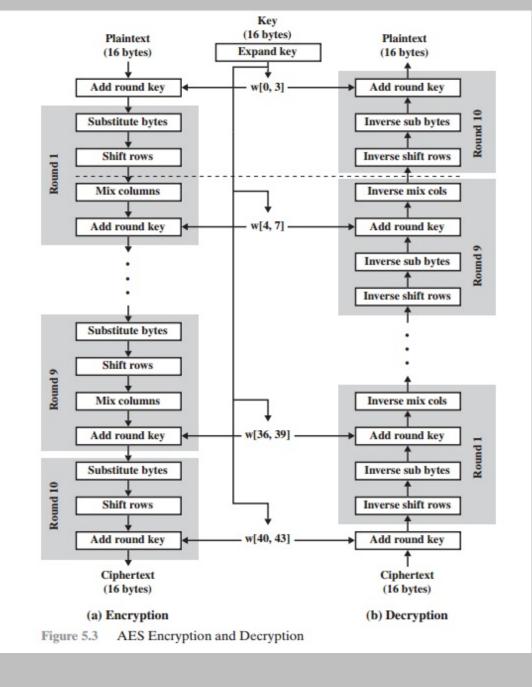
# **Definition of DES S-Boxes**

| TABLE 2.6           | Definition of DES S-Boxes |
|---------------------|---------------------------|
| I / LD L L L SE L C | Denning of DES S-Boxes    |

|     |     |     |     |     |     |     | Col | umn | Nun | ober |    |     |     |    |     |    |                |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----|-----|-----|----|-----|----|----------------|
| Row | 0   | 1   | 2   | 3   | 4   |     | 6   | 7   | 8   | 9    | 10 | 11  | 12  | 13 | 14  | 15 | Box            |
| 0   | 14  | -4  | 13  | 7   | 2   | 15  | 77  | 8   | 3   | 10   | 6  | 12  | 5   | 9  | 0   | 7  | 1              |
| 7   | 0   | 15  | 7   | 4   | 14  | 2   | 13  | 1   | 10  | 6    | 12 | 11  | 9   | 5  | 3   | 8  | S <sub>1</sub> |
| 2   | 4   | 1   | 14  | 8   | 13  | 6   | 2   | 1.1 | 15  | 12   | 9  | 7   | 3   | 10 | 5   | 0  |                |
| 3   | 1.5 | 12  | 8   | 2   | 4   | 9   | 1   | 7   | 5   | 11   | 3  | 14  | 10  | 0  | - 6 | 13 |                |
| 0   | 15  | 1   | 8   | 14  | 6   | 11  | 3   | 4   | 9   | 7    | 2  | 13  | 12  | 0  | 5   | 10 | 7              |
| 7   | 3   | 13  | -4  | 7   | 1.5 | 2   | 8   | 14  | 12  | 0    | 1  | 10  | 6   | 9  | 11  | 5  | 52             |
| 2   | 0   | 14  | 7   | 17  | 10  | 4   | 13  | 1   | 5   | 8    | 12 | 6   | 9   | 3  | 2   | 15 |                |
| 3   | 13  | 8   | 10  | 1   | 3   | 15  | 4   | 2   | 1.1 | 6    | 7  | 12  | 0   | .5 | 14  | 9  | J              |
| 0   | 10  | 0   | 9   | 14  | 6   | 3   | 15  | 5   | 1   | 13   | 12 | 7   | 11  | 4  | 2   | 8  | 7              |
| 7   | 13  | 7   | 0   | 9   | 3   | 4   | 6   | 10  | 2   | 8    | 5  | 14  | 12  | 11 | 15  | 1  | S3             |
| 2   | 13  | 6   | 4   | 9   | 8   | 15  | 3   | 0   | 7.7 | 1    | 2  | 12  | 5   | 10 | 14  | 7  |                |
| 3   | 1   | 10  | 13  | 0   | 6   | 9   | 8   | 7   | 4   | 15   | 14 | 3   | 7.7 | 5  | 2   | 12 |                |
| 0   | 7   | 13  | 14  | 3   | 0   | 6   | 9   | 10  | 1   | 2    | 8  | 5   | 11  | 12 | 4   | 15 | 1              |
| 7   | 13  | 8   | 11  | 5   | 6   | 15  | 0   | 3   | 4   | 7    | 2  | 12  | 1   | 10 | 14  | 9  | S <sub>4</sub> |
| 2   | 10  | 6   | 9   | 0   | 12  | 11  | 7   | 13  | 15  | 1    | 3  | 14  | 5   | 2  | -8  | 4  | 7 723          |
| 3   | 3   | 15  | 0   | 6   | 10  | 1   | 13  | 8   | 9   | 4    | 5  | 11  | 12  | 7  | 2   | 14 |                |
| 0   | 2   | 12  | 4   | 1   | 7   | 10  | 11  | 6   | 8   | 5    | 3  | 15  | 13  | 0  | 14  | 9  | 1              |
| 7   | 14  | 11  | 2   | 12  | 4   | 7   | 13  | 7   | - 5 | 0    | 15 | 10  | 3   | 9  | 8   | 6  | S.5            |
| 2   | 4   | 2   | 1   | 1.1 | 10  | 13  | 7   | 8   | 15  | 9    | 12 | 5   | 6   | 3  | 0   | 14 |                |
| 3   | 11  | 8   | 12  | 7   | - 1 | 14  | 2   | 13  | 6   | 15   | 0  | 9   | 10  | 4  | 5   | 3  |                |
| 0   | 12  | 1   | 10  | 15  | 9   | 2   | 6   | 8   | 0   | 13   | 3  | 4   | 14  | 7  | 5   | 11 | 1              |
| 7   | 10  | 15  | - 4 | 2   | 7   | 12  | 9   | .5  | 6   | 7    | 13 | 14  | 0   | 11 | 3   | 8  | Se             |
| 2   | 9   | 14  | 15  | 5   | 2   | - 8 | 12  | 3   | 7   | 0    | 4  | 10  | - 1 | 13 | 11  | 6  |                |
| 3   | 4   | 3   | 2   | 12  | 9   | 5   | 15  | 10  | 11  | 14   | 1  | 7   | 6   | 0  | 8   | 13 |                |
| 0 [ | 4   | 11  | 2   | 14  | 15  | 0   | 8   | 13  | 3   | 12   | 9  | 7   | 5   | 10 | 6   | 1  | 1              |
| 7   | 13  | 0   | 11  | 7   | 4   | 9   | 1   | 10  | 14  | 3    | 5  | 12  | 2   | 15 | 8   | 6  | S,             |
| 2   | 1   | 4   | 11  | 13  | 12  | 3   | 7   | 14  | 10  | 1.5  | 6  | 8   | O   | 5  | 9   | 2  | 1              |
| 3   | 6   | 11  | 13  | 8   | 1   | 4   | 10  | 7   | 9   | 5    | 0  | 15  | 14  | 2  | 3   | 12 |                |
| 0   | 13  | 2   | 8   | 4   | 6   | 15  | 11  | 7   | 10  | 9    | 3  | 14  | 5   | 0  | 12  | 7  | 1              |
| 7   | 1   | 15  | 13  | 8   | 10  | 3   | 7   | -4  | 12  | .5   | 6  | 1.1 | 0   | 14 | 9   | 2  | Sa             |
| 2   | 7   | 1.1 | 4   | 1   | 9   | 12  | 14  | 2   | 0   | 6    | 10 | Т3  | 15  | 3  | 5   | 8  | -30%           |
| 3   | 2   | 7   | 14  | 7   | 4   | 10  | 8   | 13  | 15  | 12   | 9  | 0.  | 3   | 5  | 6   | 11 | -              |

#### **DES**


- Historically important but outmoded design
- Politics by way of mathematics


- 1. Has held up well for its key length
- 2. But key length is was chosen to permit governmental breaks
- 3. Other political choices, too: hardware requirement, IP/FP, standardization obstructions
- 4. Secret, non-competitive process. Design criteria secret (although eventually disclosed by Don Coppersmith, after everything had been figured out)
- 5. Led to the advances in cryptanalysis, particularly differential and linear cryptanalysis
- 6. Led to advances in theory, starting with Luby-Rackoff result

# AES Rijndael

Joan Daemen and Vincent Rijmen 1998/2002

DES:  $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$ 





#### **AES**

### Another nice design

- 1. Good signature
- 2. Security has held up very well no remotely damaging attacks
- 3. Hardware support has emerged on Intel and other platforms, making the algorithm extremely fast (like 0.625 cpb when usage mode permits parallelism)
- 4. Not great without hardware support
- 5. Relatively large state and under-considered key setup
- 6. Open design with minimal intelligence-agency involvement

### **Switching lemma:**

For any adversary A making at most q queries,

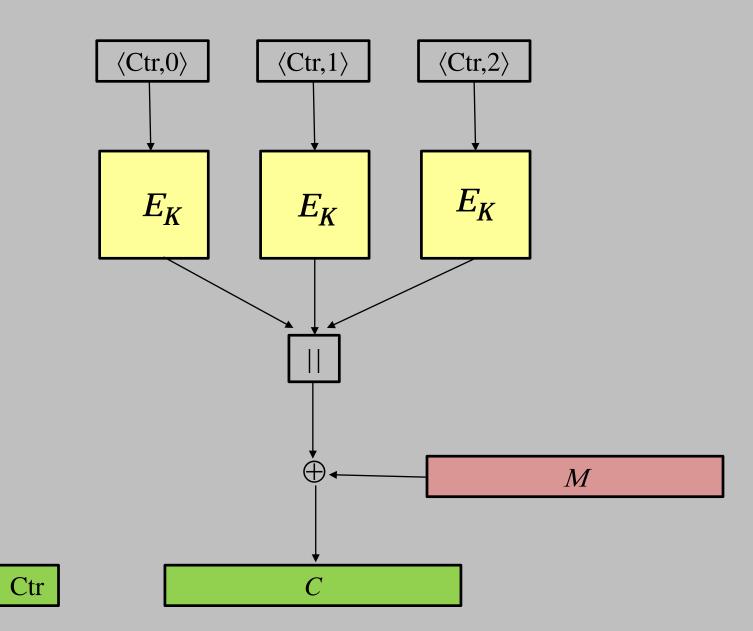
$$\Pr[\pi \leftarrow \operatorname{Perm}(n): A^{\pi(.)} \Longrightarrow 1] - \Pr[\rho \leftarrow \operatorname{Func}(n,n): A^{\rho(.)} \Longrightarrow 1] \leqslant q^2 / 2^{n+1}$$

```
Oracle E(X)

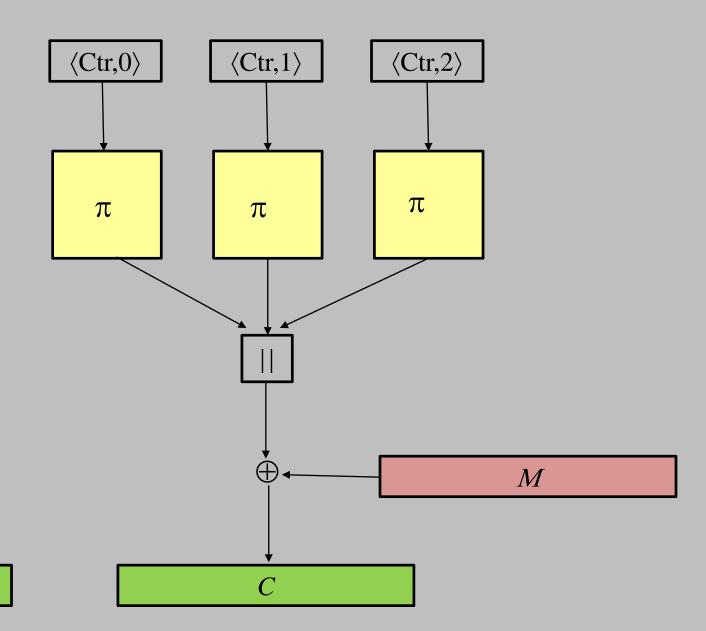
if X \in Dom(f) then return f(X)

Y \longleftarrow \{0,1\}^n

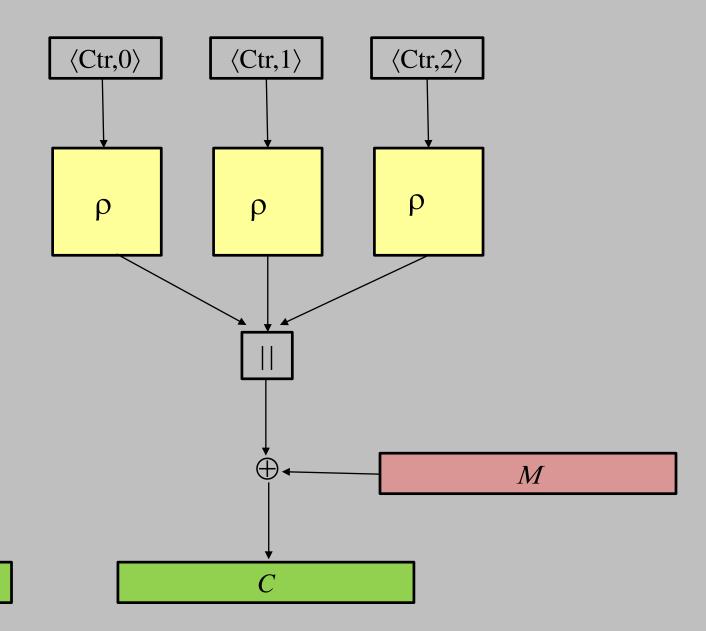
if Y \in Ran(f) then bad \leftarrow true, Y \longleftarrow \{0,1\}^n \setminus Ran(f)


return Y
```

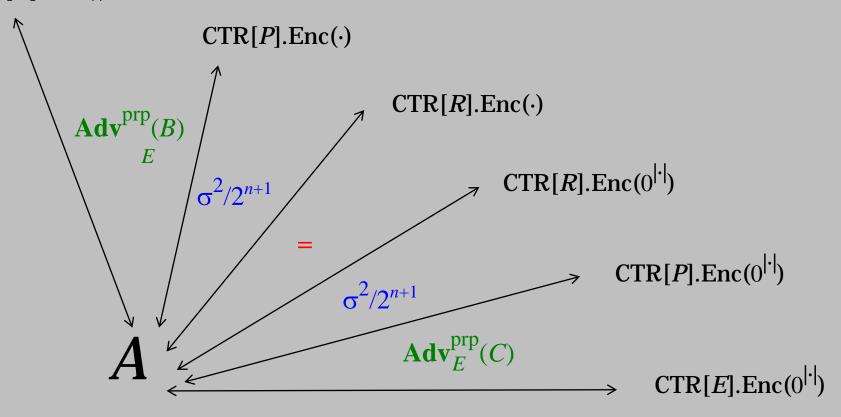
## Fundamental lemma of game playing:


If games G and H are identical-until-bad, then

$$Adv_{G,H}^{dist}$$
 (A) =  $Pr[A^G \Rightarrow 1] - Pr[A^H \Rightarrow 1] \leq Pr[G \text{ sets } bad].$ 


# CTR[E]



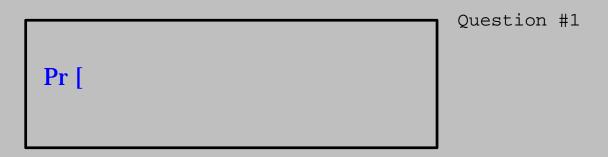

# CTR[P]



# CTR[R]



 $CTR[E].Enc(\cdot)$ 




**Theorem**: Let *E* be an *n*-bit blockcipher, let  $\Pi$ =CTR[*E*], and let *A* be an adversary (for breaking  $\Pi$ ) that asks at most  $\sigma$  blocks. Then there's an adversary *B* that gets advantage

$$Adv_E^{prp}(B) \ge 0.5 Adv_{\Pi}^{ind}(A) - \sigma^2/2^{n+1}$$

Adversary *B* asks  $\sigma$  queries and run in time approximately that of *A*.

Define the **prp-advantage**  $Adv_E^{prp}(A)$  of adversary A attacking  $E:\{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$  is the number



Question #2

Not graded / anonymous on a separate piece of paper if you prefer: How much do you think you **understand** of our class:

Very little About half Most things Almost everything

Any **suggestions** for how I can do better?

| event will happen Friday, Feb 8, in this very class? |
|------------------------------------------------------|
|                                                      |
|                                                      |
|                                                      |
|                                                      |
| erred for a PRF/PRP to run in constant time?         |
|                                                      |
|                                                      |
|                                                      |
|                                                      |

Consider the PRG G:  $\{0,1\}^{100} \rightarrow \{0,1\}^{200}$  defined by

$$G(x) = x || x$$

An adversary A can do well in breaking G by taking in a 200-bit string  $y = y_1 y_2$  (where  $|y_1| = |y_2|$ ) and answering 1 if

Question #1

and answering 0 otherwise.

This adversary gets advantage

Question #2