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4 Recurr€ttc€s

As noted in Chapter 1, when an algorithm contains a recursive call to itself,
its running time oan often be described by a recurrence. A recurrence is
an equation or inequality that describes a function in terms of its value
on smaller inputs. For example, we saw in Chapter I that the wor3t-case
running time ?"(n) of the Mrncn-Sonr procedure could be described by.
the recurrence

re ( l )  i f n -7 ,
.  

r  \n ) :  \ z i (n121+ e (n )  i f  n  >  1  ,
whose solution was claimed to be I(n) : Q(nlgn).
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This.cfiapter offers three methods,for s'olving tecurrences-that i$ for '

obtainirig asymptotic 1@" or'oO" bounds on the solutiai. In the substi-
tution method, we gueq3 a bound and then use mathematical induction to

a summation and then relies on techniques for bounding summations to
solve the recurrence. The master methad provides bounds for recurrences
of the form :

T(n) :  aT(nlb) + . f  (n),

where a > l, b > l, and /(n) is a given function; it requires memorization
of three cases, but once you do that, determining asymptotic bounds for
many simple recurrences is easY. ':

- Technicalities
- . :

. In practice, we neglect certain technical detaitrs *h"r, *" state and iolve
recurrences. A good example of a detail that is often glossed over is the
aspumption of integer arguments to functions. Normally, the runnin! time
T(n) of an algorithm is onfy defined when n is an integer, since for most
algorithms, the size of the'input is always an integer. For example, the

r 
recurrence describing the worst-case runqing time of Mrnce-Sonr is really

7 , ,  f 8 ( l )  ' i f  n = 1 ,( ' ) : t ; l i ; lz1)+renpl)+o(n) ' i rn>1. (4 '2)

Boundary conditions represent another class of details that we typicaUy
ignore. Since the running time of an algorithm on a constant-sizedinppt is

I ...
.  ' :$
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54 Chapter 4 Recurrences

T(n) = 2T(n12) * @(n) ,

a constant, the recurrtinces that arise from the running times of algorithmsgenerally have ?"(n) = O(l) for sufrciently small n. Consequently, forconvenience, we shail generally omit statements'of the uounaary conditionsof recurrences and assume that T(n) is constant for smalr ,. por.*u-pt.,
we normally state recuffence (4.1) as

(4 .3 )  t  
P

without explicitly giving values for small n. The reason is that althoughchanging the value of r(l) changes the sorution to the recurrence, thesolution' typically doesn't change Ly .o." than a constant factor, so theorder of growth is unchanged.
when we state and solve recurrences, we often omit floors, ceilings,and boundary conditions. we forge ahead without these details and raterdetermine whether or not 

_they matter. They usuaty don,t, but it is impor_tant to know when they do. Experience helps, and so do some theoremsstating thar these details don't affect ttre asvmptoilil;;;; many re,currences encountered in the anarysis of algorithms (see Theorem 4.l andProblem 4-5). In this chapter, however, ie shall address some of thesedetails to show the fine points of recurrence solution methods.

4.1 The substitution method

The substitutiorffnethod for solving recurrences involves guessing the formof the solution and then using mathematical induction to find the constantsand show that the sorution works. The name comes from the substitution

i
i

t i
I

' o t t t u L t \ r ,

ll-tl:,r:m-::O,1or*r: 
for 

Se. funcrion when the inducrive hypothesis i
H 1'::1, :: :T:l 1.-' Ill l"', rhi, ; ;;; ;;;;# ffi;';"J'J;;:i;': J

The substitution method can be ur.i to estautish either upper or rowerbounds on a recurrence. As an exampre, let us determine an^upper boundon the recurrence

T(n)=27( ln l2 ) )+n ,

which is similar to recurrences (4.2) and (4,3), we guess that the solutionis T(n) = O(nlgn), Or.rr method is ro prove, that-T(n) . rrlgn for anappropriate choice of the constant . > o. we start by aszumin! tnu, tt i,bound.holds for ln12), rhat is, thar T(LI/2J) < c lnl'Zltg|n/2i). S,rUrti_tuting into the recurrence yields

r(n) S 2(c lnl2)tsl lnl2l)) + n

=  cn lgn_cn . l g2+n  ,  
,

=  cn lgn -cn+n

S cn lgn  ,  
,

l !
i-i - 

i.::a i- : *.-"rTirjT&ip$jni__
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!
q

where the last step holds as long as c 2 L
Mathematical induction now requires us to show that our solution holds

for the boundary conditions. That is, we must show that we can choose
the constant clar{e enough so that the bound r@) s cnlgn works for
the boundary conditions as welr. This requirement can sometimes lead to
problems. Let us assume,.for the sake of argument, that T(I) : I is the
sole boundary condition of the recurrence. Then, unfortunut.iy, we can,t
choose clarge enough, since Z(l) ( cl lg 1 :0.

This difficulty in proving an inductive hypothesis for a specific bound-
ary condition can be easily overcome. we take advantage of the fact that
asymptotic notation only requires us to prove T(n) S cnlgn for n ) n6,
where rs is a constant. The idea is to remove the difficult boundary con-
dition r(l) = I from consideration in the inductive proof and to include
tt : 2 and n : 3 as part of the boundary conditions for the proof. We
can irnpose T(2) and z(3) as boundary conditions for the inductive proof
because for n > 3, the recurrence does not depend directly on ?"(l). From
the recurrence, we derive T(2) = 4 and, T(3): 5, The inductive proof that
r(n) s cnlgn for some constant c ) 2 can now be compreted by choosing
c large enough so that T(2) < c2lg2 and. re) < c3lg3. As it turns our,
any choice of c ) 2 suffices. For most of the recurrences we shali examine,
it is straightforward to extend boundary conditions to make the inductive
assumption work for small n.

Making a good guess

unfortunately, there is no general way to guess the correct solutions to
recurrences. Guessing a solution takes experience and, occasionally, cre-
ativity. Fortunately, though, there are some heuristics that can help you
become a good guesser.

If a recurrence is similar to one you have seen before, then guessing a
similar solution is reasonable. As an exainple, consider the recurrence

T { n ) : 2 r Q n p ) * 1 7 ) * n ,

which looks difficult because of the added " 17" in the argument to r on tr,e
right-hand side. Intuitively, however, this additional term cannot suQstan-
tially affect the solution to the recurrence. when n is large, the difference
between rQnl2l) and r(lnl2J + fi) is not rhat large: both eut n nearly
evenly in half. Consequentl,y, *. make the guess that T(n) : O(nlgn),
which you can verify as corlect by using the substitution method (see Ex-
tT:t"l^:;:)av 

ro make a good guess is to prove loose upper and lower
bounds on the recurrence and then reduce the range of uncertainty. For
example, we might start with a lower bound of T(n): e(n) for the recur_
rence (4.4), since we have the term n in the recurrence, and we can prove
an initial upper bound'of T(n) = O(n2). Then, we can gradually lower.the
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uppef bound and raise'the lower bound until we converge on the correct,
asymptotically tight solution of T(n): 8(n lg n).

Subtleties

There are times when you can correctly guess at an asymptotic bound on
the solution of a recurrence, but somehow the math doesn't seem to work
out in the induction. usually, the problem is that the inductive assumption
isn't strong enough to prove the detailed bound. When you hit such a snag,
revising the guess by subtracting a lower-order term often permits the math
to go through.

Consider the recurrence

T(n) = r[nlzl + r{nl2]) + I .
We guess that the solution is O(n), and we try to show that T(n) < cn
for an appropriate choice of the constant c. substituting our guess in the
recurrence, we obtain

r@)
:  c n l l ,

which does not imply ?"(n) < cn for any choice of c. It,s tempting to try
a'larger guess, say T(n) = O(n'), which can be made to work, but in fact,
our guess that the solution is T(n) : O(n) is coriect. In order to show
this, however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we're only off by the constant l,
a lower-order lerm. Nevertheless, mathematical induction doesn't work
unless we prove the exact form of the inductive hypothesis, we overcome
our difficulty by subtracting a lower-order term from our previous guess.
Our new guess is T(n) < cn - b,where b ) 0 is constant, We nowhave

r(n) S (c lnl2) - b) + (c {nl2l - b) + 1
:  cn -2b+1

S  cn -b ,

as long as 6 > l, As before, the constant c must be chosen large enough
to handle the boundary conditions.

Most people find the idea of subtracting a lower-order term tounterin-
tuitive. After all, if the math doesn't work out, shouldn;t we be increasing
our guess? The key to understanding this step is to remember that we
are using nathematical induction: we can prove something stronger for a
given value by assuming sogrething stronger for smaller values.

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the
recurrence (4.4) we can falsely prove T(n) : O(n) by guessing T@) < cn
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and then arguing

r(n)

: O(n) , +=- sy6ng!!

since c is a constant. The eiror is that we haven't proved the exacr
of the inductive hypothesis, that is, that T(n) (. cn.

Changing variables

sometimes, a little algebraic manipulation can make an unknown recur-
rence similar to one you have seen before. As an example, consider the
recurrence

T(n) = 2r(r/iD +rsn ,
which looks difficult. we can simplify this recurrence, though, with a
change ofvariables. For convenience, we shall not worry aboui rounding
off values, such as ,/i, lo be integers. Renaming m = Ig n yields
T ( z m )  : 2 7 ( 2 m l z 1 a  ̂  .

We can now rename S1z; = T(2^) lo produce the new recurrence
S ( r u ) : 2 5 ( m l 2 ) 4 t , , ,

which is very much likp recurren ce (4.4) and has the same solution: J(z)
O(mlgn).  Changing back from S(z) to T(n),  we obrain T(n) :  T(2^)
S(nr) = O(mlg m) = O(Ig n lglg n).

Exercises

4 . 1 - 1
Show that the solut ion of T(n):  T( lnl2l)+ t  is O(lgn).

4,1-2
Show that the solution of T(n) : ZT(lnl2l) + n is e(ntgn), Conclude
that the solution is @(nlgn).

4 .1 -3
Show that by mdking a different inductive hypothesis, we can overcome the
difficulty with the boundary condition f(1) = I for the recurrence (4.4)
without adjusting the boundary conditions for the inductive proof.

4,1-4
Show that @(n Ig n) is the solution to the "exact" recurrenc e (a.2) for merge
sort.

4 .1 -5
Show that the solution to T(n) = 2T(Ln/21 + t7) + n is O(ntgn).

5 7

form
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4.1-6
Solve the recurrence T(n) :2f UD + I by making a change of
Do not worry about whether yalues a.re integral.

variables.

4,2 The iteration method

The method of iterating a recurrence doesn,t require us to guess the answer,
but it may require more algebra than the substitution method. The idea is
to expand (iterate) the recurrence and express it as a summation of terms
dependent only on n and the initial conditions. Techniques for evaluating
summations can then be used to provide bounds on the solution.

As an example, consider the recurrence

T(n)=3r1n la l+n.
We iterate it as follows:

r (n )  :  n+37( ln l4 l )
:  n+3Qn la )+3r ( f i l t 6 l ) )

n + 3(ln I al + 3Qn I t6l + 3r(n I 6afi)
:  n  +  3 ln l4 l  +e ln l t6J  +  277(Ln l64 l ) ,

where Ll,n/q) l4l : lnlt6l and, llnlt6l lal = ful6a)foilow from rhe
idenrlty (2.+).

How far must we iterate the recurrence before we reach a boundarv
condition? The i rh term in the series is 3i ln l4i ). The iteration hits n : i
when ln l4i) = I or, equivalently, when i exceeds roga n. By continuing th€
iteration until this point and using the bound Lnlail < nl4,,we discover
that the summation contains a decreasing geometric series:
T(/ t)

@  / i \  r

s  , I  ( i  )  *  @(r roeo 3 ;
_ \ + ,
i = 0  \ ' /

:  4n + o(n)
: o(n) .

Here, we have used the identity (2.9) to conclude 1yru1 3tocoa : ntogo3, and
we have used the factthat logo 3 < 1 to conclude that @(nloer 3) : o(n).

The iteration method usually leads to lots of algebra, and keeping ev-
erything straight can be a challenge. The key is to focus on two parame-
ters: the number.of times the recurrence needs to be iterated to reach the
boundary condition, and the sum of the terms arising from each level of
the iteration process. sometimes, in the process of iterating a recurrence,
you can guess the'solution without working out all the math. Then, the
iteration can be abandoned in favor of the substitution method, which
usually requires less algebra.



4.3 The master method

62

The master method provides a "cookbook" method for solving recurrences

of the form

T(n)=aT(n lb )+ f (n ) , (4.5)

where a 2 | and b > | are constants and /(n) is an asymptotically positive

function. The master method requires memorization of three cases, but

then the solution of many reculrences can be determined quite easily, often

without pencil and PaPer.
The recurrence (4.5) describes the running time of an algorithm that

divides a problem of size n into a subproblems, each of size nf b, where

a and b aie positive constants. The a subproblems are solved recursively,

each in time T(nlb). The cost of dividing the problem and combining

the results of the subproblems is described by the function /(n ). (That is'

using the notation from Section 1.3.2, f (n) = D(n) + C(n)') For example'

the recurrence arising from the Mrncr-Sonr procedure has a = 2' b : 2'

and /(n) = O(tt) .
As a matter of technical correctness, the recurrence isn't actually well

def inedbecausenlbmi$tnotbeaninteger.Replacingeachoftheaterms
f@lb) with either f(lnlb)) or T(lnlbl doesn't affect the asvmptotic

behavior of the recurr.nr*, ho*.uer, (we'll prove this in the next section')

We normally find it convenient, therefore, to omit the floor and ceiling

funct ionswhenwri t ingdivide-and-conquerrecurrencesofthisform'

The master theorem

The master method depends on the following theorem'

Theorem 4.1 (Master theorem)

LeI a) I and b > 1 be constants, let f(n) be a function' and let I(n) be

defined on the nonnegative integers by the recurrence

T ( n ) :  a T ( n l b )  +  f  ( n )  ,

where we rnterpret nlb to mean eithbr lnlb) or lnlb)'Then T(n) can be

bounded asymptotically as follows

l. I t  f (n) -  Q(f ioua-e ;  for some constant e > 0, then T(n) = @1nroe'o; '

2.  l f  f  (n) -  @(aloea 4 ) ,  then ?'(n) = @(nloe'  a lg n) '

3. I f  f (n)-  f , )(4roe6a+e ) for some constant e > 0, and i f  af(n14) Sc"f(n)

for some constant c < | and all sufficiently latge'n' then T(n) :
I

o("f( ' t ) ) .

Before applying the masler theorem to some examples' let's spend a

moment trying to understand what it says' In each.o{ the three cases' we

ur. 
"orpurinjtn. 

function /(n) with the function ,tos6a.Intuitively, the

solution to the recurrence is determined by the larger of the two functions'

If, as in case 1, the function ntoz6a i, the larger, then the solution isT(n) =

@@t'coo). If, as in case 3, the function f (n) is the larger, then the solution

is I (n )=@(/ (n ) ) . I f ,as , incase2, the twofunc t ionsare thesan ids ize , .we
mutiipt' tV a logaritfrmic factor, and the solution is 7-(n) = Q(4roea " lgn) :

@(/(n) le tt).

*



Beyond this intuition, there are some technicarities that mu$ be under_stood. rn the first case; not oory *uri f(n) ge;;il; ;\r" ntoita,it must

ir$z',:;r'r::,:::i,;:;11*i*j-"*o,u,y.iiotiJ,ysma,rerthai
,tltt.Tiu rhio" larger rhan ntosoo.:it:i :. i 0' F the third ."r., ooiinaddition,atisrytnei*;;i;;r,;",;ilff;:,[rr;:it]tr!r,fi,:'ril:
condirion is satisfied uv *"rr.iir,.loryno.t.i,, #r).#j funcions rhatwe shall encounter.

It is important to realize that the three cases do not ,orr* a[ the pos_sibilities for f(n), -There is a gap between cases I and 2 when /(r) issma'er than ntoea a but not polynomia'y sma,er.. similarly, there is a gapbetween cases 2 ung 3 
11..n f (n) islarger than ntoet a butnri potynomiallylarger' Ifthe function f(ry) fa's into oie ofthese gaps, or ifthe regularitycondition in case 3 fails to hold, the master method cannot be used tosolve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of themaster theorem afiplies and write down the answer.
As a first example, consider

T ( n ) = 9 7 ( n l 3 ) + n .

For this recurrence, we have a:9, b:3, - f (n) = n, andthus l i loeao _
,to9 e -  @@2).since /(n) = o(ntoeis-r1,where € :  7,we can apply case Iof the master rheorem and concrude thai ttre sotutioh r, rllj:6i;t".- 

'
Now consider

T(n) : rQn l3 )+1 ,

in which a: 1,  b = 3/2, f (n) = I ,  and ntosto = ntoEt/r t  = n0 = l .case 2 applies, since f (n) : g(nttoo) : @( l ), and thus the solution to therecurrence is T(n):  O(lgn).
For lhe recurrence

T(n) :3r@lf l  + ntgn

we have Q=3,  b =4,  f (n)  = n lgn,  ar td ntoeaa :4togo3 = Q1110. ts1.  Since
f(n).= Q(n1oer3+e;, where e = O.2,case 3 applies if we can show that theregu_larity condition holds for f(n). For sufficiently large n, af(nlb) :3.(nlQ.lg@lq ! Qllntgn = cf'(n) for c = 3l4..Consequently, by case 3,the solution ro the recurrence is f (4 __ @(nlgni.

The master method does not apply to the recurrence
T(n)  :27(n l2)  *  n tgn,

even though it has the p.p., form: a : 2, b = 2, .f(n) _ nlgn, andntosb a - n. It seems th?:case 3 should apply,_ since f (n) = nlgn isasymp_totically rarger than 
ltoso 

o - n but not p oryno^iaity'rurg*l The ratio
-f(n)lntoeoo = (nlgn)ln: Ign is ury.nptotirully less inuni, for any pos-itive constant e . consequently, the recurrence falrs into the gui u.r*"r'case 2 and case 3, (See Exercise 4.4-2 for a solution.)
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Exercises

4.3_r
use the master method to give tight asymptotic bounds for the followingrecurTences.

a. T(n) '= 4T(n12) + n.

b, r@) = 4T(n/2) + n2.

c, T(n) = 4T(nl2) + n3.

4,3-2
The running time of an algorithm I is described by the recurrence T-(n) =7r(nl2) + n2. A competing algorithm A, has- arunning time of T,(n) :aT'(nl4) + n2. what is the rargest integer varue for a such that A, isasymptolically faster than A?

4,3-3
use the master method to show that the sorution to the recurrence z(n) :T(nl2) +O(t)  of  binary search (see Exercise t .3_5) is T(n)= O(lgn).
4.J-4 * ,
Consider the regularity condition af(nlb) <. cf(n) for somec K I, which is part of case 3 of the master theorem. Give anof a simple function f(n) that satisfies ati tt e conditions in casemaster theorem except the regularity condition

constanl
example
3 of the


