Cc/m en, Lc’uz?/fdn /wﬂ)‘
E)W.{ucwﬂ w At mﬂmi 1990
ALY Ralda)

4 Recurrences
» 51F
: o8
d !

As noted in Chapter 1, when an algorithm contains a recursive call to itself,
its running time can often be described by a recurrence. A recurrence is
an equation or inequality that describes a function in terms of its value
on smaller inputs. For example, we saw in Chapter 1 that the worst-case *
running timé T(n) of the MERGE-SORT procedure could be described by:
the recurrence
(1 ifn=1,
T = {2%(31/2) +0mn) ifn>1,
whose solution was claimed to be T(n) = G(n g n).
This ohapter offers three methods.for solving recurrences—that is, for -
obtaining asymptotic “@” or “O” bounds on the solutica. In the substi-
tution method, we guess a bound and then use mathematical induction to
prove our guess correct. The iteration method converts the recurrence into
a summation and then relies on techniques for bounding ‘summations to
solve the recurrence. The master method provides bounds for recurrences 3
of the form : g

T(n)=aT(n/b) + f(n),
where a > 1, b > 1, and f(n) is a given function; it requires memorization

of three cases, but once you do that, determmmg asymptotic bounds for
many simple recurrences is €asy. * g

(4.1)

_ Technicalities

In practice, we neglect certain technical detaiIs when we state and Solve
recurrences. A good example of a detail that is often glossed over. is the
assumption of integer arguments to functions. Normally, the running time
T'(n) of an algorithm is only defined when 7 is an integer, since for most
algorithms; the size of the input is always an integer. For example, the
recurrence describing the worst-case running time of MERGE-SORT is really

— 8(1) : lf n= 1 s
T = {T(fn/21)+T(tn/2J)+e(n) ifn>1. (4.2)
: Boundary conditions represent another class of details that we typically

ignore. Since the running time of an algorithm on a constant-sized inppt is

&
N

“ERE .

Y

54

Chapter 4 Recurrences

A
N

a constant, the recurrénces that arise from the running times of algorithms
generally have T'(n) = ©(1) for sufficiently small ». Consequently, for
convenience, we shall generally omit statements of the boundary conditions
of recurrences and assume that T(n) is constant for small n. For example,
we normally state recurrence (4. 1) as

T(n) =27(n/2) + 6(n) L (4.3)

without explicitly giving values for small 7. The reason is that although
changing the value of T (1) changes the solution to the recurrence, the
solution’ typically doesn’t change by more than a constant factor, so the
order of growth is unchanged.

When we state and solve recurrences, we often omit floors, ceilings,
and boundary conditions. We forge ahead without these details and later
determine whether or not they matter. They usually don’t, but it is impor-
tant to know when they do. Experience helps, and so do some theorems
stating that these details don’t affect the asymptotic bounds of many re-
currences encountered in the analysis of algorithms (see Theorem 4.1 and
Problem 4-5). In this chapter, however, we shall address some of these
details to show the fine points of recurrence solution methods.

4.1 The substituti_on method

The substitutiorf Mmethod for solving recurrences involves guessing the form
of the solution and then using mathematical induction to find the constants
and show that the solution works. The name comes from the substitution
of the guessed answer for the function when the inductive hypothesis is
applied to smaller values. This method is powerful, but it ob’Viously can
be applied only in cases when it is easy to guess the form of the answer.

The substitution method can be used to establish either upper or lower
bounds on a recurrence. As an example, let us determine an upper bound
on the recurrence o :

T(n)=2T(|n/2))+n, | , o (4.4)

which is similar to recurrences (4.2) and (4.3). We guess that the solution
is T(n) = O(nlgn). Our method is to prove: that T'(n) < cnlgn for an
appropriate choice of the constant ¢ > 0. “We start by assuming that this
bound holds for |n/2], that is, that T'({n/2]) < ¢ [n/2]1g({n/2]). Substi- -
tuting into the recurrence yields
T(n) < 2cln/2)lg(|n/2])) + n
cnlg(n/2)+n

cnlgn — 'cn'lg2 +n
cnlgn—cn+n

IN A

il

IA

cnlgn

4.1 The substitution method . . 55

‘where the last step holds as long as ¢ > 1.

Mathematical induction now requires us to show that our solution holds
for the boundary conditions. That is, we must show that we can choose
the constant ¢ large encugh so that the bound T(n) < cnlgn works for
the boundary conditions as well. This requirement can sometimes lead to
problems. Let us assume, for the sake of argument, that 7°(1) = 1 is the
sole boundary condition of the recurrence. Then, unfortunately, we can’t
choose ¢ large enough, since T(1) < cllgl = 0.

This difficulty in proving an inductive hypothesis for a specific bound-
ary condition can be easily overcome. We take advantage of the fact that
asymptotic notation only requires us to prove T(n) < cnlgn for n > ny,
where ng is a constant, The idea is to remove the difficult boundary con-
dition T(1) = 1 from consideration in the inductive proof and to include
n =2 and n = 3 as part of the boundary conditions for the proof. We
can impose T'(2) and 7'(3) as boundary conditions for the inductive proof
because for n > 3, the recurrence does not depend directly on T(1). From
the recurrence, we derive T'(2) = 4 and T(3) = 5. The inductive proof that
T'(n) < cnlgn for some constant ¢ > 2 can now be completed by choosing
¢ large enough so that 7(2) < ¢21g2 and T(3) < c3lg3. As it turns out,
any choice of ¢ > 2 suffices. For most of the recurrences we shall examine,
it is straightforward to extend boundary conditions to make the inductive
assumption work for small n.

Making a good guess

Unfortunately, there is no general way to guess the correct solutions to
recurrences. Guessing a solution takes experience and, occasionally, cre-

“ativity. Fortunately, though, there are some heuristics that can help you

become a good guesser.
If a recurrence is similar to one you have seen before, then guessing a
similar solution is reasonable. As an example, consider the recurrence

T(n) =2T(|n/2) +17) + n,

which looks difficult because of the added “17” in the argument to 7 on the
right-hand side. Intuitively, however, this additional term cannot substan-

~ tially affect the solution to the recurrence. When # is large, the difference

between T'([n/2]) and T(|n/2] + 17) is not that large: both cut # nearly
evenly in half. Consequently, we make the guess that T(n) = O(nlgn),
which you can verify as corxj/ect by using the substitution method (see Ex-
ercise 4.1-5).

- Another way to make a good guess is to prove loose upper and lower
bounds on the recurrence and then reduce the range of uncertainty. For
example, we might start with a lower bound of T'(n) = Q(n) for the recur-
Tence (4.4), since we have the term 7 in the recurrence, and we can prove
an initial upper bound of T'(n) = O(n?*). Then, we can gradually lower the

&2

56

Chapter 4 Recurrences

upper bound and raise the lower bound until we converge on the correct
asymptotically tight solution of T'(n) = B(n lg n)

L]
Subtleties

There are times when you can correctly guess at an asymptotic bound on
the solution of a recurrence, but somehow the math doesn’t seem to work
out in the induction. Usually, the problem is that the inductive assumption
isn’t strong enough to prove the detailed bound. When you hit such a snag,
revising the guess by subtracting a lower-order term often permits the math
to go through.

Consider the recurrence

T(ny=T(n/2))+ T([n/2])+ 1.

We guess that the solution is O(n), and we try to show that T(n) < cn
for an appropriate choice of the constant c. Substituting our guess in the
recurrence, we obtain

T(n) < c|n/2)+c[n/21+1

cn—+1, v

Il

which does not imply T'(n) < cn for any choice of ¢. It’s tempting to try
a’larger guess, say 7'(n) = O(n?), which can be made to work, but in fact,
our guess that the sotution is T'(n) = O(n) is correct. In order to show
this, however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we're only off by the constant 1,
a lower-order term. Nevertheless, mathematical induction doesn’t work
unless we prove the exact form of the inductive hypothesis. We overcome
our difficulty by subtracting a lower-order term from our previous guess.
Our new guess is T(n) < cn — b, where b > 0 is constant. We now have

T(n) < (cln/2)=b)+(c[n/2} -b)+1
= ¢cn—-2b+1 '
< en-b,

as long as b > 1. As before, the constant ¢ must be chosen large enough
to handle the boundary conditions.]

Most people find the idea of subtracting a lower-order term ‘counterin-
tuitive. After all, if the math doesn’t work out, shouldn’t we be increasing
our guess? The key to understanding this step is to remember that we
are using mathematical induction: we can prove something stronger for a
given value by assuming something stronger for smaller values.

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the
recurrence (4.4) we can falsely prove T(n) = O(n) by guessing T(n)<cn

4.1 The substitution method ’ 57

and then arguing
T(n) < 2c|n/2))+n
< cn+n
= 0(n), = wrong!!

since c is a constant. The error is that we haven’t proved the exact form
of the inductive hypothesis, that is, that T(n) <cn.

Changing variables

Sometimes, a little algebraic manipulation can make an unknown recur-
rence similar to one you have seen before. As an example, consider the

recurrence

T(n) = 2T(|v/7)) +1gn ,
which looks difficult. We can simplify this recurrence, though, with a
change of variables. For convenience, we shall not worry about rounding
off values, such as /71, to be integers. Renaming m = lgn yields

T(2™ =2T2™* +m .

We can now rename S(m) = T(2") to producé the new recurrence

S(m) =28(m/2) +m , .)

which is very much like recurrence (4.4) and has the same solution: S(m) =
O(mlgm). Changing back from S(m) to T'(n), we obtain Tn)=T2m =
S(m) = O(mlgm) = O(lgnlglgn).

Exercises -

4.1-1 4
Show that the solution of T(n) = T([n/2]) + 1 is O(ign).

4.1-2
Show that the solution of T'(n) = 2T([n/2}) + n is Q(nlgn). Conclude
that the solution is ©(nlgn). .

4.1-3
Show that by making a different inductive hypothesis, we can overcome the
difficulty with the boundary condition T'(1) = 1 for the recurrence (4.4)
without adjusting the boundary conditions for the inductive proof.

4.1-4 «
Show that ©(n Ig n) is the solution to the “exact” recurrence (4.2) for merge
sort.

4.1-5 ' ; ‘
Show that the solution to 7(n) = 2T(|n/2] + 17) +nis O(nlghn).

®%

58 Chapter 4 Recurrences
4.1-6 . .
Solve the recurrence T'(n) = 2T(\/n) + 1 by making a change of variables.
Do not worry about whether values are integral. A

4.2 The iteration method °

T(n)

b

The method of iterating a recurrence dQesn’t require us to guess the answer,
but it may require more algebra than the substitution method. The idea is
to expand (iterate) the recurrence and express it as a summation of terms
dependent only on 7 and the initial conditions, Techniques for evaluating
summations can then be used to provide bounds on the solution.

As an example, consider the recurrence
T(n)=3T(|n/4))+n .
We iterate it as follows:
n+37(|n/4])
n+3({n/4] +3T(|n/16]))
= n+3(|n/4] +3({n/16] + 3T(|n/64]))))
n+3\n/4] +9|n/16] + 27T(|n/64]) ,
where ||n/4] /4] = |n/16] and Ln/16] /4] = |n/64] follow from the
identity (2.4).

How far must we iterate the recurrence before we reach a boundary

l

il

‘condition? The ith term in the series is 3 |7/4']. The iteration hits n = |

when [n/4'] = 1 or, equivalently, when / exceeds logy n. By continuing the
iteration until this point and using the bound [n/4'] < n/4, we discover
that the summation contains a decreasing geometric series:

I(r) < n+3n/4+9n/16+27n/64 + ... 4 385 Q(1)

o0 3 ! .
= ©(p083
n;; <4> + 6(n'oa 3y
= 4n+o(n)
O(n) .

Here, we have used the identity (2.9) to conclude that 316t — plog 3, and
we have used the fact that log, 3 < 1 to conclude that B(n'°83) = o(n). .

The iteration method usually leads to lots of algebra, and keeping ev-
erything straight can be a challenge. The key is to focus on two parame-
ters: the number of times the recurrence needs to be iterated to reach the
boundary condition, and the sum of the terms arising from each level of
the iteration process. Sometimes, in the process of iterating a recurrence,
you can guess the solution without working out all the math, Then, the
iteration can be abandoned in favor of the substitution method, which
usually requires less algebra.

IN

i

4.3 The master method

62

The master method provides a “cookbook” methad for solving recurrences
of the form

T(n) = aT(n/b)+ f(n), (4.5)

where g > 1 and b > 1 are constants and f(n) is an asymptotically positive
function. The master method requires memorization of three cases, but
then the solution of many recurrences can be determined quite easily, often
without pencil and paper.

The recurrence (4.5) describes the running time of an algorithm that
divides a problem of size n into a4 subproblems, each of size n/b, where
a and b are positive constants. The a subproblems are solved recursively,
each in time T(n/b). The cost of dividing the problem and combining
the results of the subproblems is described by the function f(n). (That is,
using the notation from Section 1.3.2, f(n) = D(n)+ C(n).) For example,
the recurrence arising from the MERGE-SORT procedure-has a = 2, b = 2,
and f(n) =0(n). _

As a matter of technical correctness, the recurrence isn’t actually well
defined because /b might not be an integer. Replacing each of the a terms -
T(n/b) with either T(|n/b]) or T({n/b) doesn’t affect the asymptotic
behavior of the recurrence, however. (We'll prove this in the next section.)
We normally find it convenient, therefore, to omit the floor and ceiling
functions when writing divide-and-conquer recurrences of this form.

The master theorem

L]

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let g > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be
defined on the nonnegative integers by the recurrence

T(n)=al(n/b)+ f(n),

where we interpret n1/b to mean either |n/b] or [n/b). Then T(n) can be

bounded asymptotically as follows. ;

1. If f(n) = O(n'°&¢) for some constant € > 0, then T(n) = ©(n'°8).

2. If f(n) =O(n'"®), then T(n) = O(n'°e g n).

3. If f(n) = Q(n'°# <) for some constant € > 0, and if af(n/b) < cf(n)
for some constant ¢ < 1 and all sufficiently large. 7, then T(n) =

(f(n)). . , n

Before applying the master theorem to some- examples, let’s spend a
moment trying to understand what it says. In each of the three cases, we
are comparing the function f(n) with the function n'°% 9. Intuitively, the
solution to the recurrence is determined by the larger of the two functions.
If, as in case 1, the function n'°% 4 is the larger, then the sotution is T(n) =
O(n'&). If, as in case 3, the function f(n) is the larger, then the solution
is T(n) = ©(f(n)). If, as.in case 2, the two functions are the same size, we
multiply by a logarithmic factor, and the solution is 7'(n) = @(n'°& lgn) =

8(f(n)lgn). “

Beyond this intuition, there are some technicalities that must be under-
stood. In the first case, not only must 1 (n) be smaller than n'%e it must
b'i p(;lynomia_lly smaller, Thatis, f(n) must be asymptotically smaller than
n% % by a factor of ne for Some constant € > (), Ip the third case, not
only must f(n) be larger than nl% 4 it myer be polynomially larger, and
in a(;l.d'ltIOI:l sati§fy the “regularity” condition that 4 f(n/b) < cf (n). This
;:vc;ns hl;;n; nlz :Sl?ts:fd by most of the polynomlally bounded functions that

It is important to realize that the three cases do not cover all the pos-
sibilities for f(n). There is a gap between cases 1 and 2 when Sf(n) is
smaller than »'°% 2 byt not polynomially smaller. Similarly, there is a gap
between cases 2 and 3 when f(n) is larger than #'°% @ but not polynomially
larger. If the function f (n) falls into one of these gaps, or if the regularity
condition in case 3 fails to hold, the master method cannot be used to
solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the
master theorem applies and write down the answer.
As a first example, consider

T(n)=9T(n/3)+n.

For this recurrence, we have 4 = 9, b =3, f(n) = n, and thus n'ot 2 —

69 = ©(n?). Since f(n) = O(n'°&9=¢) where € = 1, we can apply case 1

of the master theorem and conclude that the solution is T(n)= 8(712).
Now consider ’

T(n)=T(2n/3)+ 1,
in which @ = 1, = 3/2, f(n) = 1, and nlowa — nlogsnl = po
Case 2 applies, since S(n) = O(n'oes a) = ©(1), and thus the solution to the

recurrence is 7'(n) = O(lg n).
For the recurrence

T(n)=3T(n/4) + nign

we have a =3, b =4, f(n) = nlgn, and n'%a — ,log,3 — O(n®"%), Since
f(n) = Q(nke3+¢) where € ~ 0.2, case 3 applies if we can show that the
regularity condition holds for J(n). For sufficiently large n, af(n/b) =
3(n/4)lg(n/4) < (3/4)nlgn = cf(n)forc= 3/4. Consequently, by case 3,
the solution to the recurrence is T(n)=0(nlgn).)

The master method does not apply to the recurrence

T(n)=2T(n/2) + nign,

even though it has the proper form: g = 2, b = 2, f(n) = nlgn, and
1'% = It seems that case 3 should apply, since f (n) = nlgn is asymp-
totically larger than n'°&e = 5 pyut not polynomially larger. The ratio
S(n)/n'% % < (nign)/n = 1gn is asymptotically less than n¢ for any pos-
itive constant ¢. Consequently, the recurrence falls into the gap between

case 2 and case 3. (See Exercise 4.4-2 for a solution.) ’

o4

Chapter 4 Recurrences

Exercises

4.3-1 ’ .
Use the master method to give tight asymptotic bounds for the following
recurrences.

a. T(n)=4T(n/2) + n.
b. T(n)=4T(n/2) + n2.
¢ T(n)=4T(n/2) + n3.

4.3-2

The running time of an algorithm 4 is described by the recurrence 7° (n) =
7T(n/2) + n®. A competing algorithm A4’ has a running time of 7”(n) =
al’(n/4) + n®. What is the largest integer value for a such that A/ is
asymptotically faster than 4?

4.3-3
Use the master method to show that the solution to the recurrence T'(n)=
T(n/2) 4+ ©(1) of binary search (see Exercise 1.3-5) is T'(n) =0(gn).

4.3-4 * .
Consider the regularity condition ¢ f(n/b) < cf (n) for some constant
¢ < 1, which is part of case 3 of the master theorem. Give an example
of a simple function Sf(n) that satisfies all the conditions in case 3 of the
master theorem except the regularity condition. ’

