Problem Set 1 - Due Monday, September 29

Recall that homeworks are due at 4:30 pm and are turned in at 2131 Kemper

1. Show that $n^{2}+n$ is even for any integer n.
2. Prove that if n is an odd integer then there is an integer m such that $n=4 m+1$ or $n=4 m+3$.
3. Suppose you draw $n \geq 0$ distinct lines in the plane, one after another, none of the lines parallel to any other and no three lines intersecting at a common point. The plane will, as a result, be divided into how many different regions L_{n} ? Find an expression for L_{n} in terms of L_{n-1}, solve it explicitly, and indicate what is L_{10}.
4. How many n-disk legal configurations are there in the Tower of Hanoi problem? A "legal configuration" entails that no disk is larger than a disk beneath it on the same peg. All n disks have different diameters.
5. Prove that there exist irrational numbers a and b such that a^{b} is rational. (Hint: try $a=b=\sqrt{2}$)
