Problem Set 6 – Due Monday, November 11, 2008

- 1. Let $f(x) = x \lg x$ (the log being base-2). Compute $f^{-1}(10)$ to at least 4 decimal digits of accuracy. You can do this with the help of a calculator or a short computer program.
- 2. Sort the following functions into groups G_1, G_2, \ldots such that $f, g \in G_i$ if $f \in \Theta(g)$, and $f \in G_i$ implies that $f \in O(g)$ for each $g \in G_i$. (That is, the slowest growing functions are in the first group; then the next slowest growing functions; and so forth.)

$5n \lg n$	$6n^2 - 3n + 7$	1.5^{n}	$\lg n^4$	13463
-15n	$\lg \lg n$	$9n^{0.7}$	n!	$n + \lg n$
$\sqrt{n} + 12n$	$\lg n!$	$\log n$	e^n	2^n

3. Compute the $\Theta(\cdot)$ -running time for the following code fragment. Assume that S takes unit time to run.

```
for i = 1 to n do
for j = 1 to i do
  for k = 1 to 100 do
      for m = j to j+10 do
          S
```

4. Is the following statement true or false? Give a proof or counterexample.

for every pair of functions f and g, either $f \in O(g)$ or $g \in O(f)$.

- 5. Prove that if $f_1 \in \Theta(g)$ and $f_2 \in \Theta(g)$ then $f_1 + f_2 \in \Theta(g)$.
- 6. Determine, with justification, whether each of the following sets is finite, countably infinite, or uncountable:
 - (a) $\mathbb{R} \setminus \mathbb{Q}$
 - (b) $3\mathbb{Z} 2\mathbb{Z}$ (where $i\mathbb{Z}$ denotes the set of all integral multiples of *i*)
 - (c) $\{0,1\}^*$, the set of all strings over $\{0,1\}$
 - (d) The set of all languages over $\{0, 1\}$