Problem Set 6 - Due Monday, November 11, 2008

1. Let $f(x)=x \lg x$ (the \log being base-2). Compute $f^{-1}(10)$ to at least 4 decimal digits of accuracy. You can do this with the help of a calculator or a short computer program.
2. Sort the following functions into groups G_{1}, G_{2}, \ldots such that $f, g \in G_{i}$ if $f \in \Theta(g)$, and $f \in G_{i}$ implies that $f \in O(g)$ for each $g \in G_{i}$. (That is, the slowest growing functions are in the first group; then the next slowest growing functions; and so forth.)

$5 n \lg n$	$6 n^{2}-3 n+7$	1.5^{n}	$\lg n^{4}$	13463
$-15 n$	$\lg \lg n$	$9 n^{0.7}$	$n!$	$n+\lg n$
$\sqrt{n}+12 n$	$\lg n!$	$\log n$	e^{n}	2^{n}

3. Compute the $\Theta(\cdot)$-running time for the following code fragment. Assume that S takes unit time to run.
```
for i=1 to n do
    for j = 1 to i do
        for k=1 to 100 do
            for m = j to j+10 do
                S
```

4. Is the following statement true or false? Give a proof or counterexample.
for every pair of functions f and g, either $f \in O(g)$ or $g \in O(f)$.
5. Prove that if $f_{1} \in \Theta(g)$ and $f_{2} \in \Theta(g)$ then $f_{1}+f_{2} \in \Theta(g)$.
6. Determine, with justification, whether each of the following sets is finite, countably infinite, or uncountable:
(a) $\mathbb{R} \backslash \mathbb{Q}$
(b) $3 \mathbb{Z}-2 \mathbb{Z}$ (where $i \mathbb{Z}$ denotes the set of all integral multiples of i)
(c) $\{0,1\}^{*}$, the set of all strings over $\{0,1\}$
(d) The set of all languages over $\{0,1\}$
