Problem Set 7 – Due Monday, November 24, 2008

- 1. Find the minimum number of students needed to guarantee that 3 of them were born on the same day of the week.
- 2. Let $A = \{a_1, \ldots, a_7\}$ consist of seven distinct integers. Show that some distinct $x, y \in A$ have a sum or difference divisible by 10.
- 3. Prove that, for every $n \ge 1$, it is the case that $n^3 + 2n$ is divisible by 3.
- 4. Prove that, for every $n \ge 1$, it is the case that $(1+1/2)^n \ge 1+n/2$.
- 5. Prove that for any integer $n \ge 1$, if x_1, \ldots, x_n are distinct real numbers, then no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is n 1.
- 6. For $n \ge 1$, let B(n) be the number of ways to express n as the sum of 1s and 2s, taking order into account. Thus B(4) = 5 because 5 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2.
 - (a) Compute B(i) for $1 \le i \le 5$ by showing all the different ways to write these numbers as above.
 - (b) Find a recursive definition for B(n) and identify this sequence.
 - (c) Compute B(10).
- 7. Solve the following recurrence relation by the method of repeated substitution: T(n) = 3T(n-2)+1 if $n \ge 2$; and T(0) = T(1) = 0. Given an exact answer, not an asymptotic (meaning a big-O) answer.
- 8. Solve the following recurrence relation to within a $\Theta(\cdot)$ result. Assume that $T(n) \in \Theta(1)$ for sufficiently small n. Use repeated substitution to get your answer. Then compare your answer using the Master Theorem we stated in class. The recurrence is: T(n) = 2T(n/5) + n.
- 9. Same instructions as the last problem; the recurrence is T(n) = 5T(n/2) + n.
- 10. Same instructions as the last problem; the recurrence is T(n) = 5T(n/5) + n.