Quiz 1

1. Write down a truth table for the formula $\phi = P \land (P \to Q)$.

P	Q	ϕ
0	0	0
0	1	0
1	0	0
1	1	1

- 2. Is it the case that $P \land Q \models = P \land (P \rightarrow Q)$? Yes.
- 3. How many satisfying assignments does the formula $P \lor Q \lor R$ have? 7.
- 4. Define what it means for a set of formulas Γ to be satisfiable (do make sure that your quantifiers are clear): Γ is satisfiable if ... there exists a truth assignment t that makes every formula $\phi \in \Gamma$ come out true.
- 5. Let T_n be the necessary and sufficient number of moves to solve the Towers of Hanoi problem using n disks. Write an expression for T_n $(n \ge 1)$ in terms of T_{n-1} .

$$T_n = 2T_n + 1$$

6. Capture the logical content of the following sentence in a Boolean formula: Nobody likes Mark except his roommates, who actually do like him. Make your formula as succinct as possible. Use predicate symbols L(x, y) (person x likes person y), R(x, y) (persons x and y are roommates), and the constant symbol Mark. The universe of discourse is people.

$$(\forall x)L(x, \mathsf{Mark}) \leftrightarrow R(x, \mathsf{Mark})$$

7. Is the following formula true or false when the universe of discourse is the set of real numbers?

 $(\forall x)(\forall y)(x < y \rightarrow (\exists z)(y - z = z - x))$. True (select z as the midpoint between x and y)

8. State "DeMorgan's law": $\neg(P \land Q) = \neg P \lor \neg Q$