Quiz 1

1. Write down a truth table for the formula $\phi=P \wedge(P \rightarrow Q)$.

P	Q	ϕ
0	0	0
0	1	0
1	0	0
1	1	1

2. Is it the case that $P \wedge Q \models=P \wedge(P \rightarrow Q)$? Yes.
3. How many satisfying assignments does the formula $P \vee Q \vee R$ have? 7.
4. Define what it means for a set of formulas Γ to be satisfiable (do make sure that your quantifiers are clear): Γ is satisfiable if \ldots there exists a truth assignment t that makes every formula $\phi \in \Gamma$ come out true.
5. Let T_{n} be the necessary and sufficient number of moves to solve the Towers of Hanoi problem using n disks. Write an expression for $T_{n}(n \geq 1)$ in terms of T_{n-1}.

$$
T_{n}=2 T_{n}+1
$$

6. Capture the logical content of the following sentence in a Boolean formula: Nobody likes Mark except his roommates, who actually do like him. Make your formula as succinct as possible. Use predicate symbols $L(x, y)$ (person x likes person y), $R(x, y)$ (persons x and y are roommates), and the constant symbol Mark. The universe of discourse is people.

$$
(\forall x) L(x, \text { Mark }) \leftrightarrow R(x, \text { Mark })
$$

7. Is the following formula true or false when the universe of discourse is the set of real numbers?
$(\forall x)(\forall y)(x<y \rightarrow(\exists z)(y-z=z-x))$. True (select z as the midpoint between x and y)
8. State "DeMorgan's law": $\neg(P \wedge Q)=\neg P \vee \neg Q$
