Quiz 3

Mark the correct answer by putting an \mathbf{X} through the correct box. No justification needed
(1.1) If A and B are sets then $x \in A \oplus B$ iff x is in exactly one of A and B. True False
(1.2) An infinite language contains at least one string of infinite length. True False
(1.3) Let C be the relation on pairs of people defined by saying that $x C y$ iff x and y were born

(1.4) For $a, b \in \mathbb{R}$ define $a E b$ if $a-b \in \mathbb{Z}$. Then [π], the equivalence class containing the real | number $\pi=3.14159 \cdots$, is the real number $\pi-3$. | True | False |
| :--- | :--- | :--- |

(1.5) $10 n \log n \in O\left(n^{2}\right)$.	True False

(1.6) $10 n \log n \in \Theta\left(n^{2}\right)$.	True	False

(2) Formally define what it means for a function $f: A \rightarrow B$ to be one-to-one (injective).
(3) We proved in class that in any room of six people, some three people mutually know one another or some three people mutually do-not-know each other. (We assumed "knowing" to be symmetric.) Repeat our proof of this fact. You will be graded on writing a clear, correct, grammatical proof.

