
Lecture 7
Scribe Notes for ECS 20 (Prof. Rogaway) 

Scribe: Charles Hollister 
 

Today: 
1. Back to Sets 
2. Languages 
3. Regular Languages 

 
Basic Set Operation:  
 
Recall the basic set operator, ∈.  From this operator come other set 
quantifiers and operations: 
⊆ ,  ⊇

 ,  
 ,  ∪ ∩

\ “Set difference” (sometimes denoted – ,  a minus sign) 
⊕  - symmetric difference (xor for sets, denoted Δ in your book and   
        sometimes denoted (circled v)) 
x – Cartesian product – A x B is the set of ordered pairs (a,b) with the 1st  
       element in the first set and the 2nd element in the 2nd set 
P – Power set operator, unary operator (takes 1 input). P(x) is the “set of  
       all subsets of x” 
P(X) = {A:A X} ⊆
 
More on power sets: 
 
For example, take X={0,1,2}, then 
P(x)={φ ,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}} 
We can more systematically enumerate the elements of this set by counting 
in binary just as in a truth table, indicating if the given element is (1) or is 
not (0) in the given set: 
 
 
 
 
 
 
 



 “2” “1” “0” 
 0  0  0 φ  
 0  0  1 {0} 
 0  1  0 {1} 
 0  1  1 {0,1} 
 1  0  1 {0,2} 
 1  1  0 {1,2} 
 1  1  1 {0,1,2} 
 
(Aside - Prof. Rogaway mentioned in class that we should structure our truth 
tables by counting in binary in the usual order, like above, as good practice 
for readability and to be systematic) 
 
Notice in the table that the power set of X had 8 values in it.  In general, if X 
is finite, then  |P(X)| = 2|X| .   Indeed sometimes P(X) is written 2X  as a 
reminder of how big this set is. 
 
As another example, we talked abput P(N), where N is the set of natural 
numbers. 
 
 
Using the other set operators: 
 
Next, to help improve or facility with the operators on sets,  we asked if the 
following claim is true or false: 

?
( \ ) \ \ ( \ )A B C A B C=  

 
We can see from the diagram that the statement is false.  Instead, based on 
inspection, it would appear that: 

( \ ) \ \ ( )A B C A B C= ∪  
 



Proof: It is common to show set-equalities by arguing both inclulusions. But 
here we will do it all at once: 

 

( \ ) \  iff \  iff 
( ) ( ) ( ) iff  iff

( ) iff ( ) iff
x \ ( )

x A B C x A B x C
x A x B x C x A x B x C

x A x B x C x A x B C
A B C

∈ ∈ ∧ ∉
∈ ∧ ∉ ∧ ∉ ∈ ∧ ¬ ∈ ∧ ¬ ∈

∈ ∧ ¬ ∈ ∨ ∈ ∈ ∧ ¬ ∈ ∪
∈ ∪

 

 
Set vocabulary definitions 
 
A few more words we often use: 
 
 - singleton set – a set with only one element.   
- the empty set is the set with no elements. Denoted ∅. Note this symbol is 
not the same as a Greek letter phi.  (Indeed I believe the origin is 
Norwegian). 
 - We define |A| as the number of elements in A (or cardinality of A), also 
written n(A) and #A 
-Sets A and B are disjoint if A and B share no elements, ie, if their 
intersection is empty.. 
Classmate question – Does the “if” in the definition imply iff? 
Answer – yes, definitions always “iff” when “if” is used. 
 
Some formal language theory 
 
Σ - an alphabet – an alphabet is a finite, nonempty set. Eg,  {0, 1}, {a, b}, 
{0,1,2,3,4,5,6,7,8,9}, {1}, ASCII – these are all alphabets.  Elements in an 
alphabet are called characters (or sometimes symbols). 
 

- Is ∅ an  alphabet?  NO, it is empty. An alphabet must be nonempty. 
 

 - is N, the set of natural numbers,  an alphabet?  No, it is infinite. An 
alphabet must be finite. 
 
A string is a finite sequence of characters. The characters all come from 
some understood alphabet. 
 
 
Examples and more definitions 
 



*Σ represents all the strings over the alphabet Σ.  This is an infinite set. But 
all the elements in this infinite set are strings of finite length.  If 

{0,1}Σ =  
Then 

* { ,0,1,00,01,10,11,000, ,111,0000, }εΣ = K L  
In this case,ε  represents the “empty string”. It is the unique string of length 
0.  In the case of the English alphabet: 
 

{ , , }a zΣ = K  
*Σ contains dog, fish,ε , etc 

 
Suppose x and y are strings,   x, y ∈   Σ∗, 
- Then x y xy=o denotes the characters of x, in order, followed by the 
characters of y, again in order This is known as the concatenation operator; 
we have concatenated the two strings. 
 
Consider x = dog, y = fish, then xy = dogfish. 
 
- The symbols |  …  |, when applied to strings, as in x , denotes the length of 
the string x. So the symbol has a different meaning when applied to sets and 
strings. 
 
- True or False?  A string exists of length ∞ .  False, strings are finite. 
 
- True or False?  There exists a unique string of length 1.  The answer 
depends upon the set.  For , the unary alphabet, it’s true. For 
alphabets with 2 or more characters, it is false. 

{1}Σ =

 
- The exponential operator in strings is defined as in 31 111= , or more 
generally, xn = x xn-1 for n>0 and x0 = ε . 
 
- The reason we define the 0th power as the empty string, is so the last 
statement holds true for n=1, i.e. 1 x xx ε= =o . 
 
- For the length operator, the following holds: xy x y= + .   Clear? 
 
 



- x[i:j] is often used to represent substring of x starting at position I and 
ending at position j,   where i ≥ 1, j ≤  |x|.  
 
For example, x=101101, 6; [2 : 5] 0110x x= =  
 

RX is used to represent the “reversal” of X. 
(cat) tac, (hello) ollehR R= =  

If Rx x=  the we call x  a palindrome.   
 
True or False – Palindromes are all of even length. 
False, consider “1”. 
 
0 is both a character and a string: 0∈Σ  
ε is only a string it is not a character. 
01 is likewise a string, it is not a character. 
 
Language – A set of strings, all over the same alphabet. 
 

{0,1}Σ =  
 
This is a language. It is also an alphabet. 
All of the following are examples of languages: 
 

*{ ,00,01,10,11,0000,0001 } { :  is even}L x xε= = ∈L Σ  
{1 : p is prime} {11,111,11111,1111111, }PL = = L  

*{ {0,1} :  x represents a prime number, no leading zeroes,
                         written in binary}
   ={10,11,101,111,1011}

L x= ∈
 

L={dog, cat, fish} 
 
Languages can be finite or infinite.   
 
Languages are sets, so set operators apply to languages.  For example: 
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The concatenate function can be lifted to apply to language; when L1 and L2 
are languages, L1  L2  is defined as all the combinations of a string from 
L1followed  by a string from L2.  That is, 
 

1 2 1 2 1 2{ | , }L L L L xy x L y L= = ∈ ∈o  
 
 
With the set we have written above, 

1 2 {dogdog,dogfrog,catdog,catfrog,fishdog,fishfrog}L L =  
 
True or False: ∅  is a language.   
True – all its elements are strings (that is, all 0 of them). 
 
L∅  = ∅ L =∅   
 
{ε }  is also a language – the singleton language containing just the empty 
string.   Clearly 
 

{ }L Lε =  
 
as 
 
x x xε ε= =  
 
Student question:: is ε  in every language?  
Answer,  No, we can choose to have it in a given language  or not. 
 

0

{1 :   is even}={ ,11,1111,111111}iL i
x

ε
ε

=

=
 



We can write L2 for L L, and L3 for L L L, etc.  For the example just given, 
when L is all the even length strings of 1’s, what is L2 and L3  .  Just L.  
 
True or False: if L contains the empty string, the LL’ contains all of L’.   
True. 
 
Taking it a step further, we can represent all the strings formed by 

concatenating string from the  language as 
*

0

i

i
L L

≥

=U  

In order for that definition to make sense, we need to define 0L .  0 { }L ε=  is 
the only way to sensibly do this.  If, for example we had set this to the 
emptyset, then L* would always be empty, which would be bad. 
 
Say L={dog,cat}.   Then L* ={ ε, cat, dog, catcat, catdog, dogcat, dogdog, 
…} 
 
 

*{0,1} { ,0,1,00,01,10,11,000 }ε= L  
 
Just what we said earlier, but now seen from a more general light. 
 
Why are computer scientists interested in languages? 
 
We can imagine a model for a computer program with an input of  a string 
X.  We define the language associated to the program by saying that 

says "yes"( ) x L M X∈ ⇔  
 

M X 

yes 

no 

 
That is to say, the computer program could decide if an input was part of the 
language.  In this way, Languages correspond to decision questions.  For 
example, a computer could take the input of a language X, and decide if the 
string represented by X is prime. 



M 

*{0,1}X ∈  

Yes, X is 
prime 

No, X is 
not prime 

 
 
We can illustrate this as follows: 

 
The program is splitting the universe into two sets: those it says “yes” to 
(they are in the language) and those that it says “no” to (they are not in the 
languge). 

L = prime 

cL  *Σ  

 
When the language L is finite, it is conceptually easy to write a program to 
decide it: just look it up in a table.  
 
Other languages seem easy, too.  For example,  
 

1  is an “easy” language to make a machine to decide. One 
sense in which it is easy is that there’s a short piece of notation that a 
machine could interpret that would describe that language. The short piece 
of notation I have in mind is this:    . This notation is supposed to mean 
“the string 11, repeated any number of times”. 

{1 :  is even}iL i=

*(11)

 
2  is a much harder language to describe. It doesn’t 

seem like we could describe it by a short string using symbols like 
concatenation and union and this star operator. 

{1 :  is prime}PL p=

 
Regular Languages
 
We will consider the kinds of languages that can be described using the 
following special symbols:  



( )  * U o  
 
We also allow symbols from some underlying alphabet, and the empty string 
symbol.   What we have just described is the vocabulary we will use for 
regular expression of languages.  The “meaningful” strings over these  
symbols denote language according to natural rules: 
 

* *

(( )) ( ) ( )
(( )) ( ) ( )
(( )) ( ( ))

L L
L L L
L L

Lα β α β
α β α β
α α

∪ = ∪
=

=
o  

 
Also, the language associated to a symbol from the alphabet denotes that 
singleton language, and the empty string symbol denotes that singleton 
language. 
 
We can use this more specifically to describe some languages with nice 
compact expressions.   In our earlier example, (11)* denotes the lanaguge: 

1
* *({1} {1}) {11} L= =o  

 
Here’s another example:  
 

* *0(0 1) 0 { {0,1} :  x starts and ends with a "0" and x 2}x∪ = ∈ ≥  
 
If we didn’t write the part about the length of x then the right hand side 
would include the string 0 but the lefth-hand side would not. 
 
 
What if we wanted to make a regular expression for a binary string that 
started and ended with the same character, or with no character at all? That 
would be  
 

* *1 1(0 1) 1 0 0(0 1) 0ε ∪ ∪ ∪ ∪ ∪ ∪   
 
Isn’t this fun? 


