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Solving recurrence relations with repeated substitutions 

1. Solve 𝑇(𝑛) = 2𝑇 (
𝑛

3
) + 𝑛 to within a Θ(∙) result. 

Substituting in 
𝑛

3
 for 𝑛 in the equation, we have 𝑇 (

𝑛

3
) = 2𝑇 (

𝑛

32) +
𝑛

3
 

From the original equation: 

𝑇(𝑛) = 2𝑇 (
𝑛

3
) + 𝑛 

𝑇(𝑛) = 2 [2𝑇 (
𝑛

32
) +

𝑛

3
] + 𝑛 

𝑇(𝑛) = 22𝑇 (
𝑛

32
) + 𝑛 (1 +

2

3
) 

Substituting in 
𝑛

32 for 𝑛 in the equation, we have 𝑇 (
𝑛

32) = 2𝑇 (
𝑛

33) +
𝑛

32 

𝑇(𝑛) = 22 [2𝑇 (
𝑛

33
) +

𝑛

32] + 𝑛 (1 +
2

3
) 

𝑇(𝑛) = 23𝑇 (
𝑛

33
) + 𝑛 (1 +

2

3
+ (

2

3
)

2

) 

𝑇(𝑛) = 2𝑘𝑇 (
𝑛

3𝑘
) + 𝑛 (1 +

2

3
+ (

2

3
)

2

+ ⋯ + (
2

3
)

𝑘−1

) 

The series 1 +
2

3
+ (

2

3
)

2
+ ⋯ is a geometric series (where 𝑟 < 1). 𝑠 =

1

1−𝑟
=

1

1−
2

3

= 3. So right term is Θ(n). 

For left term, use 𝑘 = log3 𝑛: 

2log3 𝑛𝑇 (
𝑛

3log3 𝑛
) = 2log3 𝑛𝑇(1) 

For a small enough 𝑛, 𝑇(𝑛) has constant runtime Θ(1), so we can ignore 𝑇(1). 

2log3 𝑛 = (3log32)
log3 𝑛

= (3log3 𝑛)
log32

= 𝑛log32 

Comparing the two terms,Θ(𝑛log32) < Θ(n), therefore 𝑻(𝒏) = 𝚯(𝒏). 

 

2. Solve 𝑇(𝑛) = 3𝑇 (
𝑛

2
) + 𝑛 to within a Θ(∙) result. 

𝑇(𝑛) = 3 [3𝑇 (
𝑛

22
) +

𝑛

2
] + 𝑛 

𝑇(𝑛) = 32𝑇 (
𝑛

22
) + 𝑛 (1 +

3

2
) 

𝑇(𝑛) = 33𝑇 (
𝑛

23
) + 𝑛 (1 +

3

2
+ (

3

2
)

2

) 

𝑇(𝑛) = 3𝑘𝑇 (
𝑛

2𝑘
) + 𝑛 (1 +

3

2
+ (

3

2
)

2

+ ⋯ + (
3

2
)

𝑘−1

) 

Now consider the series 𝑆 = 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑘−1 + 𝑥𝑘: 

𝑆𝑥 = 𝑥 + 𝑥2 + ⋯ + 𝑥𝑘−1 + 𝑥𝑘 + 𝑥𝑘+1 

1 + 𝑆𝑥 = 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑘−1 + 𝑥𝑘 + 𝑥𝑘+1 

1 + 𝑆𝑥 = 𝑆 + 𝑥𝑘+1 

𝑆𝑥 − 𝑆 = 𝑥𝑘+1 − 1 

𝑆(𝑥 − 1) = 𝑥𝑘+1 − 1 

𝑆 =
𝑥𝑘+1 − 1

𝑥 − 1
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𝑛 (1 +
3

2
+ (

3

2
)

2

+ ⋯ + (
3

2
)

𝑘−1

) =

3
2

𝑘

− 1

1
2

= 2 ((
3

2
)

𝑘

− 1) 

𝑇(𝑛) = 3𝑘𝑇 (
𝑛

2𝑘
) + 2𝑛 ((

3

2
)

𝑘

− 1) 

Use 𝑘 = lg 𝑛: 

𝑇(𝑛) = 3lg 𝑛𝑇 (
𝑛

2lg 𝑛
) + 2𝑛 ((

3

2
)

lg 𝑛

− 1) 

Θ(𝑇(𝑛)) = Θ(3lg 𝑛) + Θ (2𝑛 (
3

2
)

lg 𝑛

− 1) 

Θ(𝑇(𝑛)) = Θ((2lg 3)
lg 𝑛

) + Θ (2𝑛 (
3lg 𝑛

2lg 𝑛
) − 2𝑛) 

Θ(𝑇(𝑛)) = Θ(𝑛lg 3) + Θ(2 ∗ 3lg 𝑛 − 2𝑛) = Θ(𝑛lg 3) + Θ(𝑛lg 3) = 𝚯(𝒏𝐥𝐠 𝟑) 

 

Solving recurrence relations with recursion trees 

Solve 𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛 to within a Θ(∙) result. Solve 𝑇(𝑛) = 𝑇 (

𝑛

2
) + 𝑇 (

𝑛

3
) + 𝑛 to within a Θ(∙) result. 

 

To determine the height, consider the number of recursions to get to 𝑇(1), at which point the recursion stops.  

 

For 𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛, the height is lg 𝑛 since 𝑛 is being divided by two each time. There are lg 𝑛 levels each 

taking 𝑛 time, so it is Θ(𝑛 lg 𝑛). 

 

For 𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑇 (

𝑛

3
) + 𝑛 we do not need to consider the height, because we see that the total runtime is 𝑛 

times a constant number. Its runtime is capped at 6n, so it is Θ(𝑛). 
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Big-O and Theta 

 

𝑂(∙) is an upper bound. Θ(∙) is both an upper and lower bound (or tight bound). True or false? 

 

Note: > is not defined. Θ(𝑓) > Θ(𝑔) has been re-written to 𝑔 ∈ 𝑂(𝑓). 

 

a) 𝑛 = 𝑂(𝑛) T 

b) 𝑛 = Θ(𝑛) T 

c) 𝑛 = 𝑂(𝑛2) T 

d) 𝑛 = Θ(𝑛2) F 

e) 𝑛2 = 𝑂(𝑛) F 

f) 𝑛2 = Θ(𝑛) F 

g) 100n ∈ 𝑂(0.01𝑛2) T 

h) 2n ∈ 𝑂(2√𝑛) > F 

i) nlg 𝑛 ∈ 𝑂(2𝑛) T 

j) 𝑛! ∈ 𝑂(2𝑛) F 

k) ln 𝑛 ∈ 𝑂(lg 𝑛) T 
l) log 𝑛 ∈ 𝑂(ln 𝑛) T 

 

For h), Θ(2√𝑛) and Θ(2𝑛) do have two different growth rates. 

 

For k) and l), since log𝑏 𝑥 = log𝑑 𝑥 / log𝑑 𝑏, different logarithmic bases only differ by a multiplicative constant. 

So Θ(lg 𝑛) = Θ(ln 𝑛) = Θ(log 𝑛). Alternatively lg 𝑛 , ln 𝑛, log 𝑛 ∈ O(lg 𝑛). 

 

Rank the following functions by order of growth: 1, 𝑛, 𝑛2, 𝑛3, lg 𝑛, ln 𝑛, lg lg 𝑛, ln ln 𝑛, 2𝑛, 𝑛 lg 𝑛, 𝑛lg 𝑛 

 

1 

ln ln 𝑛    lg lg 𝑛 

ln 𝑛    lg 𝑛 

𝑛 

𝑛 lg 𝑛 

𝑛2 

 𝑛3 

𝑛lg 𝑛 

2𝑛 


