ECS 20 — Lecture 13 — Fall 2013 —7 Nov 2013 Phil Rogaway

Today:

o Comparing the size of infinite sets, cont o Asymptotic notation

Announcements:

o Dog day next Tuesday! BYOD.

Comparing infinite sets, continued

Review:

 $|A| \leq |B|$ if there exists an injection *f*: A \rightarrow B.

|A|=|B| or $A \sim B$, if there exists a bijection $\pi: A \rightarrow B$. The sets are **equipotent**, **equicardinal** $|A|\neq|B|$ if $\neg(|A|=|B|)$

|A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$: there is an injection but no bijection from A to B.

A set is **finite** if it is empty or equipotent with $\{1, ..., n\}$ for some natural number n A set is **infinite** if it is not finite. A set is **countably infinite** if it is equipotent with **N**. Write $|A| = \aleph_0$ That symbol is called a **cardinal number**. So the numbers you know about are 0, 1, 2,, \aleph_0 , **c**

We showed last time that

Examples:

• N ~ Z

- {0,1, ...} ~ {1,2, ...} (hotel with countably many occupied rooms; a new customer arrives)
- $N \sim \{1,2\} \times N$ (hotel with infinitely many occupied rooms; countably many new customer arrives)

Can also show

- $N \sim Q$: the rationals are countably infinite
- $N \sim \{0,1\}^*$: the strings (over a fixed alphabet, say binary) are countably infinite

But we showed

• $|\mathbf{N}| < |\mathbf{R}|$: the reals are uncountable

Let's modify the proof a little to show that

• The number of languages (sets of strings over {0,1}) is uncountable

Give the standard diagonalization proof for this. Important corollary:

Cor: there are languages that no computer program can recognize.

Theorem [Cantor] $|A| < |\mathcal{P}(A)|$

• Prove Cantor's theorem

Proof of Cantor's theorem, from Wikipedia [Cantor's Theorem]: To establish Cantor's theorem it is enough to show that, for any given set *A*, no function *f* from *A* into the <u>power set</u> of *A*, can be <u>surjective</u>, i.e. to show the existence of at least one subset of *A* that is not an element of the <u>image</u> of *A* under *f*. Such a subset is given by the following construction:

$$B = \{ x \in A : x \notin f(x) \}.$$

This means, by definition, that for all x in A, $x \in B$ if and only if $x \notin f(x)$. For all x the sets B and f(x) cannot be the same because B was constructed from elements of A whose images (under f) did not include themselves. More specifically, consider any $x \in A$, then either $x \in f(x)$ or $x \notin f(x)$. In the former case, f(x) cannot equal B because $x \in f(x)$ by assumption and $x \notin B$ by the construction of B. In the latter case, f(x) cannot equal B because $x \notin f(x)$ by assumption and $x \in B$ by the construction of B.

Thus there is no x such that f(x) = B; in other words, B is not in the image of f. Because B is in the power set of A, the power set of A has a greater cardinality than A itself.

Theorem [Cantor-Bernstein-Schroeder] If $|A| \le |B|$ and $|B| \le |A|$ then |A| = |B|.

Many proofs, but not simple. I read the one on the Wikipedia page and thought it incoherent. I will leave this for when you take a set theory class ... except we (UCD) don't seem to have one.

Wikipedia: The <u>continuum hypothesis</u> (CH) states that there are no cardinals strictly between \aleph_0 and $2^{\aleph_0} = \mathfrak{c}/$ The <u>generalized continuum hypothesis</u> (GCH) states that for every infinite set *X*, there are no cardinals strictly between |X| and $2^{|X|}$. The continuum hypothesis is independent of the usual axioms of set theory, the Zermelo-Fraenkel axioms, together with the axiom of choice (<u>ZFC</u>).

Leftover

n! - factorial - didn't mention

Review of properties of logs – lg, log, ln. Inverse of 2^, 10^, e^ (exp) $y \mapsto \ln(y)$ (the right notation for how to descript the action of a function. Note the kind of arrow.)

Also λ -notation: $f = \lambda x. \ln(x)$ $f = \lambda x. x^2 + 1$

log(ab) = log(a) + log(b) $log_a(b) = log_c(b) / log_c(a)$

 $s^{ab} = (s^a)^b$ $a^x a^y = a^{x+y}$

Function composition

 $\begin{array}{l} f \circ g \\ f: A \rightarrow B, \ g: B \rightarrow C \end{array}$

then $(g \circ f) : A \to C$ is defined by $(g \circ f)(x) = g(f(x))$

Kind of "backwards", but fairly tradition. Some mathematicians (eg, in algebra) will reverse it, (x) $(f \circ g)$ "function operates on the left"

Comparing growth-rates of functions –Asymptotic notation and view

Motivate the notation. Will do big-*O* and Theta. http://en.wikipedia.org/wiki/Big O notation

 $O(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists C, N \text{ s.t. } f(n) \le C g(n) \text{ for all } n \ge N \}$

People often use "**is**" or "=" for "is a member of" or "is an anonymous element of". I myself don't like this.

Reasons for asymptotic notation:

- 1. simplicity makes arithmetic simple, makes analyses easier
- 2. When applied to running times: Works well, in practice, to get a feel for efficiency
- 3. When applied to running times: Facilitates greater model-independence

Reasons against:

- 1. Hidden constants **can** matter
- 2. Mail fail to care about things that one should care about
- 3. Not everything has an "n" value to grow

If $f \in O(n^2)$, $g \in O(n^2)$ the $f+g \in O(n^2)$ If $f \in O(n^2)$ and $g \in O(n^3)$ then $f+g \in O(n^3)$ If $f \in O(n \log n)$ and $g \in O(n)$ then $fg \in O(n^2 \log n)$ etc.

May write O(f) + O(g), and other arithmetic operators

True/False:

If $f \in \Theta(n^2)$ then $f \in O(n^2)$ TRUE (Truth: $n! = \Theta((n/e)^n \operatorname{sqrt}(n))$) Discuss the runtime evaluation of a simple code fragment, eg,

for i= 1 to n do
for j=1 to 10*floor(i/3) do
 Constant time statement

Will do many more examples next week.