ECS 20 — Lecture 14 — Fall 2013 —12 Nov 2013 Phil Rogaway

Today:

o Asymptotic notation o Solving recurrence relations .

Announcements:

o It's dog day - and there came to class one (1) dog.

(not the actual dog who visited, but a reasonable approximation)

Asymptotic notation and view

Note: below, I am showing *O* and ⊖ together. In class, might do one and then the other.

Last time I defined

 $O(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists C, N \text{ s.t. } f(n) \le C g(n) \text{ for all } n \ge N \}$ $\Theta(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists c, C N \text{ s.t. } c g(n) \le f(n) \le C g(n) \text{ for all } n \ge N \}$

Note: some people throw absolute value signs, ||, signs around the fs. I am omitting them, as, almost always, f(n) is a nonnegative function. I find it "weird" to consider negative fs in this context.

Here's an almost-equivalent form

$$O(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists C, C' \text{ s.t. } f(n) \le C g(n) + C' \text{ for all } n \ge N \}$$

$$\Theta(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists C, C N \text{ s.t. } C g(n) - C \le f(n) \le C g(n) \text{ for all } n \ge N \}$$

Or, how about

$$O(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists C, N \text{ s.t. } f(n) / g(n) \le C \text{ as long as } n \ge N \}$$

$$\Theta(g) = \{ f: \mathbf{N} \to \mathbf{R}: \exists C, c, N \text{ s.t. } c \le f(n) / g(n) \le C \text{ as long as } n \ge N \}$$

People often use "is" for "is a member of" or "is an anonymous element of"

They even define things that way, ever regarding O(g) or $\Theta(g)$ or as a defined "thing", but only defining what it means to to say that "f(n) is O(g(n))" or "f(n) = O(g(n))".

"f(n) is O(g(n))"

The "qualitative behavior" of practical computation – where, very roughly, things go from "practical" to "impractical" – is often determined more by asymptotic growth rates than constants.

See <u>http://www.csupomona.edu/~ftang/courses/CS240/lectures/analysis.htm</u> for some nice stuff on big-0.

n	n lo	ŋ n	n^2		n′	`3	2^n
10	30	ns	100	ns	1	us	1 usec
100	700	ns	10	us	1	ms	10^13 yrs
1000	10	us	1	ms	1	sec	10^284 yrs
10000	100	us	0.1	S	17	mins	
10^5	2	ms	10	S	1	day	
10^6	20	ms	17	mins	32	years	

Suppose 1 step = 1 nsec (10⁻⁹ sec)

The simplicity afforded by dealing with asymptotics

 $O(n^2) + O(n^2) = O(n^2)$ $O(n^2) + O(n^3) = O(n^3)$ $O(n \log n) + O(n) = O(n \log n)$ etc.

True/False:

 $5n^{3} + 100n^{2} + 100 = O(n^{3})$ If $f \in \Theta(n^{2})$ then $f \in O(n^{2})$ TRUE $n! = O(2^{n})$ NO $n! = O(n^{n})$ YES

(Truth: $n! = \Theta((n/e)^n \operatorname{sqrt}(n))$ --- indeed

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

(Stirling's formula)

Claim: $H_n = 1/1 + 1/2 + ... + 1/n = O(\lg n)$

Upperbound by 1 + integral_1^n $(1/x)dx = 1 + \ln(n) = O(\lg n)$

Draw picture showing common growth rates

```
Theta(n!)
Theta(2^n)
Theta(n^3)
```

```
Theta(n^2)

Theta(n log n log log n)

Theta(n lg n)

Theta(n)

Theta(sqrt(n)

Theta(log n)

Theta(1)

exercise: where is \sqrt(n)
```

The highest degree term in a polynomial is the term that determines the asymptotic growth rate of that polynomial.

General rules: Characterizing Functions in Simplest Terms -- material from URL above

In general we should use the big-Oh notation to characterize a function as closely as possible. For example, while it is true that $f(n) = 4n^3 + 3n^2$ is $O(n^5)$ or even $O(n^4)$, it is more accurate to say that f(n) is $O(n^3)$.

It is also considered a poor taste to include constant factors and lower order terms in the big-Oh notation. For example, it is unfashionable to say that the function $2n^3$ is $O(4n^3 + 8n\log n)$, although it is completely correct. We should strive to describe the function in the big-Oh in **simplest terms**.

Rules of using big-Oh:

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$. We can drop the lower order terms and constant factors.
- Use the smallest/closest possible class of functions, for example, "2n is O(n)" instead of "2n is O(n²)"
- Use the simplest expression of the class, for example, "3n + 5 is O(n)" instead of "3n+5 is O(3n)"

Example usages and recurrence relations

Intertwine examples with the analysis of the resulting recurrence relation

- 1. How long will the following **fragment of code** take [nested loops, second loop a nontrivial function of the first] -- something $O(n^2)$
- 2. How long will a computer program take, in the worst case, to run **binary search**, in the worst case? T(n) = T(n/2) + 1 -- reminder: have seen recurrence relations before, as with the **Towers of Hanoi** problem. Then do another recurrence, say T(n) = 3T(n/2) + 1. Solution (repeated substitution) $n \log_{23} = n^{1.5849...}$ What about T(n) = 3T(n/2) + n? Or $T(n) = 3T(n/2) + n^2$? [recursion tree]
- 3. How many gates do you need to **multiply** two n-bit numbers using **grade-school** multiplication?
- 4. How many comparisons to "**selection sort**" a list of n elements? T(n) = 1 + T(n-1)
- 5. How many comparisons to "merge sort" a list of n elements? T(n) = T(n/2) + n
- 6. What's the running time of deciding SAT using the obvious algorithm?

Warning: don't think that asymptotic notation is only for talking about the running time or work of algorithms; it is a convenient way of dealing with functions in lots of domains

 algorithm BS (X,A, low, high)
 // Look for X in A[low..high]. low, high nonneg ints. Return -1 if absent

 if (low>high) return(-1)
 // (range of A is empty – element not found)

 m ← (low+high)/2]
 // (range of A is empty – element not found)

 if (A[m] = X) return (m)
 if (A[m] < X) return BS (X, A, m + 1, high)</td>
 // X not in A[1..m]

 if (A[m] >X) return BS (X, A, low, m - 1)
 // X not in A [m..high]

From Wikipedia: Karatsuba algorithm (1960/1962) The basic step of **Karatsuba's algorithm** is a formula that allows us to compute the product of two large numbers *x* and *y* using three multiplications of smaller numbers, each with about half as many digits as *x* or *y*, plus some additions and digit shifts.

Let x and y be represented as *n*-digit strings in some <u>base</u> B – say B=10. For any positive integer *m* less than *n*, one can write the two given numbers as

 $x = x_1 10^m + x_0$ $y = y_1 10^m + y_0,$

where x_0 and y_0 are less than 10^m . The product is then

 $xy = (x_110^m + x_0)(y_110^m + y_0)$ = $z_210^{2m} + z_110^m + z_0$ where $z_2 = x_1y_1$ $z_1 = x_1y_0 + x_0y_1$ $z_0 = x_0y_0$.

These formulae require **four multiplications**, and were known to <u>Charles Babbage</u>.^[4] Karatsuba observed that *xy* can be computed in only **three multiplications**, at the cost of a few extra additions. With z_0 and z_2 as before we can calculate

 $z_1 = (x_1 + x_0)(y_1 + y_0) - z_2 - z_0$ which holds since $z_1 = x_1y_0 + x_0y_1$ $z_1 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0.$

Example To compute the product of 12345 and 6789, choose B = 10 and m = 3. Then we decompose the input operands using the resulting base ($B^m = 1000$), as: $12345 = 12 \cdot 1000 + 345$

 $6789 = 6 \cdot 1000 + 789$

Only three multiplications are required, and they are operating on smaller integers are used to compute three partial results:

 $z_2 = 12 \times 6 = 72$

 $z_0 = 345 \times 789 = 272205$

 $z_1 = (12 + 345) \times (6 + 789) - z_2 - z_0 = 357 \times 795 - 72 - 272205 = 283815 - 72 - 272205 = 11538$ We get the result by just adding these three partial results, shifted accordingly (and then taking carries into account by decomposing these three inputs in base *1000* like for the input operands): result = $z_2 \cdot B^{2m} + z_1 \cdot 10^m + z_0$, i.e.

result = $72 \cdot 1000^2 + 11538 \cdot 1000 + 272205 = 83810205$.

Then: solve the recurrence T(n) = 1 if n=1, T(n) = 3T(n/2) + n if n>1(will do afresh next class)

There is more than 0 and Θ. (Table modified from Wikipedia)

Notation	Intuition	Informal definition: for sufficiently large n_{\cdots}	Formal Definition
$f(n) \in O(g(n))$	f is bounded above by g (up to constant factor)	$ f(n) \leq g(n) \cdot k$ for some positive k	$\exists k > 0 \; \exists n_0 \; \forall n > n_0 \; f(n) \leq g(n) \cdot k$
$f(n)\in \Omega(g(n))$	f is bounded below by g	$f(n) \geq g(n) \cdot k$ for some positive k	$\exists k > 0 \; \exists n_0 \; \forall n > n_0 \; g(n) \cdot k \leq f(n)$
$f(n)\in \Theta(g(n))$	f is bounded above and below by g	$g(n) \cdot k_1 \leq f(n) \leq$ for some positive k1, k2	$\exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ \forall n > n_0$ $g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$
$f(n) \in o(g(n))$	${f_{ m is}} \ _{ m by} {g}$	$\begin{split} f(n) &\leq k \cdot g(n) \\ \text{for every fixed positive} \\ \text{number} k \end{split}$	$\forall k > 0 \ \exists n_0 \ \forall n > n_0 \ f(n) \le k \cdot g(n) $
$f(n)\in \omega(g(n))$	${f_{ m dominates}} \ g$	$\begin{split} f(n) \geq k \cdot g(n) \\ \text{for every fixed positive} \\ \text{number} k \end{split}$	$\forall k > 0 \exists n_0 \ \forall n > n_0 \ f(n) \ge k \cdot g(n) $
$f(n) \sim g(n)$	${f_{{ m{is}\ equal}} \over {_{ m{to}}} g_{{ m{asymptoti}}} }$ cally	$f(n)/g(n) \to 1$	$\forall \varepsilon > 0 \; \exists n_0 \; \forall n > n_0 \; \left \frac{f(n)}{g(n)} - 1 \right < \varepsilon$