
1 
 

ECS 20 — Lecture 14 — Fall 2013 —12 Nov 2013 
Phil Rogaway  

 
Today:   
  o Asymptotic notation 
 o Solving recurrence relations . 
 
Announcements: 
 o It’s dog day – and there came  to class one (1) dog. 
 

 (not the actual dog who visited, but a reasonable approximation) 
 
 
 
Asymptotic notation and view 
 

Note: below, I am showing O and Θ together. In class, might do one and then the other. 
 
 
Last time I defined 
 

   O(g) = { f: N  R:    C, N s.t.    f(n)   C g(n) for all n N}                  .                        

   Θ(g) = {f: N  R:     c, C N s.t.     c g(n) f(n)  C g(n) for all n N } 
 
Note: some people throw absolute value signs, | | , signs around the f’s.   
I am omitting them, as, almost always, f (n) is a nonnegative function. 
I find it “weird” to consider negative f’s in this context. 
 

Here’s an almost-equivalent form 
 

   O(g) = { f: N  R:    C, C’ s.t.    f(n)   C g(n) + C ’   for all n N}                       .    

   Θ(g) = {f: N  R:     c, C N s.t.     c g(n)    C  f(n)    C g(n) for all n N } 
 
Or, how about 
 

   O(g) = { f: N  R:    C, N s.t.    f(n) /g(n)  C  as long as  n N }            . 

   Θ (g) = { f: N  R:    C, c, N s.t.   c    f(n) /g(n)  C  as long as  n N }     
  
 
 
People often use “is” for “is a member of” or “is an anonymous element of”  
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They even define things that way, ever regarding O(g) or Θ(g) or as a defined  “thing ”, but only 
defining what it means to to say that “f(n) is O(g(n))”   or     “f(n) O(g(n))” . 
 
“f(n) is O(g(n))”    
 
The “qualitative behavior” of practical computation – where, very roughly, things go from 
“practical” to “impractical” – is often determined more by asymptotic growth rates than constants. 
 

See http://www.csupomona.edu/~ftang/courses/CS240/lectures/analysis.htm for some nice 
stuff on big-O. 
 
 
 
n         n lg n    n^2         n^3        2^n 

---------------------------------------------------------- 

10         30 ns    100 ns      1 us       1 usec 

100       700 ns     10 us      1 ms      10^13 yrs 

1000       10 us      1 ms      1 sec     10^284 yrs 

10000     100 us    0.1 s      17 mins     --- 

10^5        2 ms     10 s       1 day      --- 

10^6       20 ms     17 mins   32 years    --- 

 

Suppose 1 step = 1 nsec  (10^-9 sec) 
 
 
The simplicity afforded by dealing with asymptotics   

  O(n2) + O(n2) = O(n2)  

  O(n2) + O(n3) = O(n3)  
  O(n log n) + O(n) = O(n log n)   
  etc. 
 
True/False: 
 
5n3 + 100n2 +100 = O(n3) 

 If f Θ(n2) then f  O(n2)   TRUE 

 n! = O(2n)   NO 

 n! = O(nn)   YES 

                     (Truth:  n! = Θ((n/e)n  sqrt(n)) --- indeed     (Stirling’s formula) 
 

 Claim:   Hn = 1/1 + 1/2 + ... + 1/n =  O(lg n) 
  
 Upperbound by 1 + integral_1^n (1/x)dx = 1 + ln(n) = O(lg n)  
 
Draw picture showing common growth rates 
 
             Theta(n!) 

             Theta(2^n) 

             Theta(n^3) 

http://www.csupomona.edu/~ftang/courses/CS240/lectures/analysis.htm
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             Theta(n^2) 

             Theta(n log n log log n)  

             Theta(n lg n) 

             Theta(n) 

                  Theta(sqrt(n) 

             Theta(log n) 

             Theta(1) 

 

exercise: where is \sqrt(n) 

 

The highest degree term in a polynomial is the term that determines the asymptotic growth rate of that 

polynomial.  

General rules: Characterizing Functions in Simplest Terms  -- material from URL above 

In general we should use the big-Oh notation to characterize a function as closely as possible. For 

example, while it is true that f(n) = 4n3 + 3n2 is O(n5) or even O(n4), it is more accurate to say that f(n) is 

O(n3). 

It is also considered a poor taste to include constant factors and lower order terms in the big-Oh notation. 

For example, it is unfashionable to say that the function 2n3 is O(4n3 + 8nlogn), although it is completely 

correct. We should strive to describe the function in the big-Oh in simplest terms. 

Rules of using big-Oh: 

 If f(n) is a polynomial of degree d, then f(n) is O(nd). We can drop the lower order terms and 

constant factors. 

 Use the smallest/closest possible class of functions, for example, "2n is O(n)" instead of "2n is 

O(n2)" 

 Use the simplest expression of the class, for example, "3n + 5 is O(n)" instead of "3n+5 is 

O(3n)" 

 
Example usages and recurrence relations 
 
Intertwine examples with the analysis of the resulting recurrence relation 
 

1. How long will the following fragment of code take [ nested loops, second loop a nontrivial 
function of the first]  -- something O(n2)  

2. How long will a computer program take, in the worst case, to run binary search, in the 
worst case?     T(n) = T(n/2) + 1    -- reminder: have seen recurrence relations before, as 
with the Towers of Hanoi problem.    – Then do another recurrence, say T(n) = 3T(n/2) + 1.  
Solution (repeated substitution)     n log_23     = n1.5849…      What about T(n) = 3T(n/2) + n ?  Or 
T(n) = 3T(n/2) + n2 ?  [recursion tree] 

3. How many gates do you need to multiply two n-bit numbers using grade-school 
multiplication?   

4. How many comparisons to “selection sort” a list of n elements?    T(n) = 1 + T(n-1) 
5. How many comparisons to “merge sort” a list of n elements?  T(n) = T(n/2) + n 
6. What’s the running time of deciding SAT using the obvious algorithm? 
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Warning:  don’t think that asymptotic notation is only for talking about the running time or work of 
algorithms; it is a convenient way of dealing with functions in lots of domains 
 
algorithm BS (X,A, low, high)             // Look for X in A[low..high]. low, high nonneg ints. Return -1 if absent 

if (low>high) return(-1)          // (range of A is empty – element not found) 

m (low+high)/2 

if (A[m] = X) return (m) 

if (A[m] < X) return BS (X, A, m + 1, high)        // X not in A[1..m] 

if (A[m] >X)  return BS (X, A, low,  m - 1 )       // X not in A [m..high] 

 
From Wikipedia: Karatsuba algorithm  (1960/1962)    The basic step of Karatsuba's algorithm is 
a formula that allows us to compute the product of two large numbers x and y using three 
multiplications of smaller numbers, each with about half as many digits as x or y, plus some 
additions and digit shifts. 
Let x and y be represented as n-digit strings in some base B – say B=10.  For any positive 
integer m less than n, one can write the two given numbers as 
 
x = x1 10m + x0 
y = y1 10m + y0, 
 
where x0 and y0 are less than 10m. The product is then 
xy = (x110m + x0)(y110m + y0) 
     = z2102m + z110m + z0 
where 
z2 = x1y1 
z1 = x1y0+ x0y1 
z0 = x0y0. 
 
These formulae require four multiplications, and were known to Charles Babbage.[4] Karatsuba 
observed that xy can be computed in only three multiplications, at the cost of a few extra 
additions. With z0 and z2 as before we can calculate 
 z1 = (x1 + x0)(y1 + y0) - z2 - z0 
which holds since 
z1 = x1y0+ x0y1 
z1 = (x1 + x0)(y1 + y0) - x1y1 - x0y0. 
 
Example To compute the product of 12345 and 6789, choose B = 10 and m = 3. Then we 
decompose the input operands using the resulting base (Bm = 1000), as: 
12345 = 12 · 1000 + 345 
   6789 = 6 · 1000   + 789 
Only three multiplications are required, and they are operating on smaller integers are used to 
compute three partial results: 
z2 = 12 × 6 = 72 
z0 = 345 × 789 = 272205 
z1 = (12 + 345) × (6 + 789) − z2 − z0 = 357 × 795 − 72 − 272205 = 283815 − 72 − 272205 = 11538 
We get the result by just adding these three partial results, shifted accordingly (and then taking 
carries into account by decomposing these three inputs in base 1000 like for the input operands): 
result = z2 · B2m + z1 · 10m + z0, i.e. 
result = 72 · 10002 + 11538 · 1000 + 272205 = 83810205. 

http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Charles_Babbage
http://en.wikipedia.org/wiki/Karatsuba_algorithm#cite_note-4
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Then: solve the recurrence 
 T(n) = 1 if n=1,  
 T(n) = 3T(n/2) + n  if n>1 
(will do afresh next class) 
 
 
There is more than O and Θ.       (Table modified from Wikipedia)  
 

Notation Intuition 
Informal definition: for 

sufficiently large ... 
Formal Definition 
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