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ECS 20 — Lecture 15 — Fall 2013 —14 Nov 2013 
Phil Rogaway  

 
Today:   
  o   Solving recurrence relations . 
 o   Pigeonhole arguments 
 
Announcements: 
 o   Quiz 3 on Tuesday 
 
 
Karatsuba algorithm  (1960/1962)     Suppose we want to multiply two decimal numbers. We 
write one number as x = x1 || x0 and the other was y = y1 || y0, each half having m digits (let’s not 
worry about what to do if m is odd; no real complications are added). So  
 
x = x1 10m + x0 
y = y1 10m + y0, 
 
The product is then 
xy = (x110m + x0)(y110m + y0) 
     = z2102m + z110m + z0 
where 
z2 = x1y1 
z1 = x1y0+ x0y1 
z0 = x0y0. 
 
These formulas require four multiplications. Karatsuba observed that xy can be computed in only 
three multiplications of m-digit values. With z0 and z2 as before we can calculate 
 z1 = (x1 + x0)(y1 + y0)  z2  z0 
which holds since 
z1 = (x1 + x0)(y1 + y0)  x1y1  x0y0 = x1y0+ x0y1 
 
Example Let’s compute  
 
       98  76 

      56  78 
    --------- 

         5928 

       7644 

       4256    these two sum to 11900.   But we can also get 11900 as 

     5488      11900 = (98+76)(56+78) – 5928 - 5488 

    ---------        =        174*134 - 5928 - 5488  

     56075928        =          23316 – 5928 - 5488 

                     = 11900                       

 

              Comparing the asymptotic running times 
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First, the 4-multiply method: 
T(n) = 4T(n/2) + n           (when n > 1;    T(n) = const when n = 1) 
          = 4(4T(n/4) + n/2) + n 
          = 4^2 T(n/4) + 2n + n 
          = 4^3 T(n/8) + n(1 + 2 + 4) 
          = 4^4 T(n/2^4) + n(1 + 2 + 2^2 + 2^3) 
          = … 
          =  4^k + n(2^k – 1) 

          \in n) + O(n^2) 

          \in (n^2) 
 
Now, the 3-multiply method: 
T(n) = 3 T(n/2) + n 
          = 3 (3T(n/4) + n/2) + n 
          = 3^2 T(n/4) + (3n/2 + n) 
          = 3^2(3T(n/8) + n/4) + 3n/2 + n 
          = 3^3 T(n/8) + 3^2n/2^2 + 3n/2 + n 
          = 3^3 T(n/8) + n(1 + 3/2 + (3/2)^2)) 
          = 3^ 4 T(n/16) + n (1 + (3/2) + (3/2)^2 + (3/2)^3) 
          = … 
          =  3^ k T(n/2^k) + n (1 + (3/2) + (3/2)^2 + (3/2)^3 + … + (3/2)^{k-1}) 
    
At this point it would be good to know what is  
         S  = 1 + x + x^2 + … + x^{k-1} + x^k 
        Sx =       x + x^2 + … + x^k    + x^{k+1} 
    1+Sx = 1+ x + x^2 + … + x^k    + x^{k+1} 
    1+Sx = S + x^{k+1} 
  S(x-1) = x^{k+1} – 1 
           S =  (x^{k+1} – 1)   /    (x-1) 
It is worth remembering this result (or, better, being able to re-derive it if you need it). 

1 + x + x^2 + … + x^{k-1}  = (x^k – 1)   /    (x-1) 
 
So, with x = 3/2, we have  
(1 + (3/2) + (3/2)^2 + (3/2)^3 + … + (3/2)^{k-1}) = 2 (3/2)^k - 2 
 
          =  3^ k T(n/2^k) + n (1 + (3/2) + (3/2)^2 + (3/2)^3 + … + (3/2)^{k-1}) 
          = 3^ k T(n/2^k) + n  ((3/2)^k – 1) / (1/2) 
Now we want k = lg n, so  
= 3^ lg n    + 2n (3/2)^lg n 
= (2^lg 3)^lg n + 2n  3^lgn / 2^lg n 
=  n^lg 3  +  2   n^lg3 

=  (n^lg 3) 

= (n^1.5849) 
 

Best-known: we can actually multiply two n-digit numbers in time (n log n log log n)  )or this 
number of 2-input gaates) using the Schönhage–Strassen algorithm (1971) – the third multiplicand 
not improved by  Fürer's (2007) 
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Notation Intuition 
Informal definition: for 

sufficiently large ... 
Formal Definition 
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If an additional example feels needed: do mergesort 
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The asymptotic “debate”  
 
Asymptotic notation is everywhere in computer science, but not everyone is a fan.  
 
Reasons for asymptotic notation:  

1. Simplicity  – makes arithmetic simple, makes analyses easier 
2. Applied to running times: Works well, in practice, to get an understanding of 

efficiency 
3. When applied to running times: Facilitates greater model-independence  

Reasons against: 
1. Hidden constants can matter 
2. Excessive reliance on asymptotics: may fail to notice about things that one really should 

care about 
3. Not everything has an “n” value to grow with respect to – or, may really be interested in 

one particular n. 
 
There is more than O and Θ.       (Table modified from Wikipedia)  
 
Back to the Pigeonhole Principle 
 

If N pigeons roost in n holes, N>n, then some two pigeons 
share a hole.  
 
Restated: [Pigeonhole principle] 

If   f : A  B where A and B are finite sets, |A|>|B|, then f is NOT injective. 
 
Or  
[Pigeonhole principle, strong form] 

If   f : A  B where A and B are finite sets, then so point bB must have at least |B|/|A|  
preimages. 
 
Eg, if 100 pigeons roost in 30 holes, some hole has at least 4 pigeons roosting therein. 
 
 
 
Ex 0.  Any room with 3 or more people has some two of the same gender. 
 
Ex 1.  20 people at a party, some two have the same number of friends. 
       number of friends  
       proof: 0..18   or 1..19 
 
Ex 2: Given five points inside the square whose side is of length 2, prove that 
      two are within \sqrt{2} of each other. 
 
       Soln: divide square into four 1 x 1 cells.  Diameter of each cell = \sqrt{2} 
 
Ex 3: In any list of 10 numbers, a_1, ..., a_10, there's a subsequence of (consecutive) numbers whose 
sum is divisible by 10. 
 
      Consider 
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               s_1 = a_1 
               s_2 = a_1 + a_2 
               ... 
               s_10 = a_1 + a_2 + ... + a_10 
     Then numbers in the list.  If any of these divisible by 10:  done. 
 
      Otherwise, each is congruent to 1,..., 9 mod 10.   So two of the s_i (mod 10) values are congruent 
to the same thing.  Eg, may  
 
               a_1 + a_2  + a_3 = 6 (mod 5) 
               a_1 + a_2  + a_3 + a_4 + a_5 = 6 (mod 5) 
 
      But then  
                                  a+4 + a_5 = 0 (mod 10) 
      
Ex 4.   (beautiful example)  In any room of 6 people, there are 3 mutual friends or 
      3 mutual strangers (Ramsey theorem, and R(3,3)=6) 
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     Remove person 1     5 people left.  
     Put into two pots:  friends with 1, non-friends with 1. 
     One has at least three people. 
     If three friends:   Case 1: some two know each other:  DONE  
                                      Case 2: no two know each other: DONE 
     If three non-friends: ...o 
 
 
     Difficult Puzzle:  What is the minimum number of people that must assemble in a room 
     such that there will be at least n friends or n non-friends: R(n,n) 
 
     R(4,4) = 18  (1955) 
     R(5,5) = ??  open!!!   known to be between 43 (1989) and 49 (1995) 
     R(10,10) =?? open and not tightly determined at all: range 798 (1986)- 23,556 (2002) 

 
 


