
1

ECS 20 — Lecture 17 — Fall 2013 —21 Nov 2013
Phil Rogaway

Today:
 Graph Theory, continued

Graph theory

1. Review of definitions and vocabulary

2. Sum-of-degrees formula. Cliques. Counting. Bipartite graphs.

3. Paths, cycles, Eulerian graphs

1. Basic Definitions

Def: A (finite, simple) graph G=(V, E) is an ordered pair

 - V is a finite nonempty set (the vertices or nodes)

 - E is a set of two-elements subsets of V (the edges)

I like {x,y} for an edge, emphasizing that {x,y} are unordered.

Will sometimes see xy or (x,y), but both look like the order matters, which, in a simple graph, it does not.

Usually people use n=|V| and m=|E|; alternatively, = |V| and = |E| looks nice and suggestive.

There are many other “kinds” of graphs—for example, in a directed graph (digraph), the edges (now

often called arcs) are ordered pairs, instead of unordered pairs. We sometimes allow graphs with self-

loops (and edge between a vertex and itself) or multiple edges (two or more different edges connecting a

pair of nodes). In a network, each edge (or arcs) has a real-valued weight. People consider infinite

graphs. We even have graphs where an even can be incident (touch) touch than two vertices

(hypergraphs). None of these variants are not allowed in simple graphs. For this lecture, we’re going to

stick to them.

Conventional representation: a picture. (Draw some.) But be clear: the picture is NOT the graph, it is a

representation of the graph. The graph is the pair (V,E).

Some “special” graphs – a clique of size n, Kn , and complete bipartite graphs on n “boys”

and m “girls”, Kn,m.

Def: Two vertices v, w of a graph G=(V, E) are adjacent if {v,w}E.

Def: The degree of a vertex deg(v) = |{v,w}: wV|

Def: The neighbor set of v in a graph G=(V,E) is N(v) = {w V: {v,w} E}.

2

Note that deg(v) = |N(v)|.

K1 K2
K3 K4

K5

K3,3K2,3

The Peterson graph

Some counting

Question: How many different graphs are there on V={1,...,n}? 2C(n,2) = 2 n(n-1)/2

Question: what is the maximal and minimal degrees of an n-vertex graph?

Question: Count how many edges in Kn and Kn,m.

Isomorphism

We don't usually care about the names of points in V, only how they’re connected up. If two graphs are

the same, up to renaming, we call them isomorphic. Formally, graphs G=(V, E) and G’=(V’, E’) are

isomorphic if there is a permutation : V  V’ such that {v,w}E iff {(v),(w)}E’. The properties of

graphs that matter are those that are invariant under isomorphism.

Def: Graphs G=(V,E) and G’=(V’,E’) are isomorphic if there exists a permutation  such that {x,y}E

iff {(x),(y)}E’.

Proposition: Isomorphism is an equivalence relation.

Amazing fact: there is no efficient algorithm known to decide if two graphs are isomorphic. (Most

computer scientists believe that no such algorithm exists.) One of the biggest open questions in computer

science.

Maybe show how to prove to graphs are non-isomorphic using an interactive proof. [Didn’t do this]

Prop: v deg(v) = 2m

3

Bipartite graphs

Def: A graph G = (V,E) is k-colorable if we can paint the vertices using “colors”

 {1,...,k} such that no adjacent vertices have the same color. Formally,

Def: A graph is bipartite if it is 2-colorable. In other words, we can partition

 V into (V1, V2) such that all edges go between a vertex in V1 and a vertex in V2.

Proposition: A graph is bipartite iff it is 2-colorable)iff it has no odd-length cycles, which can be done

after we introduct that vocabulary.)

Proposition: There is a simple and efficient algorithm to decide if a graph G is 2-colorable / bipartite.

Proof: Modify DFS.

 Initially, all vertices are uncolored: color[v]=UNCOLORED

 While there are uncolored vertices v in G do DFS(v,0)

 Algorithm DFS(v,b)

 color[v] = b

 for each uncolored w in N(v) do DFS(w, 1-b)

Amazing fact: There is no reasonable algorithm known to decide if a graph is 3-colorable.

 (Most computer scientists believe that no such algorithm exists.)

Proposition [Appel, Haken 1989] Every planar graph is 4-colorable.

3. Paths, Cycles, connectivity, and Eulerian cycles

Def: A path p=(v1, ..., vn) in G = (V,E) is a sequence of vertices s.t. {vi,vi+1}E

 for all i in {1,..., n1}.

 A path is said to contain the vertices and to contain the edges {vi,vi+1}.

 The length of a path is the number of edges on it.

 A cycle is a path of length three or more that starts and ends at the same vertex and includes no

repeated edges.

 A graph is acyclic if it contains no cycle.

 A graph G = (V,E) is connected if, for all x,y in V, there is a path from x to y.

 The components of a graph are the maximal connected subgraphs.

 (Graph G’ = (V’,E’) is a subgraph of graph G = (V,E) if V'V and E’E.)

Alternative definition of components: Say that x ~ y (these vertices are in the same component) if there is

a path from x to y. Prop: this is an equivalence relation. Its blocks (equivalence classes) are the

components.

4

Alternative definition of a component: the component containing v is all vertices connected to v by paths

of any lengths; and all the induced edges (the edges of the original graph that span vertices in the

component).

Describe an algorithm, based on DFS, for counting the number of components of a graph and identifying

them.

Def: A graph G is Eulerian if it there is a cycle C in G that goes through every

 edge exactly once.

 A graph G is Hamiltonian if there is a cycle that goes through every vertex

 exactly once.

Theorem: (Euler) A connected graph G = (V,E) on n3 vertices is

 Eulerian

 iff

 every vertex of G is of even degree.

Proof:  Choose s. Graph is Eulerian mean there is a path that starts at

 s and eventually ends at s, hitting every edge. Put a label of 0 on

 every vertex. Now, follow the path. Every time we exit a vertex, increment

 the label. Every time we enter a vertex, increment the label.

 At end of traversing the graph, label(v) = deg(v) and this is even.

  (sketch) If every vertex is of even degree, at least three vertices. Start at s

 and grow a cycle C of unexplored edges until you wind up back at s.

 You never “get stuck” by even-degree constraint. If every edge explored:

 Done. Otherwise, find contact point of C and an unexplored edge (exists

 by connectedness) and grow out from there. Splice together the paths.

So there is a trivial algorithm to decide if G is Eulerian: just check if all its

vertices are of even degree.

Amazing fact: There is no “reasonable” algorithm known to decide if a graph is Hamiltonian.

 (Most computer scientists believe that no such algorithm exists.)

