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ECS 20 — Lecture 17b  = Discussion D8 — Fall 2013 —25 Nov 2013 
Phil Rogaway  

 

 

 

Today:    Using discussion section to finish up graph theory. Much of these notes the same as those 
prepared for last lecture and the lecture before. 
 

 Graph Theory, continued 
 

 

Graph theory  
 

Graph theory 

1. Basic definitions     

2. Isomorphism 

3. Representation of graphs 

4. Paths and cycles 

5. Trees 

6. Eulerian and Hamiltonian graphs 

7. Longest and shortest paths 

8. Colorability 

9. Planarity 

10. Cliques and Ramsey numbers 

 

 

 

 

 

1. Basic Definitions 

 

Def:   A (finite, simple) graph G=(V, E) is an ordered pair 

       - V is a finite nonempty set (the vertices or nodes) 

       - E is a set of two-elements subsets of V (the edges) 

 

I like {x,y} for an edge, emphasizing that {x,y} are unordered. 

Will sometimes see xy  or (x,y), but both look like the order matters, which, in a simple graph, it does not. 

 

Usually people use n=|V| and m=|E|; alternatively, = |V| and = |E| looks nice and suggestive.  

 

There are many other “kinds” of graphs—for example, in a directed graph (digraph), the edges (now 

often called arcs) are ordered pairs, instead of unordered pairs.  We sometimes allow graphs with self-

loops (and edge between a vertex and itself) or multiple edges (two or more different edges connecting a 

pair of nodes). In a network, each edge (or arcs) has a real-valued weight. People consider infinite 

graphs. We even have graphs where an even can be incident (touch) touch than two vertices 

(hypergraphs).  None of these variants are not allowed in simple graphs. For this lecture, we’re going to 

stick to them.   
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Conventional representation: a  picture.   (Draw some.) But be clear: the picture is NOT the graph, it is a 

representation of the graph. The graph is the pair (V,E). 

 

Some “special” graphs – a clique of size n, Kn , and complete bipartite graphs on n “boys” 

and m “girls”,  Kn,m.      
 

K1 K2
K3 K4

K5

K3,3K2,3
 

 

The Peterson graph 

 

Def:    Two vertices v, w of a graph G=(V, E) are adjacent  if {v,w}E. 

Def:    The degree of a vertex deg(v) = |{v,w}: wV| 

Def:    The neighbor set of v in a graph G=(V,E) is  N(v) = {w V: {v,w} E}. 

Note that deg(v) = |N(v)|. 

 

Some counting 

Question: How many different graphs are there on V={1,...,n}?       2
C(n,2)   = 2 

n(n-1)/2
 

Question: what is the maximal and minimal degrees of an n-vertex graph?   

Question: Count how many edges in Kn and  Kn,m.     . 
 

2. Isomorphism 

 

We don't usually care about the names of points in V, only how they’re connected up. If two graphs are 

the same, up to renaming, we call them isomorphic. Formally, graphs G=(V, E) and G’=(V’, E’) are 

isomorphic if there is a permutation : V  V’ such that {v,w}E iff {(v),(w)}E’.  The properties of 

graphs that matter are those that are invariant under isomorphism.  
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Def: Graphs G=(V,E) and G’=(V’,E’) are isomorphic if there exists a permutation  such that {x,y}E 

iff {(x),(y)}E’.  

 

Proposition: Isomorphism is an equivalence relation. 

 

Amazing fact: there is no efficient algorithm known to decide if two graphs are isomorphic. (Most 

computer scientists believe that no such algorithm exists.) One of the biggest open questions in computer 

science. 

 

Maybe show how to prove to graphs are non-isomorphic using an interactive proof. 

 

Prop: v deg(v) = 2m 

 

 

3. Representation of graphs 

 

Two common ways: adjacency matrix and adjacency list. 

Describe them.  (This is covered in 30 or 40, which many students have had, although certainly not 

everyone.) 

 

 

4. Paths in graphs 

 

Def: A path  p=(v1, ..., vn) in G = (V,E) is a sequence of vertices s.t. {vi,vi+1}E 

     for all i in {1,..., n1}. 

 

     A path is said to contain the vertices and to contain the edges {vi,vi+1}.  

     The length of a path is the number of edges on it. 

 

     A cycle is a path of length three or more that starts and ends at the same vertex and includes no 

repeated edges. 

 

     A graph is acyclic if it contains no cycle. 

 

     A graph G = (V,E) is connected if, for all x,y in V, there is a path from x to y. 

 

     The components  of a graph are the maximal connected subgraphs. 

     (Graph G’ = (V’,E’) is a subgraph of graph G = (V,E) if V'V and E’E.) 

 

Alternative definition of components:  Say that x ~ y (these vertices are in the same component) if there is 

a path from x to y. Prop: this is an equivalence relation.  Its blocks (equivalence classes) are the 

components. 

 

Alternative definition of a component: the component containing v is all vertices connected to v by paths 

of any lengths; and all the induced edges (the edges of the original graph that span vertices in the 

component). 

 

Describe an algorithm, based on DFS, for counting the number of components of a graph and identifying 

them.  
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5. Trees 

 

Def:     A tree is a connected acyclic graph. 

 

Proposition: In any tree, m = n – 1 

 

Proof: By induction on n. True when n=1. 

       Now suppose G is an n-vertex tree, n>1. 

       Claim that there is some node of degree 1 in G.  

              If any node of degree 0: contradicts connected. 

              If all nodes of degree  2, contradict acyclicity. 

       Take your node of degree 1 and remove it, along with the adjoining edge. 

       What remains is connected and acyclic, so (m-1) = (n-1) -1 for it. 

       Took away one edge and one vertex, so m=n-1. 

 

6. Eulerian and Hamiltonian graphs 

 

Def: A graph G is Eulerian   if it there is a cycle C in G that goes through every 

                               edge exactly once. 

 

     A graph G is Hamiltonian if there is a cycle that goes through every vertex 

                                exactly once. 

 

Theorem: (Euler) A connected graph G = (V,E) on n3 vertices is 

                                Eulerian 

 

                                      iff 

 

                 every vertex of G is of even degree. 

 

Proof:     Choose s. Graph is Eulerian mean there is a path that starts at 

               s and eventually ends at s, hitting every edge.   Put a label of 0 on 

               every vertex.  Now, follow the path. Every time we exit a vertex, increment 

               the label. Every time we enter a vertex, increment the label. 

               At end of traversing the graph, label(v) = deg(v) and this is even. 

 

           (sketch) If every vertex is of even degree, at least three vertices. Start at s 

               and grow a cycle C of unexplored edges until you wind up back at s. 

               You never “get stuck” by even-degree constraint.  If every edge explored: 

               Done.  Otherwise, find contact point of C and an unexplored edge (exists 

               by connectedness) and grow out from there.  Splice together the paths. 

 

So there is a trivial algorithm to decide if G is Eulerian: just check if all its 

vertices are of even degree. 

 

Amazing fact: There is no “reasonable” algorithm known to decide if a graph is Hamiltonian. 

              (Most computer scientists believe that no such algorithm exists.) 

 

 

Theorem [Bondy- Chvátal, 1972] Let G = (V,E)  be a graph on n 3 vertices and let x and y 
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                  be nonadjacent vertices s.t. deg(x)+deg(y) n. Then 

                      G is Hamiltonian   G {x,y} is Hamiltonian 

 

Restatement:  G is Hamiltonian  cl(G) is Hamiltonian 

 

Where cl(G) is the closure of G with respect to repeatedly adding vertices {x,y} iff deg(x)+deg(y) n 

 

Proof:                       Obvious 

 

            Suppose  

                            G {x,y} is Hamiltonian, deg(x)+deg(y)n 

                but      G is not Hamiltonian 

 

  Since  G {x,y} is Hamiltonian we know at least that there’s a Hamiltonian path 

 

                                          x = v1 v2 ... vn = y 

 

  in G.  If x is adjacent to vi  for i2 

         then vi is not adjacent to y, for if there were an {vi, y} edge then we 

                                               have a HC in G (draw the picture). 

         Said differently, every time you have an edge coming out of x you have a 

                                                                    nonedge coming out of y.  

           So y has a potential of n 1 edges coming out of it, but the actual number 

                will be less than this by at least deg(v): 

 

                                 deg(y) (n 1)  deg(x) 

 

         i.e,    deg(x) + deg(y) n.  Contradiction. 

 

Corollary: Assume G is a graph on 3 vertices. 

                  If cl(G) is a clique then G is Hamiltonian 

 

Corollary [Dirac’s theorem]  Assume G is a graph on \ge 3 vertices. 

                  If deg(v)n/2 for all v, then G is Hamiltonian. 

 

7. Longest and shortest paths 

 

Def: A shortest path between two vertices x and y is a path from x to y such that there is no shorter 

(=fewer edges) path from x to y. 

 

     A longest path between two vertices x and y is a simple path (=no repeated vertices) from x to y. 

 

 

Claim: There is an efficient algorithm to identify a shortest path between two designated vertices in a 

graph. 

               (You will learn one in ecs122A or ecs60) 

 

Amazing fact: There is no efficient algorithm known to find a longest path from x to y. 

              (Most computer scientists believe that no such algorithm exists.) 
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Diameter of a graph = the length of a longest shortest path. 

Explain how an inability to efficiently decide if a graph is Hamiltonian implies an inability to find a 

longest path between a designated pair of vertices: namely, there is a simple path (=no repeated vertices) 

of length n 1 between x and y (where n = |V|) iff G  {x,y} has a HC. 

 

 

8. Colorability 

 

Def: A graph  G = (V,E) is k-colorable  if we can paint the vertices using “colors” 

     {1,...,k} such that no adjacent vertices have the same color.   Formally, … 

 

Def: A graph is bipartite if it is 2-colorable.   In other words, we can partition 

     V into (V1, V2) such that all edges go between a vertex in V1 and a vertex in V2. 

 

Proposition: There is a simple and efficient algorithm to decide if a graph G is 2-colorable / bipartite. 

 

Proof:  Modify DFS. 

 

        Initially, all vertices are uncolored:  color[v]=UNCOLORED 

        While there are uncolored vertices v in G do DFS(v,0) 

 

        Algorithm DFS(v,b) 

                color[v] = b 

                for each uncolored w in N(v) do DFS(w, 1-b) 

 

Amazing fact: There is no reasonable algorithm known to decide if a graph is 3-colorable. 

             (Most computer scientists believe that no such algorithm exists.) 

 

Proposition [Appel, Haken 1989]  Every planar graph is 4-colorable. 

 

9. Planar graphs 

 

Def: A graph is planar if you can draw it in the plane with no crossing edges. 

 

Amazing fact: there is a simple algorithm to decide if a graph is planar 

 (and, when it is, to find an embedding) 

 

Theorem [Euler, 1736]: For every planar graph,  n  m + f =  2 

Theorem [Kuratowski, 1930]: Every nonplanar graph can be contracted to a K5 or a K3,3 

Theorem [Fary 1948] If G is planar it can be embedded in the plane with only straight lines. 

 

 

The following definitions assume graph-theory terminology, to be introduced shortly. 

A clique of size n in a graph is a set of n mutually connected vertices.   Denote Kn . 

 

An independent set of size m in a graph is a set of m vertices that are 

   mutually non-adjacent. 

 

Clique number (G) = size of a largest clique within G (largest subgraph that’s a clique) 
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FACT: There is no efficient algorithm known to calculate k(G). 

 

Let R(n,m) = the minimum number of vertices such that a graph of 

             R(n,m) vertices either has a clique of size n or an independent set of size m. 

 

Alternative version: 

    R(n,m) = the minimum number of vertices such that if you red/blue color the edges of a graph with              

of R(n,m) vertices, there is either a red clique of size n or a blue clique of size m. 

 

Theorem: The above is well-defined: 

         for every n,m1 there exists a smallest number R(n,m) such that every 

         graph on R(n,m) vertices contains either a clique of size n or an independent set of size m. 

 

Claim: R(3,3)=6 

 

Interpretation: In any room of 6 people, there are 3 mutual friends or 

                3 mutual strangers. 

 

R(n,m): First, R(3,3)6.   Draw a five pointed start surrounded by a circle. 

                             There is no triangle and no independent set of size 3. 

        

Second, R(3,3)  6 

 

     Remove person 1     5 people left. 

     Put into two pots:  friends with 1, non-friends with 1. 

     One has at least three people. 

     If three friends:   Case 1: some two know each other:  DONE 

                                 Case 2: no two know each other: DONE 

     If three non-friends: ...symmetric 

 

     Difficult Puzzle:  What is the minimum number of people that must assemble in a room 

     such that there will be at least n friends or n non-friends: R(n,n) 

   

     R(4,4) = 18  (Greenwood and Gleason, 1955) 

     R(5,5) in [43, 49]   Exoo, 1989; Radziszowski 1995 

     R(6,6) in [102,165] 

 

“Erdős asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the 

value of R(5, 5) or they will destroy our planet. In that case, he claims, we should marshal all our computers 

[not computer scientists?!] and all our mathematicians and attempt to find the value.  

 

“But suppose, instead, that they ask for R(6, 6). In that case, he believes, we should attempt to destroy the 

aliens.”                 Quoted by Joel Spencer 

 


