ECS 20 — Lecture 6 — Fall 2013 —16 Oct 2013 Phil Rogaway

Today: o Number theory: an important axiom (the "principle of induction") o Set theory -- Sets, relations, and functions

o bet theory bets, relations, and ranet

Recall ... We "customize" first-order logic

LOGICAL SYMBOLS

- 1. Logical connectives $\neg \land \lor \rightarrow$
- 2. Parenthesis (,)
- 3. The quantifier symbols: \forall , \exists
- 4. Variables $v_1, v_2, ...$ (name points in the universe) (infinite set)
- 5. Equality symbol: = (usually)

NON-LOGICAL SYMBOLS

- 1. predicate symbols // functions from tuples of points in the universe *U* to {T, F} (eg, <) Each has an **arity** (binary, ternary, ...)
- 2. function symbols // maps a tuple of points in the universe U to a point in U (eg, +)
- 3. constant symbols // each names a point in the universe U (like 0)

as with:

Number Theory

- 1. constant symbol: 0
- 2. predicate symbol: <

3. function symbol: S (1-ary) (successor function)

- + (2-ary)
- * (2-ary)
- E (2-ary)

Always add: = is reflexive, symmetric, transitive Axioms of arithmetic ("Peano arithmetic") – see list on Wikipedia or Wolfram

- 1. $\neg(\exists x) (Sx = 0)$
- 2. $(\forall x)(\forall y)(Sx=Sy \rightarrow x=y)$
- 3. $(\forall x) (x + 0 = x)$
- 4. $(\forall x)(\forall y)(x + S(y) = S(x+y))$
- 5. $(\forall x) (x * 0 = 0)$
- 6. $(\forall x)(\forall y)(x * S(y) = x*S(y) + x)$
- 7. $(\forall x)(\forall y))(\forall c) (x < y \rightarrow x+c \le y+c)$
- 8. $(\forall x)(\forall y))(\forall c) (x < y \rightarrow x^*c \le y^*c)$
- 9. If a **set** contains zero and the successor of every **<u>number</u>** is in the set, then the set contains the natural numbers. Or: for all predicates P

 $(P(0) \land (\forall n)(P(n) \rightarrow P(n+1)) \rightarrow \land (\forall n)(P(n))$ Not a 1st order property

Principle of mathematical induction

To prove a proposition P(n) for all integers $n \ge n_0$: 1) Prove $P(n_0)$ (Basis) 2) Prove that $P(n) \rightarrow P(n+1)$ for all $n > n_0$ (Inductive step) (Inductive hypothesis)

The above sounds slightly more general (because I let you start at n_0), but easily seen to be equivalent. Also equivalent: "strong" form of induction:

To prove a proposition P(n) for all integers $n \ge n_0$: 1) Prove $P(n_0)$ **(Basis)** 2) Prove that $(P(1) \land ... \land P(n)) \rightarrow P(n+1)$ for all $n > n_0$ (inductive step) (stronger inductive hypothesis, may make it easier to get the conclusion)

EXAMPLE 1: Prove that the sum of the odd integers 2 .. 2n-1 is n^2 1 + 3 + ... + (2n-1) = n^2 .

Basis: *n*=1, check

Inductive step:

$$1 + 3 + \dots (2n - 3) = (n - 1)^{2} + 2n - 1 = + 2n - 1 = n^{2} - 2n + 1 + 2n - 1 = 1 = n^{2}$$

EXAMPLE 2. Sam's Dept. Store sells enveloped in packages of 5 and 12.

Prove that, for any $n \ge 44$, the store can sell you exactly n envelopes. [GP, p.147]

Try it: 44 = 2(12) + 4(5) 45 = 9(5) 46 = 3(12) + 2(5)?...?

SUPPOSE: it is possible to buy *n* envelopes for some $n \ge 44$. **SHOW**: it is possible to buy n+1 envelopes

xxx

• If purchasing at least seven packets of 5, trade in seven packets of five for three packets of 12:

7(5) -> 3(12) 35 36

If <7 packets of 5, ie ≤ 6 fewer packets of 5, so at most 30 of the envelopes are in packets of 5; so there are ≥ 44-30 = 14 envelopes being bought in packets of 12, so ≥2 two packets of twelve. So take two of the packets of 12 (ie 24 envelopes) and trade them for 5 packets of 5:

2(12) -> 5(5) 24 25

EXAMPLE 3: Show that you can tile any "punctured" $2^n \times 2^n$ grid of *trominos*

#
(may be rotated)

Illustrate and prove, dividing board in into four $2^n \times 2^n$ to prove.

Puncture the $2^{n+1} \times 2^{n+1}$ grid; tile that one of the four subgrids (by inductive assumption); puncturing three the three near-center center points (for the three $2^n \times 2^n$ pieces that lacking the puncture); recurse on those three pieces; add one more tormino.

EXAMPLE 4: Cake cutting

See http://www.cs.berkeley.edu/~daw/teaching/cs70-s08/notes/n8.pdf for a nice writeup

n people want to divide a piece of cake equally. *n*=2: known case. $n \ge 3$:

- 1. Persons 1 .. *n* −1 people divide the cake into *n*−1 pieces (using a recursive call to this procedure).
- 2. Persons $1 \dots n 1$ divide their piece into *n* equal shares.
- 3. Person *n* takes the largest piece among the pieces held by each person 1 .. *n*-1.
- 4. Persons 1 .. n –1keep their remaining n 1pieces for themselves

Number of cuts $T_n = T_{n-1} + (n-1)^2$

Prove exponential growth rate ... Yuck!

<mark>Set Theory</mark>

predicate symbols: 2-ary \in function symbol: \emptyset

Introduced union, complement, symmetric difference, a first Venn diagram. **Venn Diagrams**

Set Difference A \ B or A − B

Algebra of sets

$A \cup A = A$	$A \cap A = A$
$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
$A \cup B = B \cup A$	$A \cap B = B \cap A$
$A \cup (B \cap C) = (A \cup C) \cap (B \cup C)$	$A \cap (B \cup C) = A \cap B \cup A \cap C$
$A \cup \emptyset = A$	$A \cap \varnothing = \varnothing$
$A \cup U = U$	$A \cap U = A$
$(A^c)^c = A$	
$A \cup A^c = U$	$A \cap A^c = \emptyset$
$U^c = \emptyset$	$\varnothing^c = U$
$(A \cup B)^c = A^c \cap B^c$	$(A \cap B)^c = A^c \cup B^c$ < DeMorgan's laws