
1 
 

ECS 20 — Lecture 8 — Fall 2013 —22 Oct 2013 
Phil Rogaway  

 
Today:   

o Quiz 2  
o Some more operations on sets 
o How a computer might manipulate sets: dictionaries and disjoint-sets 
                                        (INSERT/ IN/DELETE;   UNION/FIND/MAKESET) 

 

Various laws 

Prove them by tracing through the definitions 

De Morgan's laws: 

  

  

 

Proof (of first claim):   x  (A  B) c      

         iff        x  (A  B))   

         iff        x  A     x   B) 

         iff          x  A)       x  B)    

         iff           x  Ac      x  Bc   
 
 
Be careful!! 

?

( \ ) \ \ ( \ )A B C A B C  

 
  
Cartesian Product  (= Cross product)   
  

A  B = {(a,b): AA, B B} 

 
R2  points in the plane 

An array of chessmen might be represented by BYTES64 
 
 

http://en.wikipedia.org/wiki/De_Morgan%27s_laws
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Unordered Product 
 

A & B = {{a,b}: AA, BB}    // when I learned graph theory -- never saw it since! 
 
Power Set 
 

 
P – Power set operator, unary operator (takes 1 input). P(x) is the “set of  

       all subsets of x” 
P (X) = {A: AX} 

Example: X = {a, b, c} 
Example:  

Variant notation: P (X)  = 2X  

Notation is suggestive of size – 

For X finite, |P (X) |= 2|X| 

 
 
Dictionary ADT   
and its realization with a list and with a hash table 
 
Want to be able to Insert items into a dictionary and to Lookup if an item is already in the 
dictionary.  (Sometimes want to be able to Delete an item, too.) For concreteness, think of 
the items we are inserting as strings. 
 
Example: discover how many distinct words are in a book. 
 
Implementation  

1) A list of words, each one appearing at most once. 
2) A hash table. 

Explain how each works. 
Show how to modify the hash table to do a frequency count. 
 
Representing a collection of sets in a computers 
 
A different game – we are going to maintain a collection of disjoint sets.  We want to be 
able to figure out if two things are in the same set, or in different sets.  For example, each 
point in the set might represent a person and when we learn that person one and person 
two know one another – maybe one calls or emails the other – then we combine them. Each 
set then represents people that know one another through some path of knowing. 
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More interesting applications will come later, when we do graph theory.   
You want to realize 

 find(x) return a canonical name for the unique set containing x.   
x and y are in the same set iff find(x)=find(y) 

 union(x,y)  merge the sets containing x and y.   
 makeset (x)  create a set containing the element x.  Return a canonical name for it 

Naïve implementation: list of elements 
 
Smarter – “union/find data structure” 
Union by rank 
Collapsing find. 
Any sequence of n operations takes n (n) time, for an incredibly slows growing 
function(n).  [Omit big-O because not yet introduced] 
 
Tarjan (1975) 
 

function MakeSet(x) 

     x.parent := x 

     x.rank   := 0 

 function Union(x, y) 

     xRoot := Find(x) 

     yRoot := Find(y) 

     if xRoot == yRoot 

         return 

 

     // x and y are not already in same set. Merge them. 

     if xRoot.rank < yRoot.rank 

         xRoot.parent := yRoot 

     else if xRoot.rank > yRoot.rank 

         yRoot.parent := xRoot 

     else 

         yRoot.parent := xRoot 
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         xRoot.rank := xRoot.rank + 1 

The second improvement, called path compression, is a way of flattening the structure of the tree 

whenever Find is used on it. The idea is that each  

function Find(x) 

     if x.parent != x 

        x.parent := Find(x.parent) 

     return x.parent 
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