
1

ECS 20 — Lecture 8 — Fall 2013 —22 Oct 2013
Phil Rogaway

Today:

o Quiz 2
o Some more operations on sets
o How a computer might manipulate sets: dictionaries and disjoint-sets
 (INSERT/ IN/DELETE; UNION/FIND/MAKESET)

Various laws

Prove them by tracing through the definitions

De Morgan's laws:





Proof (of first claim): x  (A  B) c

 iff  x  (A  B))

 iff  x  A x  B)

 iff  x  A)   x  B)

 iff x  Ac  x  Bc

Be careful!!

?

(\) \ \ (\)A B C A B C

Cartesian Product (= Cross product)

A  B = {(a,b): AA, B B}

R2 points in the plane

An array of chessmen might be represented by BYTES64

http://en.wikipedia.org/wiki/De_Morgan%27s_laws

2

Unordered Product

A & B = {{a,b}: AA, BB} // when I learned graph theory -- never saw it since!

Power Set

P – Power set operator, unary operator (takes 1 input). P(x) is the “set of

 all subsets of x”
P (X) = {A: AX}

Example: X = {a, b, c}
Example:

Variant notation: P (X) = 2X

Notation is suggestive of size –

For X finite, |P (X) |= 2|X|

Dictionary ADT
and its realization with a list and with a hash table

Want to be able to Insert items into a dictionary and to Lookup if an item is already in the
dictionary. (Sometimes want to be able to Delete an item, too.) For concreteness, think of
the items we are inserting as strings.

Example: discover how many distinct words are in a book.

Implementation

1) A list of words, each one appearing at most once.
2) A hash table.

Explain how each works.
Show how to modify the hash table to do a frequency count.

Representing a collection of sets in a computers

A different game – we are going to maintain a collection of disjoint sets. We want to be
able to figure out if two things are in the same set, or in different sets. For example, each
point in the set might represent a person and when we learn that person one and person
two know one another – maybe one calls or emails the other – then we combine them. Each
set then represents people that know one another through some path of knowing.

3

More interesting applications will come later, when we do graph theory.
You want to realize

 find(x) return a canonical name for the unique set containing x.
x and y are in the same set iff find(x)=find(y)

 union(x,y) merge the sets containing x and y.
 makeset (x) create a set containing the element x. Return a canonical name for it

Naïve implementation: list of elements

Smarter – “union/find data structure”
Union by rank
Collapsing find.
Any sequence of n operations takes n (n) time, for an incredibly slows growing
function(n). [Omit big-O because not yet introduced]

Tarjan (1975)

function MakeSet(x)

 x.parent := x

 x.rank := 0

 function Union(x, y)

 xRoot := Find(x)

 yRoot := Find(y)

 if xRoot == yRoot

 return

 // x and y are not already in same set. Merge them.

 if xRoot.rank < yRoot.rank

 xRoot.parent := yRoot

 else if xRoot.rank > yRoot.rank

 yRoot.parent := xRoot

 else

 yRoot.parent := xRoot

4

 xRoot.rank := xRoot.rank + 1

The second improvement, called path compression, is a way of flattening the structure of the tree

whenever Find is used on it. The idea is that each

function Find(x)

 if x.parent != x

 x.parent := Find(x.parent)

 return x.parent



