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1.1: Propositions

A proposition is a statement (communication) that is either true or false.

For example, both of the following statements are propositions. The first is true, and the second is false.

Proposition 1.1.1. 2 + 3 = 5.

Proposition 1.1.2. 1 + 1 = 3.

Being true or false doesn’t sound like much of a limitation, but it does exclude statements such as “Wherefore art thou
Romeo?” and “Give me an A!” It also excludes statements whose truth varies with circumstance such as, “It’s five o’clock,” or
“the stock market will rise tomorrow.”

Unfortunately it is not always easy to decide if a proposition is true or false:

Proposition 1.1.3. For every nonnegative integer, , the value of  is prime.

(A prime is an integer greater than 1 that is not divisible by any other integer greater than 1. For example, 2, 3, 5, 7, 11, are the
first five primes.) Let’s try some numerical experimentation to check this proposition. Let

We begin with , which is prime; then

are each prime. Hmmm, starts to look like a plausible claim. In fact we can keep checking through  and confirm that 
 is prime.

But , which is not prime. So it’s not true that the expression is prime for all nonnegative
integers. In fact, it’s not hard to show that no polynomial with integer coefficients can map all nonnegative numbers into prime
numbers, unless it’s a constant (see Problem 1.17). But the real point of this example is to show that in general, you can’t
check a claim about an infinite set by checking a finite set of its elements, no matter how large the finite set.

By the way, propositions like this about all numbers or all items of some kind are so common that there is a special notation
for them. With this notation, Proposition 1.1.3 would be

Here the symbol  is read “for all.” The symbol  stands for the set of nonnegative integers: (ask your instructor
for the complete list). The symbol “ ” is read as “is a member of,” or “belongs to,” or simply as “is in.” The period after the 
is just a separator between phrases.

Here are two even more extreme examples:

Proposition 1.1.4. [Euler’s Conjecture] The equation

has no solution when  are positive integers.

Euler (pronounced “oiler”) conjectured this in 1769. But the proposition was proved false 218 years later by Noam Elkies at a
liberal arts school up Mass Ave. The solution he found was .

In logical notation, Euler’s Conjecture could be written,

Here,  is a symbol for the positive integers. Strings of 's like this are usually abbreviated for easier reading:

Definition

n +n+41n2

p(n) ::= +n+n2 41.1 (1.1.1)

p(0) = 41

p(1) = 43, p(2) = 47, p(3) = 53, … , p(20) = 461

n = 39

p(39) = 1601

p(40) = +40 +41 = 41 ⋅ 41402

∀n ∈ N, p(n) is prime. (1.1.2)

∀ N 0, 1, 2, 3, …

∈ N

+ + =a4 b4 c4 d4

a, b, c, d

a = 95800, b = 217519, c = 414560, d = 422481

∀a ∈ ∀b ∈ ∀c ∈ ∀d ∈ . + + ≠ .Z
+

Z
+

Z
+

Z
+

a
4

b
4

c
4

d
4

Z
+ ∀
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Proposition 1.1.5.  has no solution when 

This proposition is also false, but the smallest counterexample has more than 1000 digits!

It’s worth mentioning a couple of further famous propositions whose proofs were sought for centuries before finally being
discovered:

Proposition 1.1.6 (Four Color Theorem). Every map can be colored with 4 colors so that adjacent  regions have different
colors.

Several incorrect proofs of this theorem have been published, including one that stood for 10 years in the late 19th century
before its mistake was found. A laborious proof was finally found in 1976 by mathematicians Appel and Haken, who used a
complex computer program to categorize the four-colorable maps. The program left a few thousand maps uncategorized,
which were checked by hand by Haken and his assistants—among them his 15-year-old daughter.

There was reason to doubt whether this was a legitimate proof: the proof was too big to be checked without a computer. No
one could guarantee that the computer calculated correctly, nor was anyone enthusiastic about exerting the effort to recheck the
four-colorings of thousands of maps that were done by hand. Two decades later a mostly intelligible proof of the Four Color
Theorem was found, though a computer is still needed to check four-colorability of several hundred special maps.

Proposition 1.1.7 (Fermat’s Last Theorem). There are no positive integers  and  such that

for some integer .

In a book he was reading around 1630, Fermat claimed to have a proof for this proposition, but not enough space in the margin
to write it down. Over the years, the Theorem was proved to hold for all  up to 4,000,000, but we’ve seen that this shouldn’t
necessarily inspire confidence that it holds for all . There is, after all, a clear resemblance between Fermat’s Last Theorem
and Euler’s false Conjecture. Finally, in 1994, British mathematician Andrew Wiles gave a proof, after seven years of working
in secrecy and isolation in his attic. His proof did not fit in any margin.

Finally, let’s mention another simply stated proposition whose truth remains unknown.

Proposition 1.1.8 (Goldbach’s Conjecture). Every even integer greater than 2 is the sum of two primes.

Goldbach’s Conjecture dates back to 1742. It is known to hold for all numbers up to  but to this day, no one knows
whether it’s true or false.

For a computer scientist, some of the most important things to prove are the correctness of programs and systems—whether a
program or system does what it’s supposed to. Programs are notoriously buggy, and there’s a growing community of
researchers and practitioners trying to find ways to prove program correctness. These efforts have been successful enough in
the case of CPU chips that they are now routinely used by leading chip manufacturers to prove chip correctness and avoid
mistakes like the notorious Intel division bug in the 1990’s. Developing mathematical methods to verify programs and systems
remains an active research area. We’ll illustrate some of these methods in Chapter 5.

The symbol ::= means “equal by definition.” It’s always ok simply to write “=” instead of ::=, but reminding the reader that an
equality holds by definition can be helpful.

Two regions are adjacent only when they share a boundary segment of positive length. They are not considered to be adjacent
if their boundaries meet only at a few points.

The story of the proof of the Four Color Theorem is told in a well-reviewed popular (nontechnical) book: “Four Colors
Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003, 276pp. ISBN 0-691-11533-8.

In fact, Wiles’ original proof was wrong, but he and several collaborators used his ideas to arrive at a correct proof a year
later. This story is the subject of the popular book, Fermat’s Enigma by Simon Singh, Walker & Company, November, 1997.

∀a, b, c, d ∈ . + + ≠ .Z
+

a
4

b
4

c
4

d
4

313( + ) =x3 y3 z3 x, y, z ∈ .Z
+
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3
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+ =x
n
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1.2: Predicates
A predicate can be understood as a proposition whose truth depends on the value of one or more variables. So “  is a perfect
square” describes a predicate, since you can’t say if it’s true or false until you know what the value of the variable  happens
to be. Once you know, for example, that  equals 4, the predicate becomes the true proposition “4 is a perfect square”.
Remember, nothing says that the proposition has to be true: if the value of  were 5, you would get the false proposition “5 is
a perfect square.”

Like other propositions, predicates are often named with a letter. Furthermore, a function-like notation is used to denote a
predicate supplied with specific variable values. For example, we might use the name “ ” for predicate above:

and repeat the remarks above by asserting that  is true, and  is false.

This notation for predicates is confusingly similar to ordinary function notation. If  is a predicate, then  is either true or
false, depending on the value of . On the other hand, if  is an ordinary function, like , then  is a numerical
quantity. Don’t confuse these two!

n

n

n

n

P

P (n) ::= “n is a perfect square”,

P (4) P (5)

P P (n)

n p +1n2 p(n)

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48296?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/01%3A_Intro_to_Proofs/1.02%3A_Predicates


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 1.3.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48297

1.3: The Axiomatic Method
The standard procedure for establishing truth in mathematics was invented by Euclid, a mathematician working in Alexandria,
Egypt around 300 BC. His idea was to begin with five assumptions about geometry, which seemed undeniable based on direct
experience. (For example, “There is a straight line segment between every pair of points”.) Propositions like these that are
simply accepted as true are called axioms.

Starting from these axioms, Euclid established the truth of many additional propositions by providing “proofs.” A proof is a
sequence of logical deductions from axioms and previously proved statements that concludes with the proposition in question.
You probably wrote many proofs in high school geometry class, and you’ll see a lot more in this text.

There are several common terms for a proposition that has been proved. The different terms hint at the role of the proposition
within a larger body of work.

Important true propositions are called theorems.
A lemma is a preliminary proposition useful for proving later propositions.
A corollary is a proposition that follows in just a few logical steps from a theorem.

These definitions are not precise. In fact, sometimes a good lemma turns out to be far more important than the theorem it was
originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, remains the foundation for mathematics today. In fact,
just a handful of axioms, called the Zermelo-Fraenkel with Choice axioms(ZFC), together with a few logical deduction rules,
appear to be sufficient to derive essentially all of mathematics. We’ll examine these in Chapter 7.
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1.4: Our Axioms
The ZFC axioms are important in studying and justifying the foundations of mathematics, but for practical purposes, they are
much too primitive. Proving theorems in ZFC is a little like writing programs in byte code instead of a full-fledged
programming language—by one reckoning, a formal proof in ZFC that  requires more than 20,000 steps! So instead
of starting with ZFC, we’re going to take a huge set of axioms as our foundation: we’ll accept all familiar facts from high
school math.

This will give us a quick launch, but you may find this imprecise specification of the axioms troubling at times. For example,
in the midst of a proof, you may start to wonder, “Must I prove this little fact or can I take it as an axiom?” There really is no
absolute answer, since what’s reasonable to assume and what requires proof depends on the circumstances and the audience. A
good general guideline is simply to be up front about what you’re assuming.

Logical Deductions
Logical deductions, or inference rules, are used to prove new propositions using previously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P together with a proof that  is a
proof of .

Inference rules are sometimes written in a funny notation. For example, modus ponens is written:

Rule.

When the statements above the line, called the antecedents, are proved, then we can consider the statement below the line,
called the conclusion or consequent, to also be proved.

A key requirement of an inference rule is that it must be sound: an assignment of truth values to the letters, , that
makes all the antecedents true must also make the consequent true. So if we start off with true axioms and apply sound
inference rules, everything we prove will also be true.

There are many other natural, sound inference rules, for example:

Rule.

Rule.

On the other hand,

Non-Rule.

is not sound: if  is assigned T and  is assigned F, then the antecedent is true and the consequent is not.

As with axioms, we will not be too formal about the set of legal inference rules. Each step in a proof should be clear and
"logical"; in particular, you should state what previously proved facts are used to derive each new conclusion.

Patterns of Proof
In principle, a proof can be any sequence of logical deductions from axioms and previously proved statements that concludes
with the proposition in question. This freedom in constructing a proof can seem overwhelming at first. How do you even start
a proof?

2 +2 = 4

P  IMPLIES Q

Q

P , P  IMPLIES Q

Q

P ,Q, …

P  IMPLIES Q, Q IMPLIES R

P  IMPLIES R

NOT(P ) IMPLIES NOT(Q)

Q IMPLIES P

NOT(P ) IMPLIES NOT(Q)

P  IMPLIES Q

P Q
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Here’s the good news: many proofs follow one of a handful of standard templates. Each proof has it own details, of course, but
these templates at least provide you with an outline to fill in. We’ll go through several of these standard patterns, pointing out
the basic idea and common pitfalls and giving some examples. Many of these templates fit together; one may give you a top-
level outline while others help you at the next level of detail. And we’ll show you other, more sophisticated proof techniques
later on.

The recipes below are very specific at times, telling you exactly which words to write down on your piece of paper. You’re
certainly free to say things your own way instead; we’re just giving you something you could say so that you’re never at a
complete loss.
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1.5: Proving an Implication
Propositions of the form “If , then ” are called implications. This implication is often rephrased as “ .”

Here are some examples:

(Quadratic Formula) If  and , then

(Goldbach’s Conjecture 1.1.8 rephrased) If  is an even integer greater than 2, then  is a sum of two primes.
If , then .

There are a couple of standard methods for proving an implication.

Method #1
In order to prove that :

1. Write, “Assume .”

2. Show that  logically follows.

Example

If , then .

Before we write a proof of this theorem, we have to do some scratchwork to figure out why it is true.

The inequality certainly holds for ; then the left side is equal to 1 and . As  grows, the  term (which is positive)
initially seems to have greater magnitude than  (which is negative). For example, when , we have , but 

 only. In fact, it looks like  doesn’t begin to dominate until . So it seems the  part should be
nonnegative for all  between 0 and 2, which would imply that  is positive.

So far, so good. But we still have to replace all those “seems like” phrases with solid, logical arguments. We can get a better
handle on the critical  part by factoring it, which is not too hard:

Aha! For  between 0 and 2, all of the terms on the right side are nonnegative. And a product of nonnegative terms is also
nonnegative. Let’s organize this blizzard of observations into a clean proof.

Proof. Assume . Then  and  are all nonnegative. Therefore, the product of these terms is also
nonnegative. Adding 1 to this product gives a positive number, so:

Multiplying out on the left side proves that

as claimed. 

There are a couple points here that apply to all proofs:

You’ll often need to do some scratchwork while you’re trying to figure out the logical steps of a proof. Your scratchwork
can be as disorganized as you like—full of dead-ends, strange diagrams, obscene words, whatever. But keep your
scratchwork separate from your final proof, which should be clear and concise.
Proofs typically begin with the word “Proof” and end with some sort of delimiter like  or “QED.” The only purpose for
these conventions is to clarify where proofs begin and end.

P Q P  IMPLIES Q

a +bx +c = 0x2 a ≠ 0

x = (−b ± ) /2a.−4acb
2− −−−−−−

√

n n

0 ≤ x ≤ 2 − +4x +1 > 0x3

P  IMPLIES Q

P

Q

Theorem 1.5.1

0 ≤ x ≤ 2 − +4x +1 > 0x3

x = 0 1 > 0 x 4x

−x3 x = 1 4x = 4
− = −1x3 −x3 x > 2 − +4xx3

x − +4x +1x3

− +4xx3

− +4x = x(2 −x)(2 +x)x3

x

0 ≤ x ≤ 2 x, 2 −x, 2 +x

x(2 −x)(2 +x) +1 > 0

− +4x +1 > 0x3

■

□
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Method #2 - Prove the Contrapositive
An implication (“ ”) is logically equivalent to its contrapositive

Proving one is as good as proving the other, and proving the contrapositive is sometimes easier than proving the original
statement. If so, then you can proceed as follows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.
2. Proceed as in Method #1.

Example

If  is irrational, then  is also irrational.

A number is rational when it equals a quotient of integers — that is, if it equals  for some integers  and . If it’s not
rational, then it’s called irrational. So we must show that if  is not a ratio of integers, then  is also not a ratio of integers.
That’s pretty convoluted! We can eliminate both not’s and simplify the proof by using the contrapositive instead.

Proof. We prove the contrapositive: if  is rational, then  is rational.

Assume that  is rational. Then there exist integers  and  such that:

Squaring both sides gives:

Since  and  are integers, r is also rational. 

P  IMPLIES Q

NOT(Q) IMPLIES NOT(P ).

Theorem 1.5.2

r r√

m/n m n

r r√

r√ r

r√ m n

=r√
m

n

=r√
m2

n2

m2 n2
■
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1.6: Proving an “If and Only If”
Many mathematical theorems assert that two statements are logically equivalent; that is, one holds if and only if the other does.
Here is an example that has been known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths and the angle between those sides are the same.

The phrase “if and only if” comes up so often that it is often abbreviated “iff.”

Method #1: Prove Each Statement Implies the Other
The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and “Q IMPLIES P.” So you can prove an “iff”
by proving two implications:

1. Write, “We prove P implies Q and vice-versa.”
2. Write, “First, we show P implies Q.” Do this by one of the methods in Section 1.5.
3. Write, “Now, we show Q implies P.” Again, do this by one of the methods in Section 1.5.

Method #2: Construct a Chain of Iffs
In order to prove that P is true iff Q is true:

1. Write, “We construct a chain of if-and-only-if implications.”
2. Prove P is equivalent to a second statement which is equivalent to a third statement and so forth until you reach Q.

This method sometimes requires more ingenuity than the first, but the result can be a short, elegant proof.

The standard deviation of a sequence of values x , x x  is defined to be:

(1.3)

where  is the average or mean of the values:

The standard deviation of a sequence of values x , x x  is zero iff all the values are equal to the mean.

For example, the standard deviation of test scores is zero if and only if everyone scored exactly the class average.

Proof. We construct a chain of “iff” implications, starting with the statement that the standard deviation (1.3) is zero:

(1.4)

Now since zero is the only number whose square root is zero, equation (1.4) holds iff

(1.5)

Squares of real numbers are always nonnegative, so every term on the left hand side of equation (1.5) is nonnegative. This
means that (1.5) holds iff

Every term on the left hand side of (1.5) is zero.

Example

1 2, ... , n

( −μ +( −μ +⋯ +( −μx1 )2 x2 )2 xn )2

n

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

μ

μ ::=
+ +⋯ +x1 x2 xn

n

Theorem 1.6.1.

1 2, ... , n

= 0
( −μ +( −μ +⋯ +( −μx1 )2 x2 )2 xn )2

n

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

( −μ +( −μ +⋯ +( −μ = 0x1 )2 x2 )2 xn )2
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(1.6)

But a term  is zero iff , so (1.6) is true iff

Every  equals the mean.

( −μxi )2 = μxi

xi

■
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1.7: Proof by Cases
Breaking a complicated proof into cases and proving each case separately is a common, useful proof strategy. Here’s an
amusing example.

Let’s agree that given any two people, either they have met or not. If every pair of people in a group has met, we’ll call the
group a club. If every pair of people in a group has not met, we’ll call it a group of strangers.

Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Proof. The proof is by case analysis . Let x denote one of the six people. There are two cases:

1. Among 5 other people besides x, at least 3 have met x.
2. Among the 5 other people, at least 3 have not met x.

Now, we have to be sure that at least one of these two cases must hold,  but that’s easy: we’ve split the 5 people into two
groups, those who have shaken hands with x and those who have not, so one of the groups must have at least half the people.

Case 1: Suppose that at least 3 people did meet x.

This case splits into two subcases:

Case 1.1: No pair among those people met each other. Then these people are a group of at least 3 strangers. The theorem
holds in this subcase.

Case 1.2: Some pair among those people have met each other. Then that pair, together with x, form a club of 3 people.
So the theorem holds in this subcase.

This implies that the theorem holds in Case 1.

Case 2: Suppose that at least 3 people did not meet x.

This case also splits into two subcases:

Case 2.1: Every pair among those people met each other. Then these people are a club of at least 3 people. So the
theorem holds in this subcase.

Case 2.2: Some pair among those people have not met each other. Then that pair, together with x, form a group of at
least 3 strangers. So the theorem holds in this subcase.

This implies that the theorem also holds in Case 2, and therefore holds in all cases.

Describing your approach at the outset helps orient the reader.

Part of a case analysis argument is showing that you’ve covered all the cases. This is often obvious, because the two cases are
of the form “P” and “not P.” However, the situation above is not stated quite so simply.

Theorem

5

6

■

5

6
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1.8: Proof by Contradiction
In a proof by contradiction, or indirect proof, you show that if a proposition were false, then some false fact would be true.
Since a false fact by definition can’t be true, the proposition must be true.

Proof by contradiction is always a viable approach. However, as the name suggests, indirect proofs can be a little convoluted,
so direct proofs are generally preferable when they are available.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”
2. Write, “Suppose P is false.”
3. Deduce something known to be false (a logical contradiction).
4. Write, “This is a contradiction. Therefore, P must be true.”

We’ll prove by contradiction that  is irrational. Remember that a number is rational if it is equal to a ratio of integers
—for example, 3.5 = 7/2 and 0.1111  = 1/9 are rational numbers.

 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false, and  is rational. Then we can write  as a fraction 
 in lowest terms.

Squaring both sides gives 2 = and so . This implies that n is a multiple of 2 (see Problems 1.10 and 1.11).
Therefore  must be a multiple of 4. But since , we know  is a multiple of 4 and so  is a multiple of 2.
This implies that d is a multiple of 2.

So, the numerator and denominator have 2 as a common factor, which contradicts the fact that  is in lowest terms.
Thus,  must be irrational.

Example
2
–

√

⋯

Theorem 1.8.1
2
–

√

2
–

√ 2
–

√

n/d

/n
2
d

2 2 =d
2

n
2

n
2 2 =d

2
n

2 2d2
d

2

n/d
2
–

√
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1.9: Good Proofs in Practice
One purpose of a proof is to establish the truth of an assertion with absolute certainty, and mechanically checkable proofs of
enormous length or complexity can accomplish this. But humanly intelligible proofs are the only ones that help someone
understand the subject. Mathematicians generally agree that important mathematical results can’t be fully understood until
their proofs are understood. That is why proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical correctness: a good proof must also be clear.
Correctness and clarity usually go together; a well-written proof is more likely to be a correct proof, since mistakes are harder
to hide.

In practice, the notion of proof is a moving target. Proofs in a professional research journal are generally unintelligible to all
but a few experts who know all the terminology and prior results used in the proof. Conversely, proofs in the first weeks of a
beginning course like 6.042 would be regarded as tediously long-winded by a professional mathematician. In fact, what we
accept as a good proof later in the term will be different from what we consider good proofs in the first couple of weeks of
6.042. But even so, we can offer some general tips on writing good proofs:

State your game plan. A good proof begins by explaining the general line of reasoning, for example, “We use case analysis”
or “We argue by contradiction.”

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with juicy tidbits of independent reasoning
sprinkled throughout. This is not good. The steps of an argument should follow one another in an intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs the way they compute integrals. The result is a
long sequence of expressions without explanation, making it very hard to follow. This is bad. A good proof usually looks like
an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words, but much less skilled at reading arcane
mathematical symbols. Use words where you reasonably can.

Revise and simplify. Your readers will be grateful.

Introduce notation thoughtfully. Sometimes an argument can be greatly simplified by introducing a variable, devising a
special notation, or defining a new term. But do this sparingly, since you’re requiring the reader to remember all that new stuff.
And remember to actually define the meanings of new variables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller procedures. Long proofs are much the
same. When your proof needed facts that are easily stated, but not readily proved, those fact are best pulled out as preliminary
lemmas. Also, if you are repeating essentially the same argument over and over, try to capture that argument in a general
lemma, which you can cite repeatedly instead.

Be wary of the “obvious.” When familiar or truly obvious facts are needed in a proof, it’s OK to label them as such and to not
prove them. But remember that what’s obvious to you may not be—and typically is not—obvious to your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt to bully the reader into accepting something
you’re having trouble proving. Also, go on the alert whenever you see one of these phrases in someone else’s proof.

Finish. At some point in a proof, you’ll have established all the essential facts you need. Resist the temptation to quit and
leave the reader to draw the “obvious” conclusion. Instead, tie everything together yourself and explain why the original claim
follows.

Creating a good proof is a lot like creating a beautiful work of art. In fact, mathematicians often refer to really good proofs as
being “elegant” or “beautiful.” It takes a practice and experience to write proofs that merit such praises, but to get you started
in the right direction, we will provide templates for the most useful proof techniques.

Throughout the text there are also examples of bogus proofs—arguments that look like proofs but aren’t. Sometimes a bogus
proof can reach false conclusions because of missteps or mistaken assumptions. More subtle bogus proofs reach correct
conclusions, but do so in improper ways such as circular reasoning, leaping to unjustified conclusions, or saying that the hard
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part of the proof is “left to the reader.” Learning to spot the flaws in improper proofs will hone your skills at seeing how each
proof step follows logically from prior steps. It will also enable you to spot flaws in your own proofs.

The analogy between good proofs and good programs extends beyond structure. The same rigorous thinking needed for proofs
is essential in the design of critical computer systems. When algorithms and protocols only “mostly work” due to reliance on
hand-waving arguments, the results can range from problematic to catastrophic. An early example was the Therac 25, a
machine that provided radiation therapy to cancer victims, but occasionally killed them with massive overdoses due to a
software race condition. A more recent (August 2004) example involved a single faulty command to a computer system used
by United and American Airlines that grounded the entire fleet of both companies—and all their passengers! It is a certainty
that we’ll all one day be at the mercy of critical computer systems designed by you and your classmates. So we really hope
that you’ll develop the ability to formulate rock-solid logical arguments that a system actually does what you think it does!
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CHAPTER OVERVIEW
2: WELL ORDERING PRINCIPLE

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it? Seems sort of obvious,
right? But notice how tight it is: it requires a nonempty set—it’s false for the empty set which has no
smallest element because it has no elements at all. And it requires a set of nonnegative integers—it’s
false for the set of negative integers and also false for some sets of nonnegative rationals—for
example, the set of positive rationals. So, the Well Ordering Principle captures something special
about the nonnegative integers.

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why it is useful. But in
fact, it provides one of the most important proof rules in discrete mathematics. In this chapter, we’ll
illustrate the power of this proof method with a few simple examples.

2.1: WELL ORDERING PROOFS
2.2: TEMPLATE FOR WELL ORDERING PROOFS
2.3: FACTORING INTO PRIMES

https://libretexts.org/
https://eng.libretexts.org/
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/02%3A_Well_Ordering_Principle
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/02%3A_Well_Ordering_Principle/2.01%3A_Well_Ordering_Proofs
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/02%3A_Well_Ordering_Principle/2.02%3A_Template_for_Well_Ordering_Proofs
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/02%3A_Well_Ordering_Principle/2.03%3A__Factoring_into_Primes


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 2.1.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48300

2.1: Well Ordering Proofs
We actually have already taken the Well Ordering Principle for granted in proving that  is irrational. That proof assumed
that for any positive integers  and , the fraction  can be written in lowest terms, that is, in the form  where 
and  are positive integers with no common prime factors. How do we know this is always possible?

Suppose to the contrary that there are positive integers  and  such that the fraction  cannot be written in lowest terms.
Now let  be the set of positive integers that are numerators of such fractions. Then , so  is nonempty. Therefore, by
Well Ordering, there must be a smallest integer, . So by definition of , there is an integer  such that

the fraction  cannot be written in lowest terms.

This means that  and  must have a common prime factor, . But

so any way of expressing the left hand fraction in lowest terms would also work for , which implies

the fraction  cannot be in written in lowest terms either.

So by definition of , the numerator, , is in . But , which contradicts the fact that  is the smallest
element of .

Since the assumption that  is nonempty leads to a contradiction, it follows that  must be empty. That is, that there are no
numerators of fractions that can’t be written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!
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2.2: Template for Well Ordering Proofs
More generally, there is a standard way to use Well Ordering to prove that some property,  holds for every nonnegative
integer, . Here is a standard way to organize such a well ordering proof:

To prove that “  is true for all ” using the Well Ordering Principle:

Define the set, , of counterexamples to  being true. Specifically, define

(The notation  means “the set of all elements  for which  is true.” See Section 4.1.4.)

Assume for proof by contradiction that  is nonempty.
By the Well Ordering Principle, there will be a smallest element, , in .
Reach a contradiction somehow—often by showing that  is actually true or by showing that there is another member
of  that is smaller than . This is the open-ended part of the proof task.
Conclude that  must be empty, that is, no counterexamples exist.

Summing the Integers
Let’s use this template to prove

(2.1)

for all nonnegative integers, n.

First, we’d better address a couple of ambiguous special cases before they trip us up:

If , then there is only one term in the summation, and so is just the term 1. Don’t be misled by the
appearance of 2 and 3 or by the suggestion that 1 and n are distinct terms!

If (n = 0\), then there are no terms at all in the summation. By convention, the sum in this case is 0.

So, while the three dots notation, which is called an ellipsis, is convenient, you have to watch out for these special cases where
the notation is misleading. In fact, whenever you see an ellipsis, you should be on the lookout to be sure you understand the
pattern, watching out for the beginning and the end.

We could have eliminated the need for guessing by rewriting the left side of (2.1) with summation notation:

 or 

Both of these expressions denote the sum of all values taken by the expression to the right of the sigma as the variable, ,
ranges from 1 to . Both expressions make it clear what (2.1) means when . The second expression makes it clear that
when , there are no terms in the sum, though you still have to know the convention that a sum of no numbers equals 0
(the product of no numbers is 1, by the way).

OK, back to the proof:

Proof. By contradiction. Assume that Theorem 2.2.1 is false. Then, some nonnegative integers serve as counterexamples to it.
Let’s collect them in a set:

Assuming there are counterexamples,  is a nonempty set of nonnegative integers. So, by the Well Ordering Principle,  has
a minimum element, which we’ll call . That is, among the nonnegative integers,  is the smallest counterexample to equation
(2.1).
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Since  is the smallest counterexample, we know that (2.1) is false for  but true for all nonnegative integers . But
(2.1) is true for , so . This means  is a nonnegative integer, and since it is less than , equation (2.1) is true
for . That is,

But then, adding c to both sides, we get

which means that (2.1) does hold for c, after all! This is a contradiction, and we are done.

c n = c n < c

n = 0 c > 0 c = 1 c

c −1

1 +2 +3 +⋯ +(c −1) = .
(c −1)c

2

1 +2 +3 +⋯ +(c −1) = +c = = .
(c −1)c

2
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2.3: Factoring into Primes
We’ve previously taken for granted the Prime Factorization Theorem, also known as the Unique Factorization Theorem and
the Fundamental Theorem of Arithmetic, which states that every integer greater than one has a unique  expression as a product
of prime numbers. This is another of those familiar mathematical facts which are taken for granted but are not really obvious
on closer inspection. We’ll prove the uniqueness of prime factorization in a later chapter, but well ordering gives an easy proof
that every integer greater than one can be expressed as some product of primes.

Every positive integer greater than one can be factored as a product of primes.

Proof. The proof is by well ordering.

Let  be the set of all integers greater than one that cannot be factored as a product of primes. We assume  is not empty and
derive a contradiction.

If  is not empty, there is a least element, , by well ordering. The  can’t be prime, because a prime by itself is
considered a (length one) product of primes and no such products are in .

So  must be a product of two integers  and  where . Since  and  are smaller than the smallest element in ,
we know that . In other words,  can be written as a product of primes  and  as a product of primes 

. Therefore,  can be written as a product of primes, contradicting the claim that . Our
assumption that  is not empty must therefore be false.

. . . unique up to the order in which the prime factors appear
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3.1: Propositions from Propositions
In English, we can modify, combine, and relate propositions with words such as “not,” “and,” “or,” “implies,” and “if-then.”
For example, we can combine three propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions— whether they involve mathematics or
Greek mortality—but rather with how propositions are combined and related. So, we’ll frequently use variables such as  and 

 in place of specific propositions such as “All humans are mortal” and “2 + 3 = 5.” The understanding is that these
propositional variables, like propositions, can take on only the values  (true) and  (false). Propositional variables are also
called Boolean variables after their inventor, the nineteenth century mathematician George—you guessed it—Boole.

 and 
Mathematicians use the words  and  for operations that change or combine propositions. The precise
mathematical meaning of these special words can be specified by truth tables. For example, if  is a proposition, then so is “

” and the truth value of the proposition “ ” is determined by the truth value of  according to the following
truth table:

The first row of the table indicates that when proposition  is true, the proposition “ ” is false. The second line
indicates that when  is false, “ ” is true. This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each possible set of truth values for the variables. For
example, the truth table for the proposition “ ” has four lines, since there are four settings of truth values for the two
variables:

According to this table, the proposition “ ” is true only when  and  are both true. This is probably the way you
ordinarily think about the word “and.”

There is a subtlety in the truth table for “ ”:

The first row of this table says that “ ” is true even if both  and  are true. This isn’t always the intended meaning of
“or” in everyday speech, but this is the standard definition in mathematical writing. So if a mathematician says, “You may
have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of having both cake and ice cream, you should combine them with the exclusive-or
operation, :

P

Q

T F

NOT, AND, OR

NOT, AND, OR

P

NOT(P ) NOT(P ) P

P NOT(P)

T F

F T

P NOT(P )

P NOT(P )

P  AND Q

P Q P  AND Q

T T T

T F F

F T F

F F F

P  AND Q P Q

P  OR Q

P Q P  OR Q

T T T

T F T

F T T

F F F

P  OR Q P Q

textXOR

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48305?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/03%3A_Logical_Formulas/3.01%3A_Propositions_from_Propositions


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 3.1.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48305

IMPLIES
The combining operation with the least intuitive technical meaning is “implies.” Here is its truth table, with the lines labeled so
we can refer to them later.

 (tt)

 (tf)

 (ft)

 (ff)

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical statements are of the if-then form! Let’s experiment
with this definition. For example, is the following proposition true or false?

“If Goldbach’s Conjecture is true, then  for every real number x.”

Now, we already mentioned that no one knows whether Goldbach’s Conjecture, Proposition 1.1.8, is true or false. But that
doesn’t prevent you from answering the question! This proposition has the form  where the hypothesis, , is
“Goldbach’s Conjecture is true” and the conclusion, , is “  for every real number x.” Since the conclusion is definitely
true, we’re on either line (tt) or line (ft) of the truth table. Either way, the proposition as a whole is true!

One of our original examples demonstrates an even stranger side of implications.

“If pigs fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is true or false. Curiously, the answer has
nothing to do with whether or not you can understand the Chebyshev bound. Pigs do not fly, so we’re on either line (ft) or line
(ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese. So we’re on line (tf) of the truth table, and
the proposition is false.

False Hypotheses

It often bothers people when they first learn that implications which have false hypotheses are considered to be true. But
implications with false hypotheses hardly ever come up in ordinary settings, so there’s not much reason to be bothered by
whatever truth assignment logicians and mathematicians choose to give them.

There are, of course, good reasons for the mathematical convention that implications are true when their hypotheses are false.
An illustrative example is a system specification (see Problem 3.12) which consisted of a series of, say, a dozen rules,

if  : the system sensors are in condition , then  : the system takes action ,

or more concisely,
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for . Then the fact that the system obeys the specification would be expressed by saying that the AND

(3.1)

of these rules was always true.

For example, suppose only conditions  and  are true, and the system indeed takes the specified actions  and . This
means that in this case the system is behaving according to specification, and accordingly we want the formula (3.1) to come
out true. Now the implications  and  are both true because both their hypotheses and their
conclusions are true. But in order for (3.1) to be true, we need all the other implications with the false hypotheses  for 

 to be true. This is exactly what the rule for implications with false hypotheses accomplishes.

and Only If
Mathematicians commonly join propositions in one additional way that doesn’t arise in ordinary speech. The proposition “  if
and only if ” asserts that  and  have the same truth value. Either both are true or both are false.

For example, the following if-and-only-if statement is true for every real number :

For some values of , both inequalities are true. For other values of , neither inequality is true. In every case, however, the 
 proposition as a whole is true.

1 ≤ i ≤ 12

[  IMPLIES  ] AND [  IMPLIES  ] AND ⋯  AND [  IMPLIES  ]C1 A1 C2 A2 C12 A12

C2 C5 A2 A5

 IMPLIES C2 A2  IMPLIES C5 A5

Ci

i ≠ 2, 5

P

Q P Q

P Q P  IFF Q

T T T

T F F

F T F

F F T

x

−4 ≥ 0 IFF |x| ≥ 2.x2

x x

IFF
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3.2: Propositional Logic in Computer Programs
Propositions and logical connectives arise all the time in computer programs. For example, consider the following snippet,
which could be either C, C++, or Java:

if 

:

(further instructions)

Java uses the symbol || for “OR,” and the symbol && for “AND.” The further instructions are carried out only if the
proposition following the word if is true. On closer inspection, this big expression is built from two simpler propositions.

Let  be the proposition that , and let  be the proposition that . Then we can rewrite the condition as

(3.2)

Truth Table Calculation
A truth table calculation reveals that the more complicated expression 3.2 always has the same truth value as

.

(3.3)

We begin with a table with just the truth values of  and :

These values are enough to fill in two more columns:

Now we have the values needed to fill in the AND column:

and this provides the values needed to fill in the remaining column for the first OR:

x > 0||(x ≤ 0 && y > 100)

A x > 0 B y > 100

A OR (NOT (A) AND B)

A OR B

A B

A B A OR NOT (A) AND B) A OR B

T T

T F

F T

F F

A B A OR NOT (A) AND B) A OR B

T T F T

T F F T

F T T T

F F T F

A B A OR NOT (A) AND B) A OR B

T T F F T

T F F F T

F T T T T

F F T F F

A B A OR NOT (A) AND B) A OR B

T T T F F T
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Expressions whose truth values always match are called equivalent. Since the two emphasized columns of truth values of the
two expressions are the same, they are equivalent. So we can simplify the code snippet without changing the program’s
behavior by replacing the complicated expression with an equivalent simpler one:

if 

:

(further instructions)

The equivalence of (3.2) and (3.3) can also be confirmed reasoning by cases:

 is . An expression of the form (  anything) is equivalent to . Since  is  both (3.2) and (3.3) in this case are of
this form, so they have the same truth value, namely, .

 is . An expression of the form (  anything) will have same truth value as anything. Since A is , (3.3) has the same
truth value as .

An expression of the form (  anything) is equivalent to anything, as is any expression of the form  anything. So
in this case  is equivalent to , which in turn is equivalent to .

Therefore both (3.2) and (3.3) will have the same truth value in this case, namely, the value of .

Simplifying logical expressions has real practical importance in computer science. Expression simplification in programs like
the one above can make a program easier to read and understand. Simplified programs may also run faster, since they require
fewer operations. In hardware, simplifying expressions can decrease the number of logic gates on a chip because digital
circuits can be described by logical formulas (see Problems 3.5 and 3.6). Minimizing the logical formulas corresponds to
reducing the number of gates in the circuit. The payoff of gate minimization is potentially enormous: a chip with fewer gates is
smaller, consumes less power, has a lower defect rate, and is cheaper to manufacture.

Cryptic Notation
Java uses symbols like “&&” and “||” in place of  and . Circuit designers use " " and "+," and actually refer to 
as a product and  as a sum. Mathematicians use still other symbols, given in the table below.

English Symbolic Notation

)  (alternatively, )

If  then 

For example, using this notation, “If , then ” would be written:

The mathematical notation is concise but cryptic. Words such as “ ” and “ ” are easier to remember and won’t get
confused with operations on numbers. We will often use  as an abbreviation for , but aside from that, we mostly
stick to the words—except when formulas would otherwise run off the page.

A B A OR NOT (A) AND B) A OR B

T F T F F T

F T T T T T

F F F T F F

(x > 0||y > 100)

A T T OR T A T

T

A F F OR F

B

T AND F OR

A OR (NOT(A) AND B) (NOT(A) AND B) B

B

AND OR ⋅ AND

OR

NOT(P ¬P P¯ ¯¯̄

P  AND Q P ∧ Q

P  OR Q P ∨ Q

P  IMPLIES Q P → Q

P Q P → Q

P  IFF Q P ↔ Q

P  XOR Q P ⊕ Q

P  AND NOT (Q) R

P ∧ → R.Q
¯ ¯¯̄

AND OR

P¯ ¯¯̄ NOT(P )
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3.3: Equivalence and Validity

3.3.1 Implications and Contrapositives
Do these two sentences say the same thing?

If I am hungry, then I am grumpy.

If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic. Let  be the proposition “I am hungry” and
 be “I am grumpy.” The first sentence says “ ” and the second says “ .” Once

more, we can compare these two statements in a truth table:

( )

Sure enough, the highlighted columns showing the truth values of these two statements are the same. A statement of the form “
” is called the contrapositive of the implication “ .” The truth table shows that

an implication and its contrapositive are equivalent—they are just different ways of saying the same thing.

In contrast, the converse of “ ” is the statement “ .” The converse to our example is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this suspicion:

Now the highlighted columns differ in the second and third row, confirming that an implication is generally not equivalent to
its converse.

One final relationship: an implication and its converse together are equivalent to an iff statement, specifically, to these two
statements together. For example,

If I am grumpy then I am hungry, and if I am hungry then I am grumpy.

are equivalent to the single statement:

I am grumpy iff I am hungry.

Once again, we can verify this with a truth table.

( ) ( )

The fourth column giving the truth values of

P

Q P  IMPLIES Q NOT(Q) IMPLIES NOT(P )

P Q P  IMPLIES Q (NOT(Q) IMPLIES NOT(P))

T T T F T F

T F F T F F

F T T F T T

F F T T T T

NOT(Q) IMPLIES NOT(P ) P  IMPLIES Q

P  IMPLIES Q Q IMPLIES P

P Q P  IMPLIES Q Q IMPLIES P

T T T T

T F F T

F T T F

F F T T

P Q P  IMPLIES Q AND Q IMPLIES P P  IFF Q

T T T T T T

T F F F T F

F T T F F F

F F T T T T
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( )

is the same as the sixth column giving the truth values of , which confirms that the  of the implications is
equivalent to the  statement.

Validity and Satisfiability
A valid formula is one which is always true, no matter what truth values its variables may have. The simplest example is

.

You can think about valid formulas as capturing fundamental logical truths. For example, a property of implication that we
take for granted is that if one statement implies a second one, and the second one implies a third, then the first implies the
third. The following valid formula confirms the truth of this property of implication.

[( ).

Equivalence of formulas is really a special case of validity. Namely, statements  and  are equivalent precisely when the
statement ( ) is valid. For example, the equivalence of the expressions (3.3) and (3.2) means that

[( ))

is valid. Of course, validity can also be viewed as an aspect of equivalence. Namely, a formula is valid iff it is equivalent to .

A satisfiable formula is one which can sometimes be true—that is, there is some assignment of truth values to its variables that
makes it true. One way satisfiability comes up is when there are a collection of system specifications. The job of the system
designer is to come up with a system that follows all the specs. This means that the  of all the specs must be satisfiable or
the designer’s job will be impossible (see Problem 3.12).

There is also a close relationship between validity and satisfiability: a statement  is satisfiable iff its negation  is
not valid.

P  IMPLIES Q) AND (Q IMPLIES P

P  IFF Q  AND 

 IFF 

P  OR NOT (P )

P  IMPLIES Q) AND (Q IMPLIES R)] IMPLIES (P  IMPLIES R

F G

F  IFF G

A OR B) IFF (A OR NOT (A) AND B

T

AND

P NOT(P )
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3.4: The Algebra of Propositions

Propositions in Normal Form
Every propositional formula is equivalent to a “sum-of-products” or disjunctive form. More precisely, a disjunctive form is
simply an OR of -terms, where each -terms is an  of variables or negations of variables, for example,

).

(3.4)

You can read a disjunctive form for any propositional formula directly from its truth table. For example, the formula

(3.5)

has truth table:

The formula (3.5) is true in the first row when  are all true, that is, where  is true. It is also
true in the second row where  is true, and in the third row when  is true, and that’s all.
So (3.5) is true exactly when

(3.6)

is true.

[Distributive Law of  over ]

) is equivalent to ( ).

Theorem 3.4.1 is called a distributive law because of its resemblance to the distributivity of products over sums in arithmetic.

Similarly, we have (Problem 3.10):

[Distributive Law of  over ]

) is equivalent to ( ).

Note the contrast between Theorem 3.4.2 and arithmetic, where sums do not distribute over products.

AND AND AND

(A AND B) OR (A AND C

A AND (B OR C)

A B C A AND (B OR C)

T T T T

T T F T

T F T T

T F F F

F T T F

F T F F

F F T F

F F F F

A, B, and C A AND B AND C

A AND B AND C
¯ ¯¯̄

A AND   AND CB
¯ ¯¯̄

(A AND B AND C) OR (A AND B AND  ) OR (A AND   AND C)C
¯ ¯¯̄

B
¯ ¯¯̄

Theorem 3.4.1.
AND OR

A AND (B OR C A AND B) OR (A AND C

Theorem 3.4.2.
OR AND

A OR (B AND C A OR B) AND (A OR C
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The expression (3.6) is a disjunctive form where each -term is an  of every one of the variables or their negations
in turn. An expression of this form is called a disjunctive normal form (DNF). A DNF formula can often be simplified into a
smaller disjunctive form. For example, the DNF (3.6) further simplifies to the equivalent disjunctive form (3.4) above.

Applying the same reasoning to the  entries of a truth table yields a conjunctive form for any formula—an  of -
terms in which the -terms are ’s only of variables or their negations. For example, formula (3.5) is false in the fourth
row of its truth table (3.4.1) where  is ,  is  and  is . But this is exactly the one row where ( ) is !
Likewise, the (3.5) is false in the fifth row which is exactly where ( ) is . This means that (3.5) will be 
whenever the  of these two -terms is false. Continuing in this way with the -terms corresponding to the remaining
three rows where (3.5) is false, we get a conjunctive normal form (CNF) that is equivalent to (3.5), namely,

( )

The methods above can be applied to any truth table, which implies

Every propositional formula is equivalent to both a disjunctive normal form and a conjunctive normal form.

Proving Equivalences
A check of equivalence or validity by truth table runs out of steam pretty quickly: a proposition with  variables has a truth
table with  lines, so the effort required to check a proposition grows exponentially with the number of variables. For a
proposition with just 30 variables, that’s already over a billion lines to check!

An alternative approach that sometimes helps is to use algebra to prove equivalence. A lot of different operators may appear in
a propositional formula, so a useful first step is to get rid of all but three: . This is easy because each of
the operators is equivalent to a simple formula using only these three. For example,  is equivalent to 

. Formulas using only  for the remaining operators are left to Problem 3.13.

We list below a bunch of equivalence axioms with the symbol “ ” between equivalent formulas. These axioms are important
because they are all that’s needed to prove every possible equivalence. We’ll start with some equivalences for ’s that
look like the familiar ones for multiplication of numbers:

(commutativity of ) (3.7)

(associativity of ) (3.8)

(identity for )

(zero for )

Three axioms that don’t directly correspond to number properties are

(idempotence for )

(contradiction for ) (3.9)

(double negation) (3.10)

It is associativity (3.8) that justifies writing  without specifying whether it is parenthesized as 
. Both ways of inserting parentheses yield equivalent formulas.

There are a corresponding set of equivalences for  which we won’t bother to list, except for the  rule corresponding to
contradiction for  (3.9):

(validity for )

Finally, there are DeMorgan’s Laws which explain how to distribute 's over ’s and ’s:

(DeMorgan for ) (3.11)

AND AND

F AND OR

OR OR

A T B F C F  OR B OR CA
¯ ¯¯̄

F

A OR   OR B
¯ ¯¯̄

C
¯ ¯¯̄

F F

AND OR OR

 OR B OR C) AND (A OR   OR  ) AND (A OR   OR C) AND (A OR B OR  ) AND (A OR B OR CA
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

Theorem 3.4.3.

n

2n

AND, OR, and NOT

A IMPLIES B

NOT (A) OR B AND, OR, and NOT

↔

AND

A AND B ↔ B AND A AND

(A AND B) AND C ↔ A AND (B AND C) AND

T AND A ↔ A AND

F AND A ↔ F AND

A AND A ↔ A AND

A AND  ↔ FA
¯ ¯¯̄

AND

NOT ( ) ↔ AA
¯ ¯¯̄

A AND B AND C

A AND (B AND C) or (A AND B) AND C

OR OR

AND

A OR  ↔ TA
¯ ¯¯̄ OR

NOT AND OR

NOT(A AND B) ↔  OR A
¯ ¯¯̄

B
¯ ¯¯̄ AND

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48308?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 3.4.3 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48308

(DeMorgan for ) (3.12)

All of these axioms can be verified easily with truth tables.

These axioms are all that’s needed to convert any formula to a disjunctive normal form. We can illustrate how they work by
applying them to turn the negation of formula (3.5),

.

(3.13)

into disjunctive normal form.

We start by applying DeMorgan’s Law for  (3.12) to (3.13) in order to move the  deeper into the formula. This gives

.

Now applying Demorgan’s Law for AND (3.11) to the two innermost AND-terms, gives

.

(3.14)

At this point  only applies to variables, and we won’t need Demorgan’s Laws any further.

Now we will repeatedly apply The Distributivity of  over  (Theorem 3.4.1) to turn (3.14) into a disjunctive form. To
start, we’ll distribute ( ) over  to get

.

Using distributivity over both AND’s we get

.

By the way, we’ve implicitly used commutativity (3.7) here to justify distributing over an AND from the right. Now applying
idempotence to remove the duplicate occurrence of A we get

.

Associativity now allows dropping the parentheses around the terms being ’d to yield the following disjunctive form for
(3.13):

.

(3.15)

The last step is to turn each of these -terms into a disjunctive normal form with all three variables . We’ll
illustrate how to do this for the second -term . This term needs to mention  to be in normal form. To
introduce , we use validity for  and identity for  to conclude that

.

Now distributing  over the  yields the disjunctive normal form

.

Doing the same thing to the other AND-terms in (3.15) finally gives a disjunctive normal form for (3.5):

.

NOT(A OR B) ↔  AND A
¯ ¯¯̄

B
¯ ¯¯̄ OR

NOT((A AND B) OR (A AND C))

OR NOT

NOT(A AND B) AND NOT (A AND C)

(  OR  ) AND (  OR  )A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

NOT

AND OR

 OR A
¯ ¯¯̄

B
¯ ¯¯̄

AND

((  OR  ) AND  ) OR ((  OR  ) AND  )A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

A
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

((  AND  ) OR (  AND  )) OR ((  AND  ) OR (  AND  ))A
¯ ¯¯̄

A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

(  OR (  AND  )) OR ((  AND  ) OR (  AND  ))A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

OR

 OR (  AND  ) OR (  AND  ) OR (  AND  )A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

AND A, B,  and C

AND (  AND  )B
¯ ¯¯̄

A
¯ ¯¯̄

C

C OR AND

(  AND  ) ↔ (  AND  ) AND (C  OR  )B
¯ ¯¯̄

A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

(  AND  )B
¯ ¯¯̄

A
¯ ¯¯̄

OR

(  AND   AND C) OR (  AND   AND  )B
¯ ¯¯̄

A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

(  AND B AND C) OR (  AND B AND  ) ORA
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

(  AND   AND C) OR (  AND   AND  ) ORA
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

(  AND   AND C) OR (  AND   AND  ) ORB
¯ ¯¯̄

A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

(  AND   AND B) OR (  AND   AND  ) ORA
¯ ¯¯̄

C
¯ ¯¯̄

A
¯ ¯¯̄

C
¯ ¯¯̄

B
¯ ¯¯̄

(  AND   AND A) OR (  AND   AND  )B
¯ ¯¯̄

C
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

A
¯ ¯¯̄
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Using commutativity to sort the term and -idempotence to remove duplicates, finally yields a unique sorted :

.

This example illustrates a strategy for applying these equivalences to convert any formula into disjunctive normal form, and
conversion to conjunctive normal form works similarly, which explains:

Any propositional formula can be transformed into disjunctive normal form or a conjunctive normal form using the
equivalences listed above.

What has this got to do with equivalence? That’s easy: to prove that two formulas are equivalent, convert them both to
disjunctive normal form over the set of variables that appear in the terms. Then use commutativity to sort the variables and 

-terms so they all appear in some standard order. We claim the formulas are equivalent iff they have the same sorted
disjunctive normal form. This is obvious if they do have the same disjunctive normal form. But conversely, the way we read
off a disjunctive normal form from a truth table shows that two different sorted ’s over the same set of variables
correspond to different truth tables and hence to inequivalent formulas. This proves

(Completeness of the propositional equivalence axioms). Two propositional formula are equivalent iff they can be proved
equivalent using the equivalence axioms listed above.

The benefit of the axioms is that they leave room for ingeniously applying them to prove equivalences with less effort than the
truth table method. Theorem 3.4.5 then adds the reassurance that the axioms are guaranteed to prove every equivalence, which
is a great punchline for this section. But we don’t want to mislead you: it’s important to realize that using the strategy we gave
for applying the axioms involves essentially the same effort it would take to construct truth tables, and there is no guarantee
that applying the axioms will generally be any easier than using truth tables.

OR DNF

(A AND   AND  ) OR B
¯ ¯¯̄

C
¯ ¯¯̄

(  AND B AND C) OR A
¯ ¯¯̄

(  AND B AND  ) OR A
¯ ¯¯̄

C
¯ ¯¯̄

(  AND   AND C) OR A
¯ ¯¯̄

B
¯ ¯¯̄

(  AND   AND  )A
¯ ¯¯̄

B
¯ ¯¯̄

C
¯ ¯¯̄

Theorem 3.4.4.

AND

DNF

Theorem 3.4.5.
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3.5: The SAT Problem
Determining whether or not a more complicated proposition is satisfiable is not so easy. How about this one?

The general problem of deciding whether a proposition is satisfiable is called SAT. One approach to SAT is to construct a truth
table and check whether or not a  ever appears, but as with testing validity, this approach quickly bogs down for formulas
with many variables because truth tables grow exponentially with the number of variables.

Is there a more efficient solution to SAT? In particular, is there some brilliant procedure that determines SAT in a number of
steps that grows polynomially — like  or  — instead of exponentially —  — whether any given proposition of size 
is satisfiable or not? No one knows. And an awful lot hangs on the answer.

The general definition of an “efficient” procedure is one that runs in polynomial time, that is, that runs in a number of basic
steps bounded by a polynomial in , where  is the size of an input. It turns out that an efficient solution to SAT would
immediately imply efficient solutions to many other important problems involving scheduling, routing, resource allocation,
and circuit verification across multiple disciplines including programming, algebra, finance, and political theory. This would
be wonderful, but there would also be worldwide chaos. Decrypting coded messages would also become an easy task, so
online financial transactions would be insecure and secret communications could be read by everyone. Why this would happen
is explained in Section 8.12.

Of course, the situation is the same for validity checking, since you can check for validity by checking for satisfiability of a
negated formula. This also explains why the simplification of formulas mentioned in Section 3.2 would be hard—validity
testing is a special case of determining if a formula simplifies to (\textbf{T}\).

Recently there has been exciting progress on SAT-solvers for practical applications like digital circuit verification. These
programs find satisfying assignments with amazing efficiency even for formulas with millions of variables. Unfortunately, it’s
hard to predict which kind of formulas are amenable to SAT-solver methods, and for formulas that are unsatisfiable, SAT-
solvers generally get nowhere.

So no one has a good idea how to solve SAT in polynomial time, or how to prove that it can’t be done—researchers are
completely stuck. The problem of determining whether or not SAT has a polynomial time solution is known as the
“(\textbf{P}\) vs. (\textbf{NP}\)” problem.  It is the outstanding unanswered question in theoretical computer science. It is
also one of the seven Millenium Problems: the Clay Institute will award you $1,000,000 if you solve the (\textbf{P}\) vs.
(\textbf{NP}\) problem.

 stands for problems whose instances can be solved in time that grows polynomially with the size of the instance. 
stands for   time, but we’ll leave an explanation of what that is to texts on the theory of
computational complexity

(P  OR Q OR R) AND (  OR  ) AND (  OR  ) AND (  OR  )P
¯ ¯¯̄

Q
¯ ¯¯̄

P
¯ ¯¯̄

R
¯ ¯¯̄

R
¯ ¯¯̄

Q
¯ ¯¯̄

T

n2 n14 2n n

s s

1

1P NP

nondeterministtic polynomial
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3.6: Predicate Formulas

Quantifiers
The “for all” notation, , has already made an early appearance in Section 1.1. For example, the predicate

“ ”

is always true when  is a real number. That is,

is a true statement. On the other hand, the predicate

“ ”

is only sometimes true; specifically, when . There is a “there exists” notation, , to indicate that a predicate is
true for at least one, but not necessarily all objects. So

is true, while

is not true.

There are several ways to express the notions of “always true” and “sometimes true” in English. The table below gives some
general formats on the left and specific examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True

For all  is true. For all .

 is true for every  in the set, .  for every .

Sometimes True

There is an  such that  is true. There is an  such that .

 is true for some  in the set, .  for some .

 is true for at least one .  for at least one .

All these sentences “quantify” how often the predicate is true. Specifically, an assertion that a predicate is always true is called
a universal quantification, and an assertion that a predicate is sometimes true is an existential quantification. Sometimes the
English sentences are unclear with respect to quantification:

If you can solve any problem we come up with,

then you get an  for the course.

(3.16)

The phrase “you can solve any problem we can come up with” could reasonably be interpreted as either a universal or
existential quantification:

you can solve every problem we come up with,

(3.17)

or maybe

you can solve at least one problem we come up with.

(3.18)

∀

≥ 0x2

x

∀x ∈ R. ≥ 0x2

5 −7 = 0x2

x = ±sqrt7/5 ∃

∃x ∈ R : 5 −7 = 0x2

∀x ∈ R : 5 −7 = 0x2

x ∈ D,P(x) x ∈ R, ≥ 0x2

P(x) x D ≥ 0x2 x ∈ R

x ∈ D P(x) x ∈ R 5 − 7 = 0x2

P(x) x D 5 − 7 = 0x2 x ∈ R

P(x) x ∈ D 5 − 7 = 0x2 x ∈ R

A
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To be precise, let Probs be the set of problems we come up with, Solves  be the predicate “You can solve problem ,” and 
be the proposition, “You get an  for the course.” Then the two different interpretations of (3.16) can be written as follows:

 for (3.17),

 for (3.18),

Mixing Quantifiers
Many mathematical statements involve several quantifiers. For example, we already described

Goldbach’s Conjecture 1.1.8: Every even integer greater than 2 is the sum of two primes.

Let’s write this out in more detail to be precise about the quantification:

  

Order of Quantifiers
Swapping the order of different kinds of quantifiers (existential or universal) usually changes the meaning of a proposition. For
example, let’s return to one of our initial, confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let  be the set of Americans, let  be the set of
dreams, and define the predicate  to be “American  has dream .” Now the sentence could mean there is a single
dream that every American shares—such as the dream of owning their own home:

Or it could mean that every American has a personal dream:

For example, some Americans may dream of a peaceful retirement, while others dream of continuing practicing their
profession as long as they live, and still others may dream of being so rich they needn’t think about work at all.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement that every even number  is the sum of the
same two primes:

  

Variables Over One Domain
When all the variables in a formula are understood to take values from the same nonempty set, , it’s conventional to omit
mention of . For example, instead of  we'd write  The unnamed nonempty set that 
and  range over is called the domain of discourse, or just plain domain, of the formula.

It’s easy to arrange for all the variables to range over one domain. For example, Goldbach’s Conjecture could be expressed
with all variables ranging over the domain  as

Negating Quantifiers
There is a simple relationship between the two kinds of quantifiers. The following two sentences mean the same thing:

Not everyone likes ice cream.

There is someone who does not like ice cream.

The equivalence of these sentences is a instance of a general equivalence that holds between predicate formulas:

 is equivalent to 

(3.19)

(x) x G

A

(∀x ∈  Probs.Solves(x)) IMPLIES G,

(∃x ∈  Probs.Solves(x)) IMPLIES G,

∀n ∈ Evens
  

for every even integer n>2

∃p ∈ Primes ∃q ∈ Primes.
  
there exists primes p and q such that 

n = p+q.

A D

H(a, d) a d

∃d ∈ D ∀a ∈ A.H(a, d)

∃a ∈ A ∀d ∈ D.H(a, d)

≥ 2

∃p ∈ Primes ∃q ∈ Primes.
  
there exists primes p and q such that 

∀n ∈ Evens
  

for every even integer n>2

n = p+q.

D

D ∀x ∈ D∃y ∈ D.Q(x, y) ∀x∃y.Q(x, y). x

y

N

∀n.n ∈  Evens IMPLIES (∃p ∃q. p ∈ Primes AND q ∈ Primes AND n = p+q).

NOT (∀x.P (x)) ∃x.  NOT(P (x)).
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Similarly, these sentences mean the same thing:

There is no one who likes being mocked.

Everyone dislikes being mocked.

The corresponding predicate formula equivalence is

 is equivalent to 

(3.20)

The general principle is that moving a  across a quantifier changes the kind of quantifier. Note that (3.20) follows from
negating both sides of (3.19).

Validity for Predicate Formulas
The idea of validity extends to predicate formulas, but to be valid, a formula now must evaluate to true no matter what the
domain of discourse may be, no matter what values its variables may take over the domain, and no matter what interpretations
its predicate variables may be given. For example, the equivalence (3.19) that gives the rule for negating a universal quantifier
means that the following formula is valid:

(3.21)

Another useful example of a valid assertion is

(3.22)

Here’s an explanation why this is valid: Let D be the domain for the variables and  be some binary predicate  on . We
need to show that if

(3.23)

holds under this interpretation, then so does

(3.24)

So suppose (3.23) is true. Then by definition of , this means that some element  has the property that

By definition of 8, this means that

is true for all . So given any , there is an element in , namely, , such that  is true. But that’s exactly
what (3.24) means, so we’ve proved that (3.24) holds under this interpretation, as required.

We hope this is helpful as an explanation, but we don’t really want to call it a “proof.” The problem is that with something as
basic as (3.22), it’s hard to see what more elementary axioms are ok to use in proving it. What the explanation above did was
translate the logical formula (3.22) into English and then appeal to the meaning, in English, of “for all” and “there exists” as
justification. In contrast to (3.22), the formula

(3.25)

is not valid. We can prove this just by describing an interpretation where the hypothesis, , is true but the
conclusion, , is not true. For example, let the domain be the integers and  mean . Then the
hypothesis would be true because, given a value, , for  we could choose the value of  to be , for example. But under

NOT (∃x.P (x)) ∀x.  NOT(P (x)).

NOT

NOT (∀x.P (x)) IFF ∃x.  NOT(P (x)).

∃x∀y.P (x, y) IMPLIES ∀y ∃x.P (x, y).

P0
2 D

∃x ∈ D. ∀y ∈ D. (x, y)P0

∀y ∈ D ∃x ∈ D. (x, y).P0

∃ ∈ Dd0

∀y ∈ D. ( , y).P0 d0

( , d)P0 d0

d ∈ D d ∈ D D d0 ( , d)P0 d0

∀y ∃x.P (x, y) IMPLIES ∀x ∃y.P (x, y)

∀y∃x.P (x, y)

∀x∃y.P (x, y) P (x, y) x > y

n y x n+1
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this interpretation the conclusion asserts that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this that falsifies an assertion is called a counter model to that assertion.

That is, a predicate that depends on two variables.2
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CHAPTER OVERVIEW
4: MATHEMATICAL DATA TYPES

We have assumed that you’ve already been introduced to the concepts of sets, sequences, and
functions, and we’ve used them informally several times in previous sections. In this chapter, we’ll
now take a more careful look at these mathematical data types. We’ll quickly review the basic
definitions, add a few more such as “images” and “inverse images” that may not be familiar, and end
the chapter with some methods for comparing the sizes of sets.

4.1: SETS
Informally, a set is a bunch of objects, which are called the elements of the set. The elements of a
set can be just about anything: numbers, points in space, or even other sets. The conventional way
to write down a set is to list the elements inside curly-braces.

4.2: SEQUENCES
4.3: FUNCTIONS
4.4: BINARY RELATIONS
4.5: FINITE CARDINALITY
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4.1: Sets
Informally, a set is a bunch of objects, which are called the elements of the set. The elements of a set can be just about
anything: numbers, points in space, or even other sets. The conventional way to write down a set is to list the elements inside
curly-braces. For example, here are some sets:

dead pets

primary colors

a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how to generate a list of them:

the powers of 2

The order of elements is not significant, so  are the same set written two different ways. Also, any object is,
or is not, an element of a given set— there is no notion of an element appearing more than once in a set.  So, writing  is
just indicating the same thing twice: that  is in the set. In particular, 

The expression  asserts that  is an element of set . For example,  and blue , but Tailspin —yet.

Sets are simple, flexible, and everywhere. You’ll find some set mentioned in nearly every section of this text.

Some Popular Sets
Mathematicians have devised special symbols to represent some common sets.

symbol set elements

the empty set none

nonnegative integers

integers

rational numbers

real numbers

complex numbers

A superscript " " restricts a set to its positive elements; for example,  denotes the set of positive real numbers. Similarly, 
 denotes the set of negative integers.

Comparing and Combining Sets
The expression  indicates that set  is a subset of set , which means that every element of  is also an element of .
For example,  because every nonnegative integer is an integer;  because every rational number is a real number,
but  because not every complex number is a real number.

As a memory trick, think of the “ ” symbol as like the “ ” sign with the smaller set or number on the left hand side. Notice
that just as  for any number , also  for any set .

There is also a relation, , on sets like the “less than” relation < on numbers.  means that  is a subset of , but the two
are not equal. So just as  for every number , also , for every set . “  ” is read as “  is a strict subset of 

.”

There are several basic ways to combine sets. For example, suppose

A = {Alex, Tippy, Shells, Shadow}

B = {red, blue, yellow}

C = {{a,b},{a,c},{b,c}}

D ::= {1,2,4,8,16,…}

{x, y} and {y, x}
1 {x, x}

x {x, x} = {x}.

e ∈ S e S 32 ∈ D ∈ B ∉ A

∅

N {0,1,2,3,…}

Z {…,−3,−2,−1,0,1,2,3,…}

Q { , ,16,etc.}1
2

−5
3

R {π,e,−9, ,etc.}2
–

√

C {i, , − 2i,etc.}19
2

2
–

√

+ R+

Z−

S ⊆ T S T S T

N ⊆ Z Q ⊆ R
C ⊈ R

⊆ ≤
n ≤ n n S ⊆ S S

⊂ S ⊂ T S T

n ≮ n n A ⊄ A A S ⊂ T S

T

X ::= {1, 2, 3}.

Y ::= {2, 3, 4}.
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The union of sets  and , denoted , includes exactly the elements appearing in  or  or both. That is,

So 

The intersection of sets  and , denoted , consists of all elements that appear in both  and  or both. That
is,

So 

The set difference of sets  and , denoted , consists of all elements that are in , but not in  or both. That
is,

So 

Often all the sets being considered are subsets of a known domain of discourse, . Then for any subset, , of , we define 
to be the set of all elements of  not in . That is,

The set  is called the complement of . So

For example, if the domain we’re working with is the integers, the complement of the nonnegative integers is the set of
negative integers:

.

We can use complement to rephrase subset in terms of equality

 is equivalent to 

Power Set
The set of all the subsets of a set, , is called the power set, pow( ), of . So

For example, the elements of pow  are 

More generally, if  has  elements, then there are  sets in pow —see Theorem 4.5.5. For this reason, some authors use
the notation  instead of pow .

It’s not hard to develop a notion of multisets in which elements can occur more than once, but multisets are not ordinary sets
and are not covered in this text.

Set Builder Notation
An important use of predicates is in set builder notation. We’ll often want to talk about sets that cannot be described very well
by listing the elements explicitly or by taking unions, intersections, etc., of easily described sets. Set builder notation often
comes to the rescue. The idea is to define a set using a predicate; in particular, the set consists of all values that make the
predicate true. Here are some examples of set builder notation:

Definition 4.1.1

A B A ∪ B A B

x ∈ A ∪ B IFF x ∈ A OR x ∈ B.

X ∪ Y = {1, 2, 3, 4}.

A B A ∩ B A B

x ∈ A ∩ B IFF x ∈ A AND x ∈ B.

X ∩ Y = {2, 3}.

A B A −B A B

x ∈ A −B IFF x ∈ A AND x ∉ B.

X −Y = {1} and Y −X = {4}.

D A D A
¯ ¯¯̄

D A

::= D −A.A
¯ ¯¯̄

A
¯ ¯¯̄

A

= ∅ IFF A = D.A
¯ ¯¯̄

=N¯ ¯̄̄ Z−

A ⊆ B A ∩ = ∅.B
¯ ¯¯̄

A A A

B ∈ pow(A) IFF B ⊆ A.

({1, 2}) ∅, {1}, {2},  and {1, 2}.

A n 2n (A)

2A (A)

1

A ::= {n ∈ N|n is a prime and n = 4k +1 for some integer k}

B ::= {x ∈ R| −3x +1 > 0}x3

C ::= {a +bi ∈ C| +2 ≤ 1}a2 b2
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The set  consists of all nonnegative integers  for which the predicate

“  is a prime and  for some integer ”

is true. Thus, the smallest elements of  are:

Trying to indicate the set  by listing these first few elements wouldn’t work very well; even after ten terms, the pattern is not
obvious! Similarly, the set  consists of all real numbers  for which the predicate

is true. In this case, an explicit description of the set  in terms of intervals would require solving a cubic equation. Finally, set
 consists of all complex numbers a C bi such that:

This is an oval-shaped region around the origin in the complex plane.

Providing Set Equalities
Two sets are defined to be equal if they have exactly the same elements. That is,  means that  if and only if 

, for all elements, .  So, set equalities can be formulated and proved as “iff” theorems. For example:

[Distributive Law for Sets] Let A, B, and C be sets. Then:

(4.1)

Proof. The equality (4.1) is equivalent to the assertion that

(4.2)

for all . Now we’ll prove (4.2) by a chain of iff’s.

Now we have

iff (def of )

iff (def of )

iff (  distributivity Thm 3.4.1)

iff (def of )

iff (def of )

Although the basic set operations and propositional connectives are similar, it’s important not to confuse one with the other.
For example,  resembles , and in fact was defined directly in terms of :

 is equivalent to 

Similarly,  resembles , and complement resembles .

But if  and  are sets, writing  is a type-error, since  is an operation on truth-values, not sets. Similarly, if 
and  are propositional variables, writing  is another type-error.

The proof of Theorem 4.1.2 illustrates a general method for proving a set equality involving the basic set operations by
checking that a corresponding propositional formula is valid. As a further example, from De Morgan’s Law (3.11) for

A n

n n = 4k +1 k

A

5, 13, 17, 29, 37, 41, 53, 61, 73, …

A

B x

−3x +1 > 0x3

B

C

+2 ≤ 1a2 b2

X = Y z ∈ X

z ∈ Y z 2

Theorem 4.1.2.

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

z ∈ A ∩ (B ∪ C) iff z ∈ (A ∩ B) ∪ (A ∩ C)

z

z ∈ A ∩ (B ∪ C)

(z ∈ A) AND (z ∈ B ∪ C) ∩

(z ∈ A) AND (z ∈ B OR z ∈ C) ∪

(z ∈ A AND z ∈ B) OR (z ∈ A AND z ∈ C) AND

(z ∈ A ∩ B) OR (z ∈ A ∩ C) ∩

z ∈ (A ∩ B) ∪ (A ∩ C) ∪

■

∩ textOR textOR

x ∈ A ∪ B (x ∈ A OR x ∈ B).

∩ AND NOT

A B A AND B AND P

Q P ∪ Q
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propositions

 is equivalent to 

we can derive (Problem 4.5) a corresponding De Morgan’s Law for set equality:

(4.3)

Despite this correspondence between two kinds of operations, it’s important not to confuse propositional operations with set
operations. For example, if  and  are sets, then it is wrong to write “ ” instead of “ ” Applying  to
sets will cause your compiler—or your grader—to throw a type error, because an operation that is only supposed to be applied
to truth values has been applied to sets. Likewise, if  and  are propositions, then it is a type error to write “ ” instead
of “ .”

This is actually the first of the ZFC axioms for set theory mentioned at the end of Section 1.3 and discussed further in Section
7.3.2.

NOT(P  AND Q)  OR P
¯ ¯¯̄

Q
¯ ¯¯̄

= ∪ .A ∩ B
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

A
¯ ¯¯̄

B¯ ¯¯̄

X Y X AND Y X ∩ Y . AND

P Q P ∪ Q

P  OR Q

2
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4.2: Sequences
Sets provide one way to group a collection of objects. Another way is in a sequence, which is a list of objects called terms or
components. Short sequences are commonly described by listing the elements between parentheses; for example, ( ) is a
sequence with three terms.

While both sets and sequences perform a gathering role, there are several differences.

The elements of a set are required to be distinct, but terms in a sequence can be the same. Thus,  is a valid
sequence of length three, but  is a set with two elements, not three.
The terms in a sequence have a specified order, but the elements of a set do not. For example, and  are
different sequences, but  and  are the same set.
Texts differ on notation for the empty sequence; we use  for the empty sequence.

The product operation is one link between sets and sequences. A Cartesian product of sets, , is a new set
consisting of all sequences where the first component is drawn from , the second from , and so forth. Length two
sequences are called pairs.  For example,  is the set of all pairs whose first element is a nonnegative integer and
whose second element is an  or a :

A product of  copies of a set  is denoted . For example,  is the set of all 3-bit sequences:

Some texts call them ordered pairs.

a, b, c

(a, b, a)

{a, b, a}

(a, b, c) (a, c, b)

{a, b, c} {a, c, b}

λ

× ×⋯ ×S1 S2 Sn

S1 S2
3

N×{a, b}

a b

N×{a, b} = {(0, a), (0, b), (1, a), (1, b), (2, a), (2, b), …}

n S S
n {0, 1}3

{0, 1 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}}3

3
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4.3: Functions

Domains and Images
A function assigns an element of one set, called the domain, to an element of another set, called the codomain. The notation

indicates that  is a function with domain, , and codomain, . The familiar notation “ ” indicates that  assigns the
element  to . Here  would be called the value of  at argument .

Functions are often defined by formulas, as in:

where  is a real-valued variable, or

where  and  range over binary strings, or

where  ranges over the nonnegative integers.

A function with a finite domain could be specified by a table that shows the value of the function at each element of the
domain. For example, a function  where  and  are propositional variables is specified by:

Notice that  could also have been described by a formula:

A function might also be defined by a procedure for computing its value at any element of its domain, or by some other kind
of specification. For example, define  to be the length of a left to right search of the bits in the binary string  until a 1
appears, so

Notice that  does not assign a value to any string of just 0’s. This illustrates an important fact about functions: they need not

assign a value to every element in the domain. In fact this came up in our first example , which does not assign a

value to 0. So in general, functions may be partial functions, meaning that there may be domain elements for which the
function is not defined. If a function is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the elements in a set of arguments. So if ,
and  is a subset of , we define  to be the set of all the values that  takes when it is applied to elements of . That is,

For example, if we let  denote set of numbers in the interval from  to  on the real line, then 

f : A → B

f A B f(a) = b f

b ∈ B a b f a

(x) ::=f1
1

x2

x

(y, z) ::= y10yzf2

y z

(x, n) ::= the length n sequence f3 (x, … , x)
  

n x's

n

(P , Q)f4 P Q

P Q (P,Q)f4

T T T

T F F

F T T

F F T

f4

(P , Q) ::= [P  IMPLIES Q].f4

(y)f5 y

(0010) = 3,f5

(100) = 1,f5

(0000) is undefined.f5

f5

(x) =f1
1

x2

f : A → B

S A f(S) f S

f(S) ::= {b ∈ B|f(s) = b for some s ∈ S}

[r, s] r s ([1, 2]) = [1/4, 1].f1
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For another example, let’s take the “search for a 1” function, . If we let  be the set of binary words which start with an
even number of 0’s followed by a 1, then  would be the odd nonnegative integers.

Applying  to a set, , of arguments is referred to as “applying  pointwise to ”, and the set  is referred to as the image
of  under .  The set of values that arise from applying  to all possible arguments is called the range of . That is,

Some authors refer to the codomain as the range of a function, but they shouldn’t. The distinction between the range and
codomain will be important later in Sections 4.5 when we relate sizes of sets to properties of functions between them.

Function Composition
Doing things step by step is a universal idea. Taking a walk is a literal example, but so is cooking from a recipe, executing a
computer program, evaluating a formula, and recovering from substance abuse.

Abstractly, taking a step amounts to applying a function, and going step by step corresponds to applying functions one after the
other. This is captured by the operation of composing functions. Composing the functions  and  means that first  is applied
to some argument, , to produce , and then  is applied to that result to produce .

For functions  and , the composition, , of  with  is defined to be the function from  to 
defined by the rule:

for all 

Function composition is familiar as a basic concept from elementary calculus, and it plays an equally basic role in discrete
mathematics.

There is a picky distinction between the function  which applies to elements of  and the function which applies 
pointwise to subsets of , because the domain of  is , while the domain of pointwise-  is pow . It is usually clear from
context whether  or pointwise-  is meant, so there is no harm in overloading the symbol  in this way.

f5 X

(X)f5

f S f S f(S)

S f 4 f f

range(f) ::= f(domain(f)).

f g f

x f(x) g g(f(x))

Definition 4.3.1
f : A → B g : B → C g ∘ f g f A C

(g ∘ f)(x) ::= g(f(x)),

x ∈ A.

4 f A f

A f A f (A)

f f f
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4.4: Binary Relations
Binary relations define relations between two objects. For example, “less-than” on the real numbers relates every real number, 

, to a real number, , precisely when . Similarly, the subset relation relates a set, , to another set, , precisely when 
. A function  is a special case of binary relation in which an element  is related to an element 

precisely when .

In this section we’ll define some basic vocabulary and properties of binary relations.

A binary relation, , consists of a set, , called the domain of , a set, , called the codomain of , and a subset of 
 called the graph of .

A relation whose domain is  and codomain is  is said to be “between  and ”, or “from  to .” As with functions, we
write  to indicate that  is a relation from  to . When the domain and codomain are the same set, , we
simply say the relation is “on .” It’s common to use “ ” to mean that the pair  is in the graph of . 

Notice that Definition 4.4.1 is exactly the same as the definition in Section 4.3 of a function, except that it doesn’t require the
functional condition that, for each domain element, , there is at most one pair in the graph whose first coordinate is . As we
said, a function is a special case of a binary relation.

The “in-charge of” relation, Chrg, for MIT in Spring ’10 subjects and instructors is a handy example of a binary relation. Its
domain, Fac, is the names of all the MIT faculty and instructional staff, and its codomain is the set, SubNums, of subject
numbers in the Fall ’09–Spring ’10 MIT subject listing. The graph of Chrg contains precisely the pairs of the form

such that the faculty member named  is in charge of the subject with number  that was
offered in Spring ’10. So graph(Chrg) contains pairs like

(T. Eng, 6.UAT)

(G. Freeman, 6.011)

(G. Freeman, 6.UAT)

(G. Freeman, 6.881)

(G. Freeman, 6.882)

(J. Guttag, 6.00)

(A. R. Meyer, (4.4) 6.042)

(A. R. Meyer, 18.062)

(A. R. Meyer, 6.844)

(T. Leighton, 6.042)

(T. Leighton, 18.062)

(4.4)

Some subjects in the codomain, SubNums, do not appear among this list of pairs—that is, they are not in range(Chrg). These
are the Fall term-only subjects. Similarly, there are instructors in the domain, Fac, who do not appear in the list because they
are not in charge of any Spring term subjects.

Relation Diagrams

a b a < b A B

A ⊆ B f : A → B a ∈ A b ∈ B

b = f(a)

Definition 4.4.1.
R A R B R

A ×B R

A B A B A B

fR : A → B R A B A

A a R b (a, b) R 5

a a

(⟨instructor-name⟩, ⟨subject-num⟩)

⟨instructor-name⟩ ⟨subject-num⟩)

⋮
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Some standard properties of a relation can be visualized in terms of a diagram. The diagram for a binary relation, , has points
corresponding to the elements of the domain appearing in one column (a very long column if domain  is infinite). All the
elements of the codomain appear in another column which we’ll usually picture as being to the right of the domain column.
There is an arrow going from a point, , in the lefthand, domain column to a point, , in the righthand, codomain column,
precisely when the corresponding elements are related by . For example, here are diagrams for two functions:

Being a function is certainly an important property of a binary relation. What it means is that every point in the domain
column has at most one arrow coming out of it. So we can describe being a function as the “  arrow out” property. There are
four more standard properties of relations that come up all the time. Here are all five properties defined in terms of arrows:

A binary relation, , is:

a function when it has the [  arrow out] property.
surjective when it has the [  arrows in] property. That is, every point in the righthand, codomain column has at least
one arrow pointing to it.
total when it has the [  arrows out] property.
injective when it has the [  arrow in] property.
bijective when it has the [  arrow out] and the [  arrow in] property.

From here on, we’ll stop mentioning the arrows in these properties and for example, just write [  in] instead of [  arrows
in].

So in the diagrams above, the relation on the left has the [= 1 out] and [  in] properties, which means it is a total, surjective
function. But it does not have the [  in] property because element 3 has two arrows going into it; it is not injective.

The relation on the right has the [= 1 out] and [  in] properties, which means it is a total, injective function. But it does not
have the [  in] property because element 4 has no arrow going into it; it is not surjective.

The arrows in a diagram for  correspond, of course, exactly to the pairs in the graph of . Notice that the arrows alone are
not enough to determine, for example, if  has the [  out], total, property. If all we knew were the arrows, we wouldn’t
know about any points in the domain column that had no arrows out. In other words, graph( ) alone does not determine
whether  is total: we also need to know what domain( )/ is.

The function defined by the formula  has the [  out] property if its domain is , but not if its domain is some set

of real numbers including 0. It has the [= 1 in] and [= 1 out] property if its domain and codomain are both , but it has
neither the [  in] nor the [  out] property if its domain and codomain are both .

R

(R)

a b

R

≤ 1

Definition 4.4.2.
R

≤ 1
≥ 1

≥ 1
≤ 1
= 1 = 1

≤ 1 ≤ 1

≥ 1
≤ 1

≤ 1
≥ 1

R R

R ≥ 1
R

R R

Example 4.4.3
1

x2
≥ 1 R

+

R
+

≤ 1 ≥ 1 R

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48314?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 4.4.3 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48314

Relational Images
The idea of the image of a set under a function extends directly to relations.

The image of a set, , under a relation, , written , is the set of elements of the codomain, , of  that are related
to some element in . In terms of the relation diagram,  is the set of points with an arrow coming in that starts from
some point in .

For example, the set of subject numbers that Meyer is in charge of in Spring ’10 is exactly Chrg(A. Meyer). To figure out what
this is, we look for all the arrows in the Chrg diagram that start at “A. Meyer,” and see which subject-numbers are at the other
end of these arrows. Looking at the list (4.4) of pairs in graph(Chrg), we see that these subject-numbers are {6.042, 18.062,
6.844}. Similarly, to find the subject numbers that either Freeman or Eng are in charge of, we can collect all the arrows that
start at either “G. Freeman,” or “T. Eng” and, again, see which subjectnumbers are at the other end of these arrows. This is
Chrg ({G. Freeman, T. Eng}). Looking again at the list (4.4), we see that

Chrg ({G. Freeman, T. Engg}) = {6.011, 6.881, 6.882, 6.UAT}

Finally, Fac is the set of all in-charge instructors, so Chrg(Fac) is the set of all the subjects listed for Spring ’10.

Inverse Relations and Images

The inverse,  of a relation  is the relation from  to  defined by the rule

In other words,  is the relation you get by reversing the direction of the arrows in the diagram of .

The image of a set under the relation, , is called the inverse image of the set. That is, the inverse image of a set, ,
under the relation, , is defined to be .

Continuing with the in-charge example above, the set of instructors in charge of 6.UAT in Spring ’10 is exactly the inverse
image of {6.UAT} under the Chrg relation. From the list (4.4), we see that Eng and Freeman are both in charge of 6.UAT, that
is,

{T. Eng, D. Freeman} ({6.UAT}).

We can’t assert equality here because there may be additional pairs further down the list showing that additional instructors are
co-incharge of 6.UAT.

Now let Intro be the set of introductory course 6 subject numbers. These are the subject numbers that start with “6.0.” So the
set of names of the instructors who were in-charge of introductory course 6 subjects in Spring ’10, is (Intro). From the
part of the Chrg list shown in (4.4), we see that Meyer, Leighton, Freeman, and Guttag were among the instructors in charge of
introductory subjects in Spring ’10. That is,

{Meyer, Leighton, Freeman, Guttag} (Intro).

Finally, (SubNums), is the set of all instructors who were in charge of a subject listed for Spring ’10.

Writing the relation or operator symbol between its arguments is called infix notation. Infix expressions like “ ” or “
” are the usual notation used for things like the less-then relation or the addition operation rather than prefix notation

like “ ” or “ .”

Definition 4.4.4.
Y R R(Y ) B R

Y R(Y )
Y

Definition 4.4.5
R−1 R : A → B B A

b  a IFF a R bR−1

R−1 R

Definition 4.4.6
R−1 X

R (X)R−1

⊆ Chrg−1

Chrg−1

⊆ Chrg−1

Chrg−1

5 m < n

m +n

< (m, n) +(m, n)
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4.5: Finite Cardinality
A finite set is one that has only a finite number of elements. This number of elements is the “size” or cardinality of the set:

If A is a finite set, the cardinality of , written , is the number of elements in .

A finite set may have no elements (the empty set), or one element, or two elements, ... , so the cardinality of finite sets is
always a nonnegative integer.

Now suppose  is a function. This means that every element of  contributes at most one arrow to the diagram for 
, so the number of arrows is at most the number of elements in . That is, if  is a function, then

If  is also surjective, then every element of  has an arrow into it, so there must be at least as many arrows in the diagram as
the size of . That is,

Combining these inequalities implies that if  is a surjective function, then .

In short, if we write  surj  to mean that there is a surjective function from  to , then we’ve just proved a lemma: if 
surj  for finite sets , , then . The following definition and lemma lists this statement and three similar rules
relating domain and codomain size to relational properties.

Definition 4.5.2. Let A; B be (not necessarily finite) sets. Then 1. A surj B iff there is a surjective function from A to B. 2. A
inj B iff there is an injective total relation from A to B. 3. A bij B iff there is a bijection from A to B.

Let ,  be (not necessarily finite) sets. Then

1.  surj  iff there is a surjective function from  to .
2.  inj  iff there is a injective total from  to .
3.  bij  iff there is a bijective from  to .

Lemma 4.5.3. For finite sets , :

1. If  surj , then .
2. If  inj , then .
3. If  bij , then .

Proof. We’ve already given an “arrow” proof of implication 1. Implication 2. follows immediately from the fact that if  has
the [  out], function property, and the [  in], surjective property, then  is total and injective, so  surj  iff  inj .
Finally, since a bijection is both a surjective function and a total injective relation, implication 3. is an immediate consequence
of the first two. 

Lemma 4.5.3.1. has a converse: if the size of a finite set, , is greater than or equal to the size of another finite set, , then it’s
always possible to define a surjective function from  to . In fact, the surjection can be a total function. To see how this
works, suppose for example that

Then define a total function f W A ! B by the rules  by the rules

Definition 4.5.1

A |A| A

R : A → B A

R A R

|A| ≥ #arrows.

R B

B

#arrows ≥ |B|.

R |A| ≥ |B|

A B A B A

B A B |A| ≥ |B|

Definition 4.5.2

A B

A B A B

A B A B

A B A B

A B

A B |A| ≥ |B|
A B |A| ≤ |B|
A B |A| = |B|

R

≤ 1 ≥ 1 R−1 A B B A

■

A B

A B

A

B

= { , , , , , }a0 a1 a2 a3 a4 a5

= { , , , . }b0 b1 b2 b3

f : A → B

f( ) ::= , f( ) ::= , f( ) ::= , f( ) = f( ) = f( ) ::=a0 b0 a1 b1 a2 b2 a3 a4 a5 b3
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More concisely,

for . Since 5  3, this  is a surjection.

So we have figured out that if  and  are finite sets, then  if and only if  surj . All told, this argument wraps up
the proof of a theorem that summarizes the whole finite cardinality story:

[Mapping Rules] For finite sets, , ,

How Many Subsets of a Finite Set?
As an application of the bijection mapping rule ( ), we can give an easy proof of:

Theorem 4.5.5. There are 2n subsets of an n-element set. That is,

There are  subsets of an n-element set. That is,

.

For example, the three-element set  has eight different subsets:

Theorem 4.5.5 follows from the fact that there is a simple bijection from subsets of  to , the n-bit sequences. Namely,
let  be the elements of . The bijection maps each subset of  to the bit sequence  defined
by the rule that

For example, if , then the subset  maps to a 10-bit sequence as follows:

subset: { , , , , }

sequence: (0, 1, 1, 0, 1, 0, 1, 0, 0, 1)

Now by bijection case of the Mapping Rules 4.5.4.( ),

But every computer scientist knows6 that there are  n-bit sequences! So we’ve proved Theorem 4.5.5!

In case you’re someone who doesn’t know how many n-bit sequences there are, you’ll find the  explained in Section
14.2.2.

f( ) ::= ,ai bmin(i,3)

0 ≤ i ≤ 5 ≥ f

A B |A| ≥ |B| A B

Theorem 4.5.4

A B

|A| ≥ |B| iff A surj B, (4.5.1)

|A| ≤ |B| iff A inj B, (4.5.2)

|A| = |B| iff A bij B. (4.5.3)

4.5.3

Theorem 4.5.5

2n

|A| = n implies |pow(A)| = 2n

{ , , }a1 a2 a3

∅ { }a1

{ } { , }a3 a1 a3

{ } { , }a2 a1 a2

{ , } { , , }a2 a3 a1 a2 a3

A {01}n

, , … ,a1 a2 an A S ⊆ A ( , , … , )b1 b2 bn

= 1 iff  ∈ S.bi ai

n = 10 { , , , , }a2 a3 a5 a7 a10

a2 a3 a5 a7 a10

4.5.3

|pow(A)| = |{0, 1 |.}n

2n

6 2n
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CHAPTER OVERVIEW
5: INDUCTION
Induction is a powerful method for showing a property is true for all nonnegative integers. Induction
plays a central role in discrete mathematics and computer science. In fact, its use is a defining
characteristic of discrete—as opposed to continuous—mathematics. This chapter introduces two
versions of induction, Ordinary and Strong, and explains why they work and how to use them in
proofs.

5.1: ORDINARY INDUCTION
5.2: STRONG INDUCTION
5.3: STRONG INDUCTION VS. INDUCTION VS. WELL ORDERING
5.4: STATE MACHINES
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5.1: Ordinary Induction
To understand how induction works, suppose there is a professor who brings a bottomless bag of assorted miniature candy bars
to her large class. She offers to share the candy in the following way. First, she lines the students up in order. Next she states
two rules:

1. The student at the beginning of the line gets a candy bar.
2. If a student gets a candy bar, then the following student in line also gets a candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual in computer science. Now we can
understand the second rule as a short description of a whole sequence of statements:

If student 0 gets a candy bar, then student 1 also gets one.

If student 1 gets a candy bar, then student 2 also gets one.

If student 2 gets a candy bar, then student 3 also gets one.

:

Of course, this sequence has a more concise mathematical description: If student  gets a candy bar, then student  gets a
candy bar, for all nonnegative integers .

So suppose you are student 17. By these rules, are you entitled to a miniature candy bar? Well, student 0 gets a candy bar by
the first rule. Therefore, by the second rule, student 1 also gets one, which means student 2 gets one, which means student 3
gets one as well, and so on. By 17 applications of the professor’s second rule, you get your candy bar! Of course the rules
really guarantee a candy bar to every student, no matter how far back in line they may be.

Rule for Ordinary Induction
The reasoning that led us to conclude that every student gets a candy bar is essentially all there is to induction.

The Induction Principle.

Let  be a predicate on nonnegative integers. If

 is true, and
 IMPLIES  for all nonnegative integers, ,

then

 is true for all nonnegative integers, .

Since we’re going to consider several useful variants of induction in later sections, we’ll refer to the induction method
described above as ordinary induction when we need to distinguish it. Formulated as a proof rule as in Section 1.4.1, this
would be

Rule. Induction Rule

This Induction Rule works for the same intuitive reason that all the students get candy bars, and we hope the explanation using
candy bars makes it clear why the soundness of ordinary induction can be taken for granted. In fact, the rule is so obvious that
it’s hard to see what more basic principle could be used to justify it. What’s not so obvious is how much mileage we get by
using it.

Familiar Example
Below is the formula (5.1) for the sum of the nonnegative integers up to . The formula holds for all nonnegative integers, so
it is the kind of statement to which induction applies directly. We’ve already proved this formula using the Well Ordering
Principle (Theorem 2.2.1), but now we’ll prove it by induction, that is, using the Induction Principle.

n n +1

n

P

P (0)

P (n) P (n +1) n

P (m) m

P (0), ∀n ∈ N. P (n) IMPLIES P (n +1)

∀m ∈ N. P (m)

1 

n

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48316?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/05%3A_Induction/5.01%3A__Ordinary_Induction


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 5.1.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48316

For all ,

(5.1)

To prove the theorem by induction, define predicate  to be the equation (5.1). Now the theorem can be restated as the
claim that  is true for all . This is great, because the Induction Principle lets us reach precisely that conclusion,
provided we establish two simpler facts:

 is true.
For all .

So now our job is reduced to proving these two statements.

The first statement follows because of the convention that a sum of zero terms is equal to 0. So  is the true assertion that a
sum of zero terms is equal to 0(0+1) / 2=0.

The second statement is more complicated. But remember the basic plan from Section 1.5 for proving the validity of any
implication: assume the statement on the left and then prove the statement on the right. In this case, we assume —
namely, equation (5.1)—in order to prove , which is the equation

(5.2)

These two equations are quite similar; in fact, adding  to both sides of equation (5.1) and simplifying the right side
gives the equation (5.2):

Thus, if  is true, then so is . This argument is valid for every nonnegative integer , so this establishes the
second fact required by the induction proof. Therefore, the Induction Principle says that the predicate  is true for all
nonnegative integers, . The theorem is proved.

Template for Induction Proofs
The proof of equation (5.1) was relatively simple, but even the most complicated induction proof follows exactly the same
template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall structure of the proof, which helps your reader
follow your argument.

2. Define an appropriate predicate The predicate  is called the induction hypothesis. The eventual conclusion of the
induction argument will be that  is true for all nonnegative . A clearly stated induction hypothesis is often the most
important part of an induction proof, and its omission is the largest source of confused proofs by students. In the simplest
cases, the induction hypothesis can be lifted straight from the proposition you are trying to prove, as we did with equation
(5.1). Sometimes the induction hypothesis will involve several variables, in which case you should indicate which variable
serves as .

3. Prove that  is true. This is usually easy, as in the example above. This part of the proof is called the base case or
basis step.

4. Prove that  implies  for every nonnegative integer . This is called the inductive step. The basic plan is
always the same: assume that  is true and then use this assumption to prove that  is true. These two
statements should be fairly similar, but bridging the gap may require some ingenuity. Whatever argument you give must be
valid for every nonnegative integer , since the goal is to prove that all the following implications are true:

Theorem 5.1.1.
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5. Invoke induction. Given these facts, the induction principle allows you to conclude that  is true for all nonnegative .
This is the logical capstone to the whole argument, but it is so standard that it’s usual not to mention it explicitly

Always be sure to explicitly label the base case and the inductive step. Doing so will make your proofs clearer and will
decrease the chance that you forget a key step—like checking the base case.

Clean Writeup
The proof of Theorem 5.1.1 given above is perfectly valid; however, it contains a lot of extraneous explanation that you won’t
usually see in induction proofs. The writeup below is closer to what you might see in print and should be prepared to produce
yourself.

Revised proof of Theorem 5.1.1. We use induction. The induction hypothesis, , will be equation (5.1).

Base case:  is true, because both sides of equation (5.1) equal zero when .

Inductive step: Assume that  is true, that is equation (5.1) holds for some nonnegative integer . Then adding  to
both sides of the equation implies that

which proves .

So it follows by induction that  is true for all nonnegative .

It probably bothers you that induction led to a proof of this summation formula but did not provide an intuitive way to
understand it nor did it explain where the formula came from in the first place.  This is both a weakness and a strength. It is a
weakness when a proof does not provide insight. But it is a strength that a proof can provide a reader with a reliable guarantee
of correctness without requiring insight.

More Challenging Example
During the development of MIT’s famous Stata Center, as costs rose further and further beyond budget, some radical
fundraising ideas were proposed. One rumored plan was to install a big square courtyard divided into unit squares. The big
square would be  units on a side for some undetermined nonnegative integer , and one of the unit squares in the center
occupied by a statue of a wealthy potential donor—whom the fund raisers privately referred to as “Bill.” The  case is
shown in Figure 5.1.

Figure 5.1: A  courtyard for .

A complication was that the building’s unconventional architect, Frank Gehry, was alleged to require that only special L-
shaped tiles (shown in Figure 5.2) be used for the courtyard. For , a courtyard meeting these constraints is shown in
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Figure 5.3. But what about for larger values of ? Is there a way to tile a  courtyard with L-shaped tiles around a
statue in the center? Let’s try to prove that this is so.

Figure 5.2 The special L-shaped tile.

Figure 5.3 A tiling using L-shaped tiles for  with Bill in a center square.

For all  there exists a tiling of a  courtyard with Bill in a central square.

Proof. (doomed attempt) The proof is by induction. Let  be the proposition that there exists a tiling of a 
courtyard with Bill in the center.

Base case:  is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a  courtyard with Bill in the center for some . We must prove
that there is a way to tile a  courtyard with Bill in the center ...

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the center isn’t much help in tiling a larger courtyard
with Bill in the center. We haven’t figured out how to bridge the gap between  and .

So if we’re going to prove Theorem 5.1.2 by induction, we’re going to need some other induction hypothesis than simply the
statement about n that we’re trying to prove.

When this happens, your first fallback should be to look for a stronger induction hypothesis; that is, one which implies your
previous hypothesis. For example, we could make  the proposition that for every location of Bill in a  courtyard,
there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove something grander!” But for induction arguments,
this makes sense. In the inductive step, where you have to prove , you’re in better shape because
you can assume , which is now a more powerful statement. Let’s see how this plays out in the case of courtyard tiling.

n ×2n 2n

n = 2

Theorem 5.1.2
n ≥ 0 ×2n 2n

P (n) ×2n 2n

P (0)

×2n 2n
n ≥ 0

×2n+1 2n+1

■

P (n) P (n +1)

P (n) ×2n 2n

P (n) IMPLIES P (n +1)

P (n)

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48316?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 5.1.5 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48316

Proof (successful attempt). The proof is by induction. Let  be the proposition that for every location of Bill in a 
courtyard, there exists a tiling of the remainder.

Base case:  is true because Bill fills the whole courtyard.

Inductive step: Assume that  is true for some ; that is, for every location of Bill in a  courtyard, there
exists a tiling of the remainder. Divide the (2^{n+1} \times 2^{n+1}\) courtyard into four quadrants, each . One
quadrant contains Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of the three central squares
lying outside this quadrant as shown in Figure 5.4.

Figure 5.4 Using a stronger inductive hypothesis to prove Theorem 5.1.2.

Now we can tile each of the four quadrants by the induction assumption. Replacing the three temporary Bills with a single L-
shaped tile completes the job. This proves that  implies  for all . Thus  is true for all , and the
theorem follows as a special case where we put Bill in a central square.

This proof has two nice properties. First, not only does the argument guarantee that a tiling exists, but also it gives an
algorithm for finding such a tiling. Second, we have a stronger result: if Bill wanted a statue on the edge of the courtyard,
away from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction proof won’t go through. But keep in mind that
the stronger assertion must actually be true; otherwise, there isn’t much hope of constructing a valid proof. Sometimes finding
just the right induction hypothesis requires trial, error, and insight. For example, mathematicians spent almost twenty years
trying to prove or disprove the conjecture that every planar graph is 5-choosable.  Then, in 1994, Carsten Thomassen gave an
induction proof simple enough to explain on a napkin. The key turned out to be finding an extremely clever induction
hypothesis; with that in hand, completing the argument was easy!

Faulty Induction Proof
If we have done a good job in writing this text, right about now you should be thinking, “Hey, this induction stuff isn’t so hard
after all—just show  is true and that  implies  for any number .” And, you would be right, although
sometimes when you start doing induction proofs on your own, you can run into trouble. For example, we will now use
induction to “prove” that all horses are the same color—just when you thought it was safe to skip class and work on your robot
program instead. Sorry!

False Theorem. All horses are the same color.

Notice that no  is mentioned in this assertion, so we’re going to have to reformulate it in a way that makes an n explicit. In
particular, we’ll (falsely) prove that

False Theorem 5.1.3. In every set of  horses, all the horses are the same color.
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This is a statement about all integers  rather , so it’s natural to use a slight variation on induction: prove  in the
base case and then prove that  implies  for all  in the inductive step. This is a perfectly valid variant of
induction and is not the problem with the proof below.

Bogus proof. The proof is by induction on . The induction hypothesis, , will be

In every set of  horses, all are the same color.

(5.3)

Base case: .  is true, because in a size-1 set of horses, there’s only one horse, and this horse is definitely the same
color as itself.

Inductive step: Assume that  is true for some . That is, assume that in every set of  horses, all are the same color.
Now suppose we have a set of  horses:

We need to prove these  horses are all the same color.

By our assumption, the first n horses are the same color:

Also by our assumption, the last n horses are the same color:

So  is the same color as the remaining horses besides  —that is, . Likewise,  is the same color as the
remaining horses besides —that is, , again. Since  and  are the same color as , all  horses
must be the same color, and so  is true. Thus,  implies .

By the principle of induction,  is true for all .

We’ve proved something false! Does this mean that math broken and we should all take up poetry instead? Of course not! It
just means that this proof has a mistake.

The mistake in this argument is in the sentence that begins “So  is the same color as the remaining horses besides —
that is .” The ellipis notation (“ ”) in the expression “ ” creates the impression that there
are some remaining horses—namely  —besides  and  However, this is not true when . In that case, 

 is just  and there are no “remaining” horses for  to share a color with. And of course, in this
case  and  really don’t need to be the same color.

This mistake knocks a critical link out of our induction argument. We proved  and we correctly proved 
, etc. But we failed to prove , and so everything falls apart: we cannot conclude

that , , etc., are true. And naturally, these propositions are all false; there are sets of  horses of different colors for
all .

Students sometimes explain that the mistake in the proof is because  is false for , and the proof assumes something
false, , in order to prove . You should think about how to help such a student understand why this explanation
would get no credit on a Math for Computer Science exam.

But see Section 5.3.

Methods for finding such formulas are covered in Part III of the text.

In the special case , the whole courtyard consists of a single central square; otherwise, there are four central squares.

5-choosability is a slight generalization of 5-colorability. Although every planar graph is 4- colorable and therefore 5-
colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don’t panic. We’ll discuss graphs, planarity,
and coloring in Part II of the text.
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5.2: Strong Induction
A useful variant of induction is called strong induction. Strong induction and ordinary induction are used for exactly the same
thing: proving that a predicate is true for all nonnegative integers. Strong induction is useful when a simple proof that the
predicate holds for  does not follow just from the fact that it holds at , but from the fact that it holds for other values 

.

Rule for Strong Induction
Principle of Strong Induction.

Let  be a predicate on nonnegative integers. If

 is true, and
for all , , , ...,  together imply ,

then  is true for all .

The only change from the ordinary induction principle is that strong induction allows you make more assumptions in the
inductive step of your proof! In an ordinary induction argument, you assume that  is true and try to prove that 
is also true. In a strong induction argument, you may assume that , , ..., and  are all true when you go to prove 

. So you can assume a stronger set of hypotheses which can make your job easier.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

Stated more succintly, the rule is

Rule.

The template for strong induction proofs is identical to the template given in Section 5.1.3 for ordinary induction except for
two things:

you should state that your proof is by strong induction, and
you can assume that , , ..., and  are all true instead of only  during the inductive step.

Products of Primes
As a first example, we’ll use strong induction to re-prove Theorem 2.3.1 which we previously proved using Well Ordering.

Every integer greater than 1 is a product of primes.

Proof. We will prove the Theorem by strong induction, letting the induction hypothesis, , be

 is a product of primes.

So the Theorem will follow if we prove that  holds for all .

Base Case: (n = 2):  is true because 2 is prime, so it is a length one product of primes by convention.

Inductive step: Suppose that  and that every number from 2 to  is a product of primes. We must show that 
holds, namely, that  is also a product of primes. We argue by cases:

If  is itself prime, then it is a length one product of primes by convention, and so  holds in this case.
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Otherwise,  is not prime, which by definition means  for some integers  between 2 and . Now by
the strong induction hypothesis, we know that both  and  are products of primes. By multiplying these products, it follows
immediately that  is also a product of primes. Therefore,  holds in this case as well.

So  holds in any case, which completes the proof by strong induction that  holds for all .

Making Change
The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg (3 Strongs) and 5Sg. Although the Inductians
have some trouble making small change like 4Sg or 7Sg, it turns out that they can collect coins to make change for any
number that is at least 8 Strongs.

Strong induction makes this easy to prove for , because then , so by strong induction the
Inductians can make change for exactly  Strongs, and then they can add a 3Sg coin to get  Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg, which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any amount of at least 8Sg. The induction
hypothesis,  will be:

There is a collection of coins whose value is  Strongs.

Figure 5.5 One way to make 26 Sg using Strongian currency

We now proceed with the induction proof:

Base case:  is true because a 3Sg coin together with a 5Sg coin makes 8Sg.

Inductive step: We assume  holds for all , and prove that  holds. We argue by cases:

Case ( ): We have to make  9Sg. We can do this using three 3Sg coins.

Case ( ): We have to make  10Sg. Use two 5Sg coins.

Case ( ): Then , so by the strong induction hypothesis, the Inductians can make change for 
Sg. Now by adding a 3Sg coin, they can make change for Sg, so  holds in this case.

Since , we know that  and thus that the three cases cover every possibility. Since  is true in every
case, we can conclude by strong induction that for all , the Inductians can make change for  Strong. That is, they
can make change for any number of eight or more Strong.

The Stacking Game
Here is another exciting game that’s surely about to sweep the nation! You begin with a stack of  boxes. Then you make a
sequence of moves. In each move, you divide one stack of boxes into two nonempty stacks. The game ends when you have 
stacks, each containing a single box. You earn points for each move; in particular, if you divide one stack of height  into
two stacks with heights  and , then you score  points for that move. Your overall score is the sum of the points that you
earn for each move. What strategy should you use to maximize your total score?

n +1 n +1 = k ⋅ m k, m n

k m

k ⋅ m = n +1 P (n +1)

P (n +1) P (n) n ≥ 2

■

n +1 ≥ 11 (n +1) −3 ≥ 8

(n +1) −3 (n +1)

P (n)

n +8

P (0)

P (k) k ≤ n P (n +1)

n +1 = 1 n +1) +8 =

n +1 = 2 n +1) +8 =

n +1 ≥ 3 0 ≤ n −2 ≤ n

(n −2) +8 (n +1) +8 P (n +1)

n ≥ 0 n +1 ≥ 1 P (n +1)

n ≥ 0 n +8

■

n

n

a +b

a b ab
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Figure 5.6 An example of the stacking game with  boxes. On each line, the underlined stack is divided in the next step.

As an example, suppose that we begin with a stack of  boxes. Then the game might proceed as shown in Figure 5.6.
Can you find a better strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We’ll prove that your score is determined entirely by the number of
boxes—your strategy is irrelevant!

Every way of unstacking  blocks gives a score of  points.

There are a couple technical points to notice in the proof:

The template for a strong induction proof mirrors the one for ordinary induction.
As with ordinary induction, we have some freedom to adjust indices. In this case, we prove  in the base case and
prove that  imply  for all  in the inductive step.

Proof. The proof is by strong induction. Let  be the proposition that every way of unstacking  blocks gives a score of 
.

Base case: If , then there is only one block. No moves are possible, and so the total score for the game is 
. Therefore,  is true.

Inductive step: Now we must show that  imply  for all . So assume that  are
all true and that we have a stack of  blocks. The first move must split this stack into substacks with positive sizes  and 
where  and . Now the total score for the game is the sum of points for this first move plus points
obtained by unstacking the two resulting substacks:

This shows that  imply .

Therefore, the claim is true by strong induction.

n = 10

n = 10

Theorem 5.2.1.
n n(n −1)/2

P (1)

P (1), … , P (n) P (n +1) n ≥ 1

P (n) n

n(n −1)/2

n = 1

1(1 −1)/2 = 0 P (1)

P (1), … , P (n) P (n +1) n ≥ 1 P (1), … , P (n)

n +1 a b

a +b = n +1 0 < a, b ≤ n

 total score =

=

=

=

( score for 1 st move )

+( score for unstacking a blocks )

+( score for unstacking b blocks )

ab + +  by P (a) and P (b)
a(a −1)

2

b(b −1)

2

=
(a +b −(a +b))2

2

(a +b)((a +b) −1)

2
(n +1)n

2

P (1), … , P (n) P (n +1)

■
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5.3: Strong Induction vs. Induction vs. Well Ordering
Strong induction looks genuinely “stronger” than ordinary induction —after all, you can assume a lot more when proving the
induction step. Since ordinary induction is a special case of strong induction, you might wonder why anyone would bother
with the ordinary induction.

But strong induction really isn’t any stronger, because a simple text manipulation program can automatically reformat any
proof using strong induction into a proof using ordinary induction—just by decorating the induction hypothesis with a
universal quantifier in a standard way. Still, it’s worth distinguishing these two kinds of induction, since which you use will
signal whether the inductive step for  follows directly from the case for  or requires cases smaller than , and that is
generally good for your reader to know.

The template for the two kinds of induction rules looks nothing like the one for the Well Ordering Principle, but this chapter
included a couple of examples where induction was used to prove something already proved using well ordering. In fact, this
can always be done. As the examples may suggest, any well ordering proof can automatically be reformatted into an induction
proof. So theoretically, no one need bother with the Well Ordering Principle either.

But it’s equally easy to go the other way, and automatically reformat any strong induction proof into a Well Ordering proof.
The three proof methods—well ordering, induction, and strong induction—are simply different formats for presenting the
same mathematical reasoning!

So why three methods? Well, sometimes induction proofs are clearer because they don’t require proof by contradiction. Also,
induction proofs often provide recursive procedures that reduce large inputs to smaller ones. On the other hand, well ordering
can come out slightly shorter and sometimes seem more natural and less worrisome to beginners.

So which method should you use? There is no simple recipe. Sometimes the only way to decide is to write up a proof using
more than one method and compare how they come out. But whichever method you choose, be sure to state the method up
front to help a reader follow your proof.

n+1 n n
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5.4: State Machines
State machines are a simple, abstract model of step-by-step processes. Since computer programs can be understood as defining
step-by-step computational processes, it’s not surprising that state machines come up regularly in computer science. They also
come up in many other settings such as designing digital circuits and modeling probabilistic processes. This section introduces
Floyd’s Invariant Principle which is a version of induction tailored specifically for proving properties of state machines.

One of the most important uses of induction in computer science involves proving one or more desirable properties continues
to hold at every step in a process. A property that is preserved through a series of operations or steps is known as a preserved
invariant . Examples of desirable invariants include properties such as a variable never exceeding a certain value, the altitude
of a plane never dropping below 1,000 feet without the wingflaps being deployed, and the temperature of a nuclear reactor
never exceeding the threshold for a meltdown.

States and Transitions
Formally, a state machine is nothing more than a binary relation on a set, except that the elements of the set are called “states,”
the relation is called the transition relation, and an arrow in the graph of the transition relation is called a transition. A
transition from state  to state  will be written . The transition relation is also called the state graph of the machine. A
state machine also comes equipped with a designated start state.

A simple example is a bounded counter, which counts from 0 to 99 and overflows at 100. This state machine is pictured in
Figure 5.7, with states pictured as circles, transitions by arrows, and with start state 0 indicated by the double circle. To be
precise, what the picture tells us is that this bounded counter machine has

Figure 5.7 State transitions for the 99-bounded counter.

This machine isn’t much use once it overflows, since it has no way to get out of its overflow state.

State machines for digital circuits and string pattern matching algorithms, for instance, usually have only a finite number of
states. Machines that model continuing computations typically have an infinite number of states. For example, instead of the
99-bounded counter, we could easily define an “unbounded” counter that just keeps counting up without overflowing. The
unbounded counter has an infinite state set, the nonnegative integers, which makes its state diagram harder to draw.

State machines are often defined with labels on states and/or transitions to indicate such things as input or output values, costs,
capacities, or probabilities. Our state machines don’t include any such labels because they aren’t needed for our purposes. We
do name states, as in Figure 5.7, so we can talk about them, but the names aren’t part of the state machine.

Invariant for a Diagonally-Moving Robot
Suppose we have a robot that starts at the origin and moves on an infinite 2- dimensional integer grid. The state of the robot at
any time can be specified by the integer coordinates  of the robot’s current position. So the start state is (0, 0). At each
step, the robot may move to a diagonally adjacent grid point, as illustrated in Figure 5.8.

q r q⟶ r

 states ::

 start state :

 transitions ::

= {0, 1, … , 99,  overflow },

= 0,

= {n⟶ n +1 ∣ 0 ≤ n < 99}

∪ {99⟶  overflow, overflow ⟶  overflow }

x, y
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Figure 5.8 The Diagonally Moving Robot.

To be precise, the robot’s transitions are:

For example, after the first step, the robot could be in states (1, 1), (1, -1), (-1, 1), (-1, -1). After two steps, there are 9 possible
states for the robot, including (0, 0). The question is, can the robot ever reach position (1, 0)?

If you play around with the robot a bit, you’ll probably notice that the robot can only reach positions  for which  is
even, which of course means that it can’t reach (1, 0). This follows because the evenness of the sum of the coordinates is
preserved by transitions.

This once, let’s go through this preserved-property argument, carefully highlighting where induction comes in. Specifically,
define the even-sum property of states to be:

Figure 5.9 Can the Robot get to (1, 0)?

Lemma 5.4.1. For any transition, , of the diagonally-moving robot, if Even-sum( ), then Even-sum( ).

This lemma follows immediately from the definition of the robot’s transitions: . After a transition,
the sum of coordinates changes by , that is, by 0, 2, or -2. Of course, adding 0, 2 or -2 to an even number gives an
even number. So by a trivial induction on the number of transitions, we can prove:

The sum of the coordinates of any state reachable by the diagonallymoving robot is even.

Proof. The proof is induction on the number of transitions the robot has made. The induction hypothesis is

{(m, n)⟶ (m ±1, n ±1) ∣ m, n ∈ Z}

m, n m +n

 Even-sum ((m, n)) ::= [m +n is even ].

q⟶ r q r

(m, n)⟶ (m ±1, n ±1)

(±1) +(±1)

Theorem 5.4.2.
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Base case:  is true since the only state reachable in 0 transitions is the start state (0, 0), and 0 + 0 is even.

Inductive step: Assume that  is true, and let  be any state reachable in  transitions. We need to prove that Even-
sum( ) holds.

Since  is reachable in  transitions, there must be a state, , reachable in  transitions such that . Since  is
assumed to be true, Even-sum( ) holds, and so by Lemma 5.4.1, Even-sum( ) also holds. This proves that 

 as required, completing the proof of the inductive step.

We conclude by induction that for all , if  is reachable in  transitions, then Even-sum( ). This implies that every
reachable state has the Even-sum property. 

Corollary 5.4.3. The robot can never reach position (1, 0).

Proof. By Theorem 5.4.2, we know the robot can only reach positions with coordinates that sum to an even number, and thus it
cannot reach position (1, 0). 

The Invariant Principle
Using the Even-sum invariant to understand the diagonally-moving robot is a simple example of a basic proof method called
The Invariant Principle. The Principle summarizes how induction on the number of steps to reach a state applies to invariants.

A state machine execution describes a possible sequence of steps a machine might take.

An execution of the state machine is a (possibly infinite) sequence of states with the property that it begins with the start
state, and

it begins with the start state, and
if  and  are consecutive states in the sequence, then .

A state is called reachable if it appears in some execution.

A preserved invariant of a state machine is a predicate, , on states, such that whenever  is true of a state, , and 
 for some state, , then  holds.

The Invariant Principle

If a preserved invariant of a state machine is true for the start state, then it is true for all reachable states.

The Invariant Principle is nothing more than the Induction Principle reformulated in a convenient form for state machines.
Showing that a predicate is true in the start state is the base case of the induction, and showing that a predicate is a preserved
invariant corresponds to the inductive step.

Robert W. Floyd

P (n) ::=  if q is a state reachable in n transitions, then Even-sum (q)

P (0)

P (n) r n +1

r

r n +1 q n q⟶ r P (n)

q r

P (n) IMPLIES P (n +1)

n ≥ 0 q n q

■

■

Definition 5.4.4.

q r q⟶ r

Definition 5.4.5.
P P (q) q

q⟶ r r P (r)

5
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The Invariant Principle was formulated by Robert W. Floyd at Carnegie Tech in 1967. (Carnegie Tech was renamed Carnegie-
Mellon University the following year.) Floyd was already famous for work on the formal grammars that transformed the field
of programming language parsing; that was how he got to be a professor even though he never got a Ph.D. (He had been
admitted to a PhD program as a teenage prodigy, but flunked out and never went back.)

In that same year, Albert R. Meyer was appointed Assistant Professor in the Carnegie Tech Computer Science Department,
where he first met Floyd. Floyd and Meyer were the only theoreticians in the department, and they were both delighted to talk
about their shared interests. After just a few conversations, Floyd’s new junior colleague decided that Floyd was the smartest
person he had ever met.

Naturally, one of the first things Floyd wanted to tell Meyer about was his new, as yet unpublished, Invariant Principle. Floyd
explained the result to Meyer, and Meyer wondered (privately) how someone as brilliant as Floyd could be excited by such a
trivial observation. Floyd had to show Meyer a bunch of examples before Meyer understood Floyd’s excitement —not at the
truth of the utterly obvious Invariant Principle, but rather at the insight that such a simple method could be so widely and
easily applied in verifying programs.

Floyd left for Stanford the following year. He won the Turing award—the “Nobel prize” of computer science—in the late
1970’s, in recognition of his work on grammars and on the foundations of program verification. He remained at Stanford from
1968 until his death in September, 2001. You can learn more about Floyd’s life and work by reading the eulogy at

http://oldwww.acm.org/pubs/membernet...ries/floyd.pdf

written by his closest colleague, Don Knuth.

The Die Hard Example
The movie Die Hard 3: With a Vengeance includes an amusing example of a state machine. The lead characters played by
Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the diabolical Simon Gruber:

Simon: On the fountain, there should be 2 jugs, do you see them? A 5- gallon and a 3-gallon. Fill one of the jugs with exactly
4 gallons of water and place it on the scale and the timer will stop. You must be precise; one ounce more or less will result in
detonation. If you’re still alive in 5 minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top, right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly 3 gallons in the 5-gallon jug, right?

Samuel: Right, then what?
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Bruce: All right. We take the 3-gallon jug and fill it a third of the way...

Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh - -. Every cop within 50 miles is running his a - - off and I’m out here playing kids games in the park.

Samuel: Hey, you want to focus on the problem at hand?

Fortunately, they find a solution in the nick of time. You can work out how.

The Die Hard 3 State Machine

The jug-filling scenario can be modeled with a state machine that keeps track of the amount, , of water in the big jug, and the
amount, , in the little jug. With the 3 and 5 gallon water jugs, the states formally will be pairs, , of real numbers such that 

. (We can prove that the reachable values of  and  will be nonnegative integers, but we won’t assume
this.) The start state is (0, 0), since both jugs start empty.

Since the amount of water in the jug must be known exactly, we will only consider moves in which a jug gets completely filled
or completely emptied. There are several kinds of transitions:

1. Fill the little jug:  for .
2. Fill the big jug:  for .
3. Empty the little jug:  for .
4. Empty the big jug:  for .
5. Pour from the little jug into the big jug: for ,

6. Pour form big jug into little jug: for ,

Note that in contrast to the 99-counter state machine, there is more than one possible transition out of states in the Die Hard
machine. Machines like the 99-counter with at most one transition out of each state are called deterministic. The Die Hard
machine is nondeterministic because some states have transitions to several different states.

The Die Hard 3 bomb gets disarmed successfully because the state (4,3) is reachable.

Die Hard Once and For All

The Die Hard series is getting tired, so we propose a final Die Hard Once and For All. Here, Simon’s brother returns to
avenge him, posing the same challenge, but with the 5 gallon jug replaced by a 9 gallon one. The state machine has the same
specification as the Die Hard 3 version, except all occurrences of “5” are replaced by “9.”

Now, reaching any state of the form  is impossible. We prove this using the Invariant Principle. Specifically, we define
the preserved invariant predicate, , to be that  and  are nonnegative integer multiples of 3.

To prove that  is a preserved invariant of Die-Hard-Once-and-For-All machine, we assume  holds for some state 
 and that . We have to show that  holds. The proof divides into cases, according to which transition rule

is used.

One case is a “fill the little jug” transition. This means . But  implies that b is an integer multiple of 3, and of
course 3 is an integer multiple of 3, so  still holds.

Another case is a “pour from big jug into little jug” transition. For the subcase when there isn’t enough room in the little jug to
hold all the water, that is, when , we have . But  implies that  and  are integer multiples
of 3, which means  is too, so in this case too,  holds.

We won’t bother to crank out the remaining cases, which can all be checked just as easily. Now by the Invariant Principle, we
conclude that every reachable state satisifies . But since no state of the form  satisifies , we have proved rigorously
that Bruce dies once and for all!

b

l b, l

0 ≤ b ≤ 5, 0 ≤ l ≤ 3 b l

(b, l)⟶ (b, 3) l < 3

(b, l)⟶ (5, l) b < 5

(b, l)⟶ (b, 0) l > 0

(b, l)⟶ (0, l) b > 0

l > 0

(b, l)⟶ {
(b + l, 0)

(5, l −(5 −b))

 if b + l ≤ 5

 otherwise 

b > 0

(b, l)⟶ {
(0, b + l)

(b −(3 − l), 3)

 if b + l ≤ 3

 otherwise 

(4, l)

P ((b, l)) b l

P P (q)

q ::= (b, l q⟶ r P (r)

r = (b, 3) P (q)

P (r)

b + l > 3 r = (b −(3 − l)), 3) P (q) b l

b −(3 − l) P (r)

P (4, l) P
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By the way, notice that the state (1,0), which satisfies , has a transition to (0,0), which satisfies . So the negation of
a preserved invariant may not be a preserved invariant.

Fast Exponentiation
Partial Correctness & Termination

Floyd distinguished two required properties to verify a program. The first property is called partial correctness; this is the
property that the final results, if any, of the process must satisfy system requirements.

You might suppose that if a result was only partially correct, then it might also be partially incorrect, but that’s not what Floyd
meant. The word “partial” comes from viewing a process that might not terminate as computing a partial relation. Partial
correctness means that when there is a result, it is correct, but the process might not always produce a result, perhaps because
it gets stuck in a loop.

The second correctness property, called termination, is that the process does always produce some final value.

Partial correctness can commonly be proved using the Invariant Principle. Termination can commonly be proved using the
Well Ordering Principle. We’ll illustrate this by verifying a Fast Exponentiation procedure.

Exponentiating

The most straightforward way to compute the th power of a number, , is to multiply  by itself  times. But the solution
can be found in considerably fewer multiplications by using a technique called Fast Exponentiation. The register machine
program below defines the fast exponentiation algorithm. The letters  denote registers that hold numbers. An
assignment statement has the form “ ” and has the effect of setting the number in register  to be the number .

A Fast Exponentiation Program

Given inputs , initialize registers  to  respectively, and repeat the following sequence of steps until
termination:

if  return  and terminate
 remainder 
 quotient 

if , then 

We claim this program always terminates and leaves .

To begin, we’ll model the behavior of the program with a state machine:

1. states ::= ,
2. start state ::= ,
3. transitions are defined by the rule

The preserved invariant, , will be

To prove that  is preserved, assume  holds and that . We must prove that 
holds, that is,

Since there is a transition from , we have , and since  by (5.4), we can consider just two cases:

If  is even, then we have that , , . Therefore,  and

NOT(P ) P

b a a b −1

x, y, z, r

z ::= a z a

a ∈ R, b ∈ N x, y, z a, 1, b

z = 0 y

r := (z, 2)

z := (z, 2)

r = 1 y := xy

x := x2

y = ab

R ×R ×N

(a, 1, b)

(x, y, z)⟶{
( , y,  quotient (z, 2))x2

( , xy,  quotient (z, 2))x2

 if z is nonzero and even, 

 if z is nonzero and odd. 

P ((x, y, z))

z ∈ N AND y = . (5.4)xz ab

P P ((x, y, z)) (x, y, z)⟶ ( , , )xt yt zt P (( , , ))xt yt zt

∈ N AND  = . (5.5)zt ytx
zt

t ab

(x, y, z) z ≠ 0 z ∈ N

z =xt x2 = yyt = z/2zt ∈ Nzt
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If  is odd, then we have that , , . Therefore,  and

So in both cases, (5.5) holds, proving that  is a preserved invariant.

Now it’s easy to prove partial correctness: if the Fast Exponentiation program terminates, it does so with  in register . This
works because , which means that the start state, , satisifies . By the Invariant Principle,  holds for all
reachable states. But the program only stops when . If a terminated state  is reachable, then  as
required.

Ok, it's partially correct, but what's fast about it? The answer is that the number of multiplications it performs to compute  is
roughly the length of the binary representation of . That is, the Fast Exponentiation program uses roughly 
multiplications, compared to the naive approach of multiplying by  a total of  times.

More precisely, it requires at most  multiplications for the Fast Exponentiation algorithm to compute  for 
. The reason is that the number in register  is initially , and gets at least halved with each transition. So it can't be

halved more than  times before hitting zero and causing the program to terminate. Since each of the transitions
involves at most two multiplications, the total number of multiplications until  is at most  for  (see
Problem 5.36).

Derived Variables
The preceding termination proof involved finding a nonnegative integer-valued measure to assign to states. We might call this
measure the “size” of the state. We then showed that the size of a state decreased with every state transition. By the Well
Ordering Principle, the size can’t decrease indefinitely, so when a minimum size state is reached, there can’t be any transitions
possible: the process has terminated.

More generally, the technique of assigning values to states—not necessarily nonnegative integers and not necessarily
decreasing under transitions—is often useful in the analysis of algorithms. Potential functions play a similar role in physics. In
the context of computational processes, such value assignments for states are called derived variables.

For example, for the Die Hard machines we could have introduced a derived variable, , for the amount of
water in both buckets, by setting . Similarly, in the robot problem, the position of the robot along the -axis
would be given by the derived variable -coord, where -coord .

There are a few standard properties of derived variables that are handy in analyzing state machines.

A derived variable  is strictly decreasing iff

It is weakly decreasing iff

Strictly increasing and weakly increasing derived variables are defined similarly. 

ytx
zt

t = y( )x2 z/2

= yx2⋅z/2

= yxz

= (by (5.4))ab

z =xt x2 = xyyt = (z −1)/2zt ∈ Nzt

ytx
zt

t = xy( )x2 (z−1)/2

= yx1+2⋅(z−1)/2

= yx1+(z−1)

= yxz

= (by (5.4))ab

P

ab y

1 − =ab ab (a, 1, b) P P

z = 0 (x, y, 0) y = y =x0 ab

ab

b log b6

a b −1

2(⌈log b⌉ +1) ab

b > 1 z b

⌈log b⌉ +1

z = 0 2(⌈log b⌉ +1) b > 0

f :  states  → R

f((a, b)) ::= a +b x

x x ((i, j)) ::= i

Definition 5.4.6.
f :  states  → R

q⟶  IMPLIES f ( ) < f(q)q ′ q ′

q⟶  IMPLIES f ( ) ≤ f(q)q ′ q ′

7
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We confirmed termination of the Fast Exponentiation procedure by noticing that the derived variable  was nonnegative-
integer-valued and strictly decreasing. We can summarize this approach to proving termination as follows:

If  is a strictly decreasing -valued derived variable of a state machine, then the length of any execution starting at state
 is at most .

Of course, we could prove Theorem 5.4.7 by induction on the value of , but think about what it says: “If you start
counting down at some nonnegative integer , then you can’t count down more than  times.” Put this way, it’s obvious.

Theorem 5.4.7 generalizes straightforwardly to derived variables taking values in a well ordered set (Section 2.4.

If there exists a strictly decreasing derived variable whose range is a well ordered set, then every execution terminates.

Theorem 5.4.8 follows immediately from the observation that a set of numbers is well ordered iff it has no infinite decreasing
sequences (Problem 2.17).

Note that the existence of a weakly decreasing derived variable does not guarantee that every execution terminates. An infinite
execution could proceed through states in which a weakly decreasing variable remained constant.

A Southeast Jumping Robot (Optional)

Here’s a contrived, simple example of proving termination based on a variable that is strictly decreasing over a well ordered
set. Let’s think about a robot positioned at an integer lattice-point in the Northeast quadrant of the plane, that is, at 

.

At every second when it is away from the origin, (0, 0), the robot must make a move, which may be

a unit distance West when it is not at the boundary of the Northeast quadrant (that is,  for ), or
a unit distance South combined with an arbitrary jump East (that is,  for ).

Claim 5.4.9. The robot will always get stuck at the origin.

If we think of the robot as a nondeterministic state machine, then Claim 5.4.9 is a termination assertion. The Claim may seem
obvious, but it really has a different character than termination based on nonnegative integer-valued variables. That’s because,
even knowing that the robot is at position (0, 1), for example, there is no way to bound the time it takes for the robot to get
stuck. It can delay getting stuck for as many seconds as it wants by making its next move to a distant point in the Far East.
This rules out proving termination using Theorem 5.4.7.

So does Claim 5.4.9 still seem obvious?

Well it is if you see the trick. Define a derived variable, , mapping robot states to the numbers in the well ordered set 
of Lemma 2.4.5. In particular, define  as follows

.

Now it's easy to check that if  is a legitimate robot move, then . In particular,  is a
strictly decreasing derived variable, so Theorem 5.4.8. implies that the robot always get stuck- even though we can't say how
many moves it will take until it does.

z

Theorem 5.4.7
f N

q f(q)

f(q)

f(q) f(q)

Theorem 5.4.8.

(x, y) ∈ N
2

(x, y)⟶ (x −1, y) x > 0

(x, y)⟶ (z, y −1) z ≥ x

v N +F

v : → N +FN
2

v(x, y) ::= y +
x

x +1

(x, y)⟶ ( , )x′ y′ v(( , )) < v((x, y))x′ y′ v
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Figure 5.10 Gehry’s new tile.

Preserved invariants are commonly just called “invariants” in the literature on program correctness, but we decided to throw
in the extra adjective to avoid confusion with other definitions. For example, other texts (as well as another subject at MIT)
use “invariant” to mean “predicate true of all reachable states.” Let’s call this definition “invariant-2.” Now invariant-2 seems
like a reasonable definition, since unreachable states by definition don’t matter, and all we want to show is that a desired
property is invariant-2. But this confuses the objective of demonstrating that a property is invariant-2 with the method of
finding a preserved invariant to show that it is invariant-2.

As usual in computer science,  means the base two logarithm, . We use,  for the natural logarithm , and
otherwise write the logarithm base explicitly, as in .

Weakly increasing variables are often also called nondecreasing. We will avoid this terminology to prevent confusion
between nondecreasing variables and variables with the much weaker property of not being a decreasing variable.

5

6 log b blog2 lnb bloge

blog10

7
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CHAPTER OVERVIEW
6: RECURSIVE DATA TYPES

Recursive data types play a central role in programming, and induction is really all about them.

Recursive data types are specified by recursive definitions, which say how to construct new data
elements from previous ones. Along with each recursive data type there are recursive definitions of
properties or functions on the data type. Most importantly, based on a recursive definition, there is a
structural induction method for proving that all data of the given type have some property.

This chapter examines a few examples of recursive data types and recursively defined functions on
them:

strings of characters,
“balanced” strings of brackets,
the nonnegative integers, and
arithmetic expressions

6.1: RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION
6.2: STRINGS OF MATCHED BRACKETS
6.3: RECURSIVE FUNCTIONS ON NONNEGATIVE INTEGERS
6.4: ARITHMETIC EXPRESSIONS
Expression evaluation is a key feature of programming languages, and recognition of expressions as a recursive data type is a key to
understanding how they can be processed.

6.5: INDUCTION IN COMPUTER SCIENCE
6.6: PROBLEMS FOR CHAPTER 6
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6.1: Recursive Definitions and Structural Induction
We’ll start off illustrating recursive definitions and proofs using the example of character strings. Normally we’d take strings
of characters for granted, but it’s informative to treat them as a recursive data type. In particular, strings are a nice first
example because you will see recursive definitions of things that are easy to understand or that you already know, so you can
focus on how the definitions work without having to figure out what they are for.

Definitions of recursive data types have two parts:

Base case(s) specifying that some known mathematical elements are in the data type, and
Constructor case(s) that specify how to construct new data elements from previously constructed elements or from base
elements.

The definition of strings over a given character set, , follows this pattern:

Let  be a nonempty set called an alphabet, whose elements are referred to as characters, letters, or symbols. The
recursive data type, , of strings over alphabet, , are defined as follows:

Base case: the empty string, , is in .
Constructor case: If  and , then the pair .

So  are the binary strings.

The usual way to treat binary strings is as sequences of 0’s and 1’s. For example, we have identified the length-4 binary string
1011 as a sequence of bits, the 4-tuple (1, 0, 1, 1). But according to the recursive Definition 6.1.1, this string would be
represented by nested pairs, namely

.

These nested pairs are definitely cumbersome and may also seem bizarre, but they actually reflect the way that such lists of
characters would be represented in programming languages like Scheme or Python, where  would correspond to cons (a,
s).

Notice that we haven’t said exactly how the empty string is represented. It really doesn’t matter, as long as we can recognize
the empty string and not confuse it with any nonempty string.

Continuing the recursive approach, let’s define the length of a string.

The length, , of a string, , is defined recursively based on the definition of :

Base case: 

Constructor case: 

This definition of length follows a standard pattern: functions on recursive data types can be defined recursively using the
same cases as the data type definition. Specifically, to define a function, , on a recursive data type, define the value of  for
the base cases of the data type definition, then define the value of  in each constructor case in terms of the values of  on the
component data items.

Let’s do another example: the concatenation  of the strings  and  is the string consisting of the letters of  followed by
the letters of . This is a perfectly clear mathematical definition of concatenation (except maybe for what to do with the empty
string), and in terms of Scheme/Python lists,  would be the list append (s, t). Here’s a recursive definition of concatenation.

The concatenation  of the strings  is defined recursively based on the definition of .

A

Definition 6.1.1.
A

A∗ A

λ A∗

a ∈ A s ∈ A∗ ⟨a, s⟩ ∈ A∗

{0, 1}∗

⟨1, ⟨0, ⟨1, ⟨1, λ⟩⟩⟩⟩

⟨a, s⟩

Definition 6.1.2.
|s| s s ∈ A∗

|λ| ::= 0.

|⟨a, s⟩| ::= 1 +|s|.

f f

f f

s ⋅ t s t s

t

s ⋅ t

Definition 6.1.3.
s ⋅ t s, t ∈ A∗ s ∈ A∗
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Base case:

Constructor case:

.

Structural Induction
Structural induction is a method for proving that all the elements of a recursively defined data type have some property. A
structural induction proof has two parts corresponding to the recursive definition:

Prove that each base case element has the property.
Prove that each constructor case element has the property, when the constructor is applied to elements that have the
property.

For example, we can verify the familiar fact that the length of the concatenation of two strings is the sum of their lengths using
structural induction:

For all ,

Proof. By structural induction on the definition of . The induction hypothesis is

Base case ( ):

Constructor case: Suppose  and assume the induction hypothesis, . We must show that  holds:

This proves that  holds as required, completing the constructor case. By structural induction we conclude that  holds
for all strings .

This proof illustrates the general principle:

The Principle of Structural Induction.

Let  be a predicate on a recursively defined data type . If

 is true for each base case element, , and
for all two-argument constructors, ,

λ ⋅ t ::= t.

⟨a, s⟩ ⋅ t ::= ⟨a, s ⋅ t⟩

Theorem 6.1.4.
s, t ∈ A∗

|s ⋅ t| = |s| + |t|.

s ∈ A∗

P (s) ::= ∀t ∈ . |s ⋅ t| = |s| + |t|.A∗

s = λ

|s ⋅ t| = |λ ⋅ t|

= |t|

= 0 +|t|

= |s| + |t|

( def ⋅,  base case)

 (def length, base case) 

s ::= ⟨a, r⟩ P (r) P (s)

|s ⋅ t| = |⟨a, r⟩ ⋅ t|

= |⟨a, r ⋅ t⟩|

= 1 +|r ⋅ t|

= |1 +(|r| + |t|)

= (1 +|r|) +|t|

= |⟨a, r⟩| + |t|

= |s| + |t|.

(concat def, constructor case)

(length def, constructor case)

(since P (r) holds)

(length def, constructor case)

P (s) P (s)

s ∈ A∗

■

P R

P (b) b ∈ R

c

|P (r) AND P (s)| IMPLIES P (c(r, s))
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for all ,

and likewise for all constructors taking other numbers of arguments, then

 is true for all .

One More Thing
The number, , of occurrences of the character  in the string  has a simple recursive definition based on the
definition of \(s \in A

Base case: .

Constructor case:

We'll need the following lemma in the next section:

The easy proof by structural induction is an exercise (Problem 6.7).

r, s ∈ R

P (r) r ∈ R

(s)#c c ∈ A s

Definition 6.1.5.
(λ) ::= 0#c

(⟨a, s⟩) ::= {#c

(s)#c

1 + (s)#c

 if a ≠ c

 if a = c

(s ⋅ t) = (s) + (t)#c #c #c
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6.2: Strings of Matched Brackets
Let  be the set of all strings of square brackets. For example, the following two strings are in :

 and 

(6.1)

A string, , is called a matched string if its brackets “match up” in the usual way. For example, the left hand string
above is not matched because its second right bracket does not have a matching left bracket. The string on the right is matched.

We’re going to examine several different ways to define and prove properties of matched strings using recursively defined sets
and functions. These properties are pretty straightforward, and you might wonder whether they have any particular relevance
in computer science. The honest answer is “not much relevance any more.” The reason for this is one of the great successes of
computer science, as explained in the text box below.

Expression Parsing
During the early development of computer science in the 1950’s and 60’s, creation of effective programming language
compilers was a central concern. A key aspect in processing a program for compilation was expression parsing. One
significant problem was to take an expression like

and put in the brackets that determined how it should be evaluated—should it bes

The Turing award (the “Nobel Prize” of computer science) was ultimately bestowed on Robert W. Floyd, for, among other
things, discovering simple procedures that would insert the brackets properly.

In the 70’s and 80’s, this parsing technology was packaged into high-level compiler-compilers that automatically generated
parsers from expression grammars. This automation of parsing was so effective that the subject no longer demanded attention.
It had largely disappeared from the computer science curriculum by the 1990’s.

The matched strings can be nicely characterized as a recursive data type:

Recursively define the set, RecMatch, of strings as follows:

Base case: .

Constructor case: If , then

.

Here  refers to the concatenation of strings which would be written in full as

From now on, we’ll usually omit the “ ”

Using this definition,  by the base case, so letting  in the constructor case implies

Now,

{], [}∗ {], [}∗

[]][[[ [[]][]

s ∈ {], [}∗

x +y ∗ ÷y +7z2

[[x +y] ∗ ÷y] +7,  or z2

x +[y ∗ ÷[y +7]]  , or, z2

[x +[y ∗ ]] ÷[y +7],  or  …?z2

Definition 6.2.1.

λ ∈ RecMatch

s, t ∈ RecMatch

[s]t ∈ RecMatch

[s]t

[⋅(s ⋅ (]⋅t)).

s.⋅′

λ ∈ RecMatch s = t = λ

[λ]λ = []∈ RecMatch.

[λ][]= [][]∈ RecMatch (letting s = λ, t = [])

[[]]λ = [[]] ∈ RecMatch (letting s = [], t = λ)
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are also strings in RecMatch by repeated applications of the constructor case; and so on.

It’s pretty obvious that in order for brackets to match, there had better be an equal number of left and right ones. For further
practice, let’s carefully prove this from the recursive definitions.

Lemma. Every string in RecMatch has an equal number of left and right brackets.

Proof. The proof is by structural induction with induction hypothesis

.

Base case:  holds because

by the base case of Definition 6.1.5 of .

Constructor case: By structural induction hypothesis, we assume  and  and must show 

This completes the proof of the constructor case. We conclude by structural induction that  holds for all .

Warning: When a recursive definition of a data type allows the same element to be constructed in more than one way, the
definition is said to be ambiguous. We were careful to choose an unambiguous definition of RecMatch to ensure that functions
defined recursively on its definition would always be well-defined. Recursively defining a function on an ambiguous data type
definition usually will not work. To illustrate the problem, here’s another definition of the matched strings.

Define the set,  recursively as follows:

Base case: ,

Constructor cases: if , then the strings  and  are also in AmbRecMatch.

It’s pretty easy to see that the definition of AmbRecMatch is just another way to define RecMatch, that is AmbRecMatch D
RecMatch (see Problem 6.15). The definition of AmbRecMatch is arguably easier to understand, but we didn’t use it because
it’s ambiguous, while the trickier definition of RecMatch is unambiguous. Here’s why this matters. Let’s define the number of
operations, , to construct a matched string  recursively on the definition of 

This definition may seem ok, but it isn’t:  winds up with two values, and consequently:

This is definitely not a situation we want to be in!

[[]][]∈ RecMatch (letting s = [], t = [])

P (s) ::= (s) = (s)#[ #]

P (λ)

(λ) = 0 = (λ)#[ #]

()#c

P (s) P (t) P ([s]t) :

([s]t)#[ = ([)+ (s) + (])+ (t)#[ #[ #[ #[

= 1 + (s) +0 + (t)#[ #[

= 1 + (s) +0 + (t)#] #]

= 0 + (s) +0 + (t)#] #]

= ([)+ (s) + (])+ (t)#] #] #] #]

= ([s]t)#]

(Lemma 6.1.6)

(def  ())#[

(by P (s) and P (t))

(def  ())#]

(Lemma 6.1.6)

P (s) s ∈ RecMatch

Definition 6.2.2
AmbRecMatch ⊆ {], [}∗

λ ∈ AmbRecMatch

s, t ∈ AmbRecMatch [s] st

f(s) s s ∈ AmbRecMatch :

f(λ)

f([s])

f(st)

::= 0,

::= 1 +f(s),

:= 1 +f(s) +f(t).

(f  base case )

(f  concat case )

f(λ)

0 = f(λ)

= f(λ ⋅ λ)

= 1 +f(λ) +f(λ)

= 1 +0 +0 = 1

(f  base case ))

(concat def, base case) 

(f  concat case),

(f  base case).
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6.3: Recursive Functions on Nonnegative Integers
The nonnegative integers can be understood as a recursive data type.

The set, \mathbb{N}, is a data type defined recursively as:

.
If , then the successor, , of  is in .

The point here is to make it clear that ordinary induction is simply the special case of structural induction on the recursive
Definition 6.3.1. This also justifies the familiar recursive definitions of functions on the nonnegative integers.

Some Standard Recursive Functions on 
Example 6.3.2. The factorial function. This function is often written “nä.” You will see a lot of it in later chapters. Here, we’ll
use the notation fac.n/:

This function is often written “ .” You will see a lot of it in later chapters. Here, we’ll use the notation fac( ):

.

Fibonacci numbers arose out of an effort 800 years ago to model population growth. They have a continuing fan club of
people captivated by their extraordinary properties (see Problems 5.8, 5.21, 5.26). The th Fibonacci number, fib, can be
defined recursively by:

Here the recursive step starts at  with base cases for 0 and 1. This is needed since the recursion relies on two previous
values.

What is  Well, , so . The sequence starts out 

Let " " abbreviate the expression " " We can recursively define  with the rules

 for .

Ill-formed Function Definitions
There are some other blunders to watch out for when defining functions recursively. The main problems come when recursive
definitions don’t follow the recursive definition of the underlying data type. Below are some function specifications that
resemble good definitions of functions on the nonnegative integers, but really aren’t.

(6.2)

Definition 6.3.1.

0 ∈ N

n ∈ N n +1 n N

N

Example 6.3.2. The factorial function
n! n

fac(0) ::= 1

fac(n +1) ::= (n +1) ⋅ fac(n) for n ≥ 0.

Example 6.3.3. The Fibonacci numbers

n

F (0) ::= 0,

F (1) ::= 1,

F (n) ::= F (n −1) +F (n −2)  for n ≥ 2.

n = 2

F (4)? F (2) = F (1) +F (0) = 1, F (3) = F (2) +F (1) = 2 F (4) = 3

0, 1, 1, 2, 3, 5, 8, 13, 21, …

Example 6.3.4. Summation notation
S(n) f(i).∑

n
i=1 S(n)

S(0) ::= 0

S(n +1) ::= f(n +1) +S(n) n ≥ 0

(n) ::= 2 + (n −1).f1 f1
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This “definition” has no base case. If some function, , satisfied (6.2), so would a function obtained by adding a constant to
the value of . So equation (6.2) does not uniquely define an .

(6.3)

This "definition" has a base case, but still doesn't uniquely determine . Any function that is 0 at 0 and constant everywhere
else would satisfy the specification, so (6.3) also does not uniquely define anything.

In a typical programming language, evaluation of  would begin with a recursive call of , which would lead to a
recursive call of  with recursive calls continuing without end. This "operational" approach interprets (6.3) as defining

a partial function, , that is undefined everywhere but 0 . 

(6.4)

This "definition" is inconsistent: it requires  and , so (6.4) doesn't define anything.

Mathematicians have been wondering about this function specification, known as the Collatz conjecture for a while: 

(6.5)

For example,  because

The constant function equal to 1 will satisfy (6.5), but it's not known if another function does as well. The problem is that the
third case specifies  in terms of  at arguments larger than , and so cannot be justified by induction on . It's known
that any  satisfying (6.5) equals 1 for all  up to over .

A final example is the Ackermann function, which is an extremely fast-growing function of two nonnegative arguments. Its
inverse is correspondingly slow-growingit grows slower than , but it does grow unboundly.
This inverse actually comes up analyzing a useful, highly efficient procedure known as the Union-Find algorithm. This
algorithm was conjectured to run in a number of steps that grew linearly in the size of its input, but turned out to be "linear"
but with a slow growing coefficient nearly equal to the inverse Ackermann function. This means that pragmatically, Union-
Find is linear, since the theoretically growing coefficient is less than 5 for any input that could conceivably come up.

The Ackermann function can be defined recursively as the function, , given by the following rules:

 if  or 

(6.6)

 otherwise.

(6.7)

Now these rules are unusual because the definition of  involves an evaluation of  at arguments that may be a lot
bigger than  and . The definitions of  above showed how definitions of function values at small argument values in terms
of larger one can easily lead to nonterminating evaluations. The definition of the Ackermann function is actually ok, but
proving this takes some ingenuity (see Problem 6.17).

f1

f1 f1

(n) ::= {f2
0,

(n +1)f2

 if n = 0

 otherwise 

f2

(1)f2 (2)f2

(3), …f2

f2

(n) ::=f3

⎧

⎩
⎨
⎪

⎪

0,

1,

2,

 if n is divisible by 2

 if n is divisible by 3

 otherwise 

(6) = 0f3 (6) = 1f3

(n) ::=f4

⎧

⎩
⎨
⎪

⎪

1,

(n/2)f4

(3n +1)f4

 if n ≤ 1

 if n > 1 is even 

 if n > 1 is odd 

(3) = 1f4

(3) ::= (10) ::= (5) ::= (16) ::= (8) ::= (4) ::= (2) ::= (1) ::= 1f4 f4 f4 f4 f4 f4 f4 f4

(n)f4 f4 n N

f4 n 1018

log n, log log n, log log log n, …

A

A(m, n) = 2n m = 0 n ≤ 1,

A(m, n) = A(m −1, A(m, n −1))

A(m, n) A

m n f2
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6.4: Arithmetic Expressions
Expression evaluation is a key feature of programming languages, and recognition of expressions as a recursive data type is a
key to understanding how they can be processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions like  involving only one
variable, “ .” We’ll refer to the data type of such expressions as Aexp. Here is its definition:

Base cases:
The variable, , is in Aexp.
The arabic numeral, , for any nonnegative integer, , is in Aexp.

Constructor cases: If , then
. The expression  is called a sum. The Aexp's  and  are called the components of the sum;

they're also called the summands.
. The expression  is called a product. The Aexp's  and  are called the components of the

product; they're also called the multiplier and multiplicand.
- . The expression -  is called a negative.

Notice that Aexp’s are fully bracketed, and exponents aren’t allowed. So the Aexp version of the polynomial expression 
 would officially be written as

These brackets and *’s clutter up examples, so we’ll often use simpler expressions like “ ” instead of (6.8). But
it’s important to recognize that  is not an Aexp; it’s an abbreviation for an Aexp.

Evaluation and Substitution with Aexp’s
Evaluating Aexp’s

Since the only variable in an Aexp is , the value of an Aexp is determined by the value of . For example, if the value of  is
3, then the value of  is 34. In general, given any Aexp, , and an integer value, , for the variable, , we can
evaluate  to finds its value, eval( ). It’s easy, and useful, to specify this evaluation process with a recursive definition.

The evaluation function, eval : , is defined recursively on expressions, , as follows. Let  be
any integer.

Base cases:

Constructor cases:

For example, here’s how the recursive definition of eval would arrive at the value of  when  is 2:

3 +2x +1x2

x

Definition 6.4.1.

x

k k

e, f ∈ Aexp

[e +f ]∈ Aexp [e +f ] e f

[e ∗ f ]∈ Aexp [e ∗ f ] e f

[e]∈ Aexp [e]∈ Aexp

3 +2x +1x2

[[3 ∗ [x ∗ x]] + [[2 ∗ x]+1]]. (6.8)

3 +2x +1x2

3 +2x +1x2

x x x

3 +2x +1x2 e n x

e e, n

Definition 6.4.2.
Aexp×Z → Z e ∈ Aexp n

eval(x, n) ::= n, (value of variable x is n. ) (6.9)

eval(k, n) ::= k, (value of numeral k is k,  regardless of x. ) (6.10)

eval([ + ], n)e1 e2

eval([ ∗ ], n)e1 e2

eval(−[ ], n)e1

:= eval( , n) +eval( , n),e1 e2

:= eval( , n) ⋅ eval( , n),e1 e2

:= −eval( , n).e1

(6.11)

(6.12)

(6.13)

3 +x2 x
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Substituting into Aexp’s

Substituting expressions for variables is a standard operation used by compilers and algebra systems. For example, the result
of substituting the expression  for  in the expression  would be . We'll use the general notation 

 for the result of substituting an , for each of the  's in an Aexp, . So as we just explained,

This substitution function has a simple recursive definition:

The substitution function from  to Aexp is defined recursively on expressions, , as follows. Let 
be any Aexp.

Base cases:

Constructor cases:

Here’s how the recursive definition of the substitution function would find the result of substituting  for  in the :

Now suppose we have to find the value of  when . There are two approaches.

First, we could actually do the substitution above to get , and then we could evaluate  when , that
is, we could recursively calculate  to get the final value 30 . This approach is described by the expression

In programming jargon, this would be called evaluation using the Substitution Model. With this approach, the formula 
appears twice after substitution, so the multiplication  that computes its value gets performed twice.

The other approach is called evaluation using the Environment Model. Namely, to compute the value of (6.19), we evaluate 
when  using just 1 multiplication to get the value 6 . Then we evaluate  when  has this value 6 to arrive at the
value . This approach is described by the expression

The Environment Model only computes the value of  once, and so it requires one fewer multiplication than the Substitution
model to compute (6.20). This is a good place to stop and work this example out yourself (Problem 6.18).

eval([3 +[x ∗ x]], 2) = eval(3, 2) +eval([x ∗ x], 2)

= 3 +eval([x ∗ x], 2)

= 3 +(eval(x, 2) ⋅ eval(x, 2))

= 3 +(2 ⋅ 2)

= 3 +4 = 7.

 (by Def 6.4.2.6.11) 

 (by Def 6.4.2.6.10) 

 (by Def 6.4.2.6.12) 

 (by Def 6.4.2.6.9) 

3x x x(x −1) 3x(3x −1)

subst(f , e) Aexp, f x e

subst(3x, x(x −1)) = 3x(3x −1)

Definition 6.4.3.
Aexp×Aexp e ∈ Aexp f

subst(f , x) ::= f , (subbing f  for variable , x,  just gives f) (6.14)

subst(f , k) ::= k, (subbing into a numeral does nothing. ) (6.15)

subst(f , [ + ])e1 e2

subst(f , [ ∗ ])e1 e2

subst(f , −[ ])e1

:= [subst(f , ) +subst(f , )]e1 e2

:= [subst(f , ) ∗ subst(f , )]e1 e2

:= −[subst(f , )]e1

(6.16)

(6.17)

(6.18)

3x x x(x −1)

=

=

=

=

=

=

=

subst(3x, x(x −1))

subst([3 ∗ x], [x ∗ [x +−[1]]])

[subst([3 ∗ x], x) ∗ subst([3 ∗ x], [x +−[1]])]

[[3 ∗ x]∗subst([3 ∗ x], [x +−[1]])]

[[3 ∗ x]∗[subst([3 ∗ x], x) +subst([3 ∗ x], −[1])]]

[[3 ∗ x]∗[[3 ∗ x]+−[subst([3 ∗ x], 1)]]]

[[3 ∗ x]∗[[3 ∗ x]+−[1]]]

3x(3x −1)

 (unabbreviating)

 (by Def 6.4.3 6.17) 

 (by Def 6.4.3 6.14) 

 (by Def 6.4.3 6.16)

 (by Def 6.4.3 6.14 & 6.18)

 (by Def 6.4.3 6.15) 

 (abbreviation) 

subst(3x, x(x −1)) x = 2

3x(3x −1) 3x(3x −1) x = 2

eval(3x(3x −1), 2)

eval(subst(3x, x(x −1)), 2) (6.19)

3x

3 ⋅ 2

3x

x = 2 x(x −1) x

6 ⋅ 5 = 30

eval(x(x −1), eval(3x, 2)). (6.20)

3x
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But how do we know that these final values reached by these two approaches, that is, the final integer values of (6.19) and
(6.20), agree? In fact, we can prove pretty easily that these two approaches always agree by structural induction on the
definitions of the two approaches. More precisely, what we want to prove is

For all expressions  and ,

Proof. The proof is by structural induction on e.

Base cases:

Case

The left hand side of equation (6.21) equals  by this base case in Definition 6.4.3 of the substitution function,
and the right hand side also equals  by this base case in Definition 6.4.2 of eval.

Case

The left hand side of equation (6.21) equals  by this base case in Definitions 6.4.3 and 6.4.2 of the substitution and
evaluation functions. Likewise, the right hand side equals  by two applications of this base case in the Definition 6.4.2
of eval.

Constructor cases:

Case [ ]

By the structural induction hypothesis (6.21), we may assume that for all  and ,

for . We wish to prove that

The left hand side of (6.23) equals

by Definition 6.4.3.6.16 of substitution into a sum expression. But this equals

by Definition 6.4.2.(6.11) of eval for a sum expression. By induction hypothesis (6.22), this in turn equals

Finally, this last expression equals the right hand side of (6.23) by Definition 6.4.2.(6.11) of eval for a sum expression.
This proves (6.23) in this case.

Case [ ] Similar.
Case [ ] Even easier.

This covers all the constructor cases, and so completes the proof by structural induction. 

This is an example of why it’s useful to notify the reader what the induction variable is—in this case it isn’t .

Theorem 6.4.4.
e, f ∈ Aexp n ∈ N

eval(subst(f , e), n) = eval(e, eval(f , n)) (6.21)

1

[x]

eval(f , n)

eval(f , n)

[k]

k

k

[ + ]e1 e2

f ∈ Aexp ninZ

eval(subst(f , ), n) = eval( , eval(f , n)) (6.22)ei ei

i = 1, 2

eval(subst(f , [ + ]), n) = eval([ + ], eval(f , n)) (6.23)e1 e2 e1 e2

eval([subst(f , )) +subst(f , )], n)e1 e2

eval(subst(f , ), n) +eval(subst(f , ), n)e1 e2

eval( , eval(f , n)) +eval( , eval(f , n))e1 e2

[ ∗ ]e1 e2

−[ ]e1

■

1 n
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6.5: Induction in Computer Science
Induction is a powerful and widely applicable proof technique, which is why we’ve devoted two entire chapters to it. Strong
induction and its special case of ordinary induction are applicable to any kind of thing with nonnegative integer sizes—which
is an awful lot of things, including all step-by-step computational processes.

Structural induction then goes beyond number counting, and offers a simple, natural approach to proving things about
recursive data types and recursive computation.

In many cases, a nonnegative integer size can be defined for a recursively defined datum, such as the length of a string, or the
number of operations in an Aexp. It is then possible to prove properties of data by ordinary induction on their size. But this
approach often produces more cumbersome proofs than structural induction.

In fact, structural induction is theoretically more powerful than ordinary induction. However, it’s only more powerful when it
comes to reasoning about infinite data types—like infinite trees, for example—so this greater power doesn’t matter in practice.
What does matter is that for recursively defined data types, structural induction is a simple and natural approach. This makes it
a technique every computer scientist should embrace.
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6.6: Problems for Chapter 6

Problems for Section 6.1

Class Problems
Problem 6.1.

Prove that for all strings 

Problem 6.2.

The reversal of a string is the string written backwards, for example, rev .

(a) Give a simple recursive definition of rev( ) based on the recursive definition 6.1.1 of  and using the
concatenation operation 6.1.3.

(b) Prove that

for all strings .

Problem 6.3.

The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable defined recursively as follows:

Base cases:

The identity function, id  is an F18,
any constant function is an F18,
the sine function is an F18,

Constructor cases:

If  are F18’s, then so are

1. ,
2. the inverse function ,
3. the composition .

(a) Prove that the function  is an F18.

Warning: Don’t confuse  with the inverse  of the identity function . The inverse  is equal to
id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are closed under taking derivatives.
That is, show that if  is an F18, then so is . (Just work out 2 or 3 of the most interesting constructor cases;
you may skip the less interesting ones.)

Problem 6.4.

Here is a simple recursive definition of the set, , of even integers:

Base case: .

Constructor cases: If , then so are  and .

Provide similar simple recursive definitions of the following sets:

(a) The set 

r, s, t ∈ A∗

(r ⋅ s) ⋅ t = r ⋅ (s ⋅ t)

(abcde) = edcba

s s ∈ A∗

rev(s ⋅ t) = rev(t) ⋅ rev(s)

s, t ∈ A∗

(x) ::= x

f , g

f +g, fg, 2g

f−1

f ∘ g

1/x

1/x = x−1 id−1 id(x) id−1

f(x) ::= df/dxf ′

E

Definition: Word
0 ∈ E

n ∈ E n+2 −n

S ::= { ∈ N ∣ k,m,n ∈ N}2k3m5n
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(b) The set 

(c) The set .

Let  be the set defined by the recursive definition you gave for  in the previous part. Now if you did it right, then ,
but maybe you made a mistake. So let’s check that you got the definition right.

(d) Prove by structural induction on your definition of  that

(e) Confirm that you got the definition right by proving that

(f) See if you can give an unambiguous recursive definition of .

Problem 6.5.

The recursive data type, binary-2PTG, of binary trees with leaf labels, , is defined recursively as follows:

Base case: 

Constructor case: If , then

The size, , of  is defined recursively on this definition by:

Base case:

Constructor case:

For example, the size of the binary-2PTG, , pictured in Figure 6.1, is 7.

Figure 6.1 A picture of a binary tree .

(a) Write out (using angle brackets and labels , etc.) the binary-2PTG, , pictured in Figure 6.1. 
The value of  for  is the sequence of labels in  of the leaves of . For example, for the
binary-2PTG, , pictured in Figure 6.1,

(b) Give a recursive definition of flatten. (You may use the operation of concatenation (append) of two sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

Homework Problems
Problem 6.6.

T ::= { ∈ N ∣ k,m,n ∈ N}2k32k+m5m+n

L ::= {(a, b) ∈ ∣ (a−b) is a multiple of 3}Z2

L′ L = LL′

L′

⊆ L.L′

L ⊆ .L′

L

Definition
L

⟨ leaf , l⟩ ∈  binary-2PTG, for all labels l ∈ L.

, ∈  binary-2PTG G1 G2

⟨ bintree,  , ⟩ ∈  binary-2PTG. G1 G2

|G| G∈  binary-2PTG

|⟨ leaf , l⟩| ::= 1, for all l ∈ L.

|⟨ bintree , , , ⟩| ::= | | +| | +1.G1 G2 G1 G2

G

G

 bintree, leaf G

flatten(G) G∈  binary-2PTG L G

G

flatten(G) = (win, lose, win, win).

2 ⋅ length (flatten(G)) = |G| +1 (6.24)
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Let  be integers, not both zero. Define a set of integers, , recursively as follows:

Base cases: 
Constructor cases: If , then

1. ,
2. 

Let  be an abbreviation for  in the rest of this problem.

(a) Prove by structural induction that every common divisor of  and  also divides every member of .

(b) Prove that any integer multiple of an element of  is also in .

(c) Show that if  and , then .

(d) Show that there is a positive integer  which divides every member of . Hint: The least positive integer in .

(e) Conclude that  for  from part (d).

Problem 6.7.

Define the number, , of occurrences of the character  in the string  recursively on the definition of :

base case: .

constructor case:

Prove by structural induction that for all  and 

.

Figure 6.2 Constructing the Koch Snowflake.

Problem 6.8.

Fractals are an example of mathematical objects that can be defined recursively. In this problem, we consider the Koch
snowflake. Any Koch snowflake can be constructed by the following recursive definition.

Base case: An equilateral triangle with a positive integer side length is a Koch snowflake.
Constructor case: Let  be a Koch snowflake, and let  be a line segment on the snowflake. Remove the middle third of ,
and replace it with two line segments of the same length as is done in Figure 6.2

The resulting figure is also a Koch snowflake.

Prove by structural induction that the area inside any Koch snowflake is of the form , where  is a rational number.

Problem 6.9.

Let  be some convenient set whose elements will be called labels. The labeled binary trees, LBT’s, are defined recursively as
follows:

Base case: if  is a label, then  is an LBT, and

Constructor case: if  and  are LBT’s, then  is an LBT.

The leaf-labels and internal-labels of an LBT are defined recursively in the obvious way:

m,n Lm,n

m,n ∈ .Lm,n

j, k ∈ Lm,n

−j∈ Lm,n

j+k ∈ Lm,n

L Lm,n

m n L

L L

j, k ∈ L k ≠ 0 rem(j, k) ∈ L

g ∈ L L L

g = GCD(m,n) g

Definition: Word
(s)#c c ∈ A s s ∈ A∗

(λ) ::= 0#c

(⟨a, s⟩) ::= {#c

(s)#c

1 + (s)#c

 if a ≠ c,

 if a = c.

s, t ∈ A∗ c ∈ A

(s ⋅ t) = (s) + (t)#c #c #c

K l l

q 3
–

√ q

L

Definition
l ⟨l, leaf⟩

B C ⟨l,B,C⟩
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Base case: The set of leaf-labels of the LBT  is , and its set of internal-labels is the empty set.

Constructor case: The set of leaf labels of the LBT  is the union of the leaf-labels of  and of ; the set of
internal-labels is the union of  and the sets of internal-labels of  and of .

The set of labels of an LBT is the union of its leaf- and internal-labels. The LBT’s with unique labels are also defined
recursively:

Base case: The LBT  has unique labels.

Constructor case: If  and  are LBT’s with unique labels, no label of  is a label  and vice-versa, and  is not a label
of  or , then  has unique labels.

If  is an LBT, let  be the number of distinct internal-labels appearing in  and  be the number of distinct leaf labels of 
. Prove by structural induction that

for all LBT’s  with unique labels. This equation can obviously fail if labels are not unique, so your proof had better use
uniqueness of labels at some point; be sure to indicate where.

Exam Problems
Problem 6.10.

The Arithmetic Trig Functions (Atrig’s) are the set of functions of one real variable defined recursively as follows:

Base cases:

The identity function,  is an Atrig,
any constant function is an Atrig,
the sine function is an Atrig,

Constructor cases:

If  are F18’s, then so are

1. 
2. 
3. the composition .

Prove by structural induction on this definition that if  is an Atrig, then so is .

Problem 6.11.

The set RAF of rational functions of one real variable is the set of functions defined recursively as follows:

Base cases:

The identity function,  for  (the real numbers), is an RAF,
any constant function on  is an RAF.

Constructor cases: If  are RAF's, then so is , where  is one of the operations

1. addition, ,
2. multiplication, , and
3. division /.

Definition
⟨l, leaf⟩ l

⟨l,B,C⟩ B C

l B C

Definition
⟨l, leaf⟩

B C B C l

B C ⟨l,B,C⟩

B nB B fB
B

= +1 (6.25)fB nB

B

id(x) ::= x

f , g

f +g

f ⋅ g
f ∘ g

f(x) ::= df/dxf ′

Definition

id(r) ::= r r ∈ R

R

f , g f ⊛g ⊛

+
⋅
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(a) Prove by structural induction that RAF is closed under composition. That is, using the induction hypothesis,

prove that  holds for all . Make sure to indicate explicitly

each of the base cases, and
each of the constructor cases. Hint: One proof in terms of  covers all three cases.

(b) Briefly indicate where a proof would break down using the very similar induction hypothesis

Problems for Section 6.2

Practice Problems
Problem 6.12.

Define the sets  and  recursively:

:
,

if , then .
:

,
if , then .

(a) Show that one of these definitions is technically ambiguous. (Remember that “ambiguous recursive definition” has a
technical mathematical meaning which does not imply that the ambiguous definition is unclear.)

(b) Briefly explain what advantage unambiguous recursive definitions have over ambiguous ones.

(c) A way to prove that , is to show firat that  and second that . One of these containments follows
easily by structural induction. Which one? What would be the induction hypothesis? (You do not need to complete a proof.)

Problem 6.13. (a) To prove that the set RecMatch, of matched strings of Definition 6.2.1 equals the set AmbRecMatch of
ambiguous matched strings of Definition 6.2.2, you could first prove that

and then prove that

Of these two statements, circle the one that would be simpler to prove by structural induction directly from the definitions.

(b) Suppose structural induction was being used to prove that . Circle the one predicate below
that would fit the format for a structural induction hypothesis in such a proof.

.
.

.
.

).

(c) The recursive definition AmbRecMatch is ambiguous because it allows the  constructor to apply when  or  is the
empty string. But even fixing that, ambiguity remains. Demonstrate this by giving two different derivations for the string ”
according to AmbRecMatch but only using the  constructor when  and .

Class Problems
Problem 6.14

Let  be the string . A string of brackets is said to be erasable iff it can be reduced to the empty string by repeatedly erasing
occurrences of . For example, here’s how to erase the string :

P (h) ::= ∀g ∈ RAF.h ∘ g ∈ RAF (6.26)

P (h) h ∈ RAF

⊛

Q(g) ::= ∀h ∈ RAF.h ∘ g ∈ RAF

F1 F2

F1

5 ∈ F1

n ∈ F1 5n ∈ F1

F2

5 ∈ F2

n,m ∈ F1 nm ∈ F2

=F1 F2 ⊆F1 F2 ⊆F2 F1

∀r ∈  RecMatch. r ∈  AmbRecMatch, 

∀u ∈  AmbRecMatch. u ∈  RecMatch, 

AmbRecMatch ⊆ RecMatch

(n) ::= |s| ≤ n IMPLIES s ∈  RecMatchP0

(n) ::= |s| ≤ n IMPLIES s ∈  AmbRecMatchP1

(s) ::= s ∈  RecMatchP2

(s) ::= s ∈ $ AmbRecMatchP3

(s) ::= (s ∈  RecMatch IMPLIES s ∈  AmbRecMatchP4

s ⋅ t s t

[][][]
s ⋅ t s ≠ t t ≠ s

p []
p [[[]][]][]
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.

On the other hand the string  is not erasable because when we try to erase, we get stuck:  :

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of strings of matched brackets
given in Definition 6.2.1

(a) Use structural induction to prove that

.

(b) Supply the missing parts (labeled by “(*)”) of the following proof that

.

Proof. We prove by strong induction that every length  string in Erasable is also in RecMatch. The induction hypothesis is

Base case:

(*) What is the base case? Prove that  is true in this case.

Inductive step: To prove , suppose  and . We need to show that .

Let’s say that a string  is an erase of a string  iff  is the result of erasing a single occurrence of  in .

Since  and has positive length, there must be an erase, , of . So , and since 
, we may assume by induction hypothesis that .

Now we argue by cases:

Case (  is the empty string):

(*) Prove that  in this case.

Case  for some strings : Now we argue by subcases.

Subcase 

(*) Prove that  in this subcase.

Subcase  is of the form  where  is an erase of 

Since , it is erasable by part (b), which implies that . But , so by induction
hypothesis, we may assume that . This shows that  is the result of the constructor step of RecMatch,
and therefore .

Subcase  is of the form  where  is an erase of :

(*) Prove that  in this subcase.

(*) Explain why the above cases are sufficient.

This completes the proof by strong induction on , so we conclude that  holds for all . Therefore 
for every string . That is, . Combined with part (a), we conclude that

Problem 6.15. (a) Prove that the set RecMatch, of matched strings of Definition 6.2.1 is closed under string concatenation.
Namely, if , then .

(b) Prove , where AmbRecMatch is the set of ambiguous matched strings of Definition 6.2.2.

(c) Prove that .

Homework Problems
Problem 6.16.

[[[]][]][]→ [[]] → []→ λ

[]][[[[[]] ][[[

[]][[[[[]] → ][[[[]→ ][[[↛

RecMatch ⊆ Erasable

Erasable ⊆ RecMatch

n

P (n) ::= ∀x ∈  Erasable. |x| = n IMPLIES x ∈  RecMatch. 

P

P (n+1 |x| = n+1 x ∈ Erasable x ∈ RecMatch

y z y p z

x ∈ Erasable y ∈ Erasable x |y| = n−1 ≥ 0
y ∈ Erasable y ∈ RecMatch

y

x ∈ RecMatch

(y = [s]t s, t ∈ RecMatch)

(x = py)

x ∈ RecMatch

(x [ ]ts′ s s′

s ∈ RecMatch ∈ Erasables′ | | < |x|s′

∈ RecMatchs′ x

s ∈ RecMatch

x [ ]ts′ t t′

x ∈ RecMatch

n P (n) n ∈ N x ∈ RecMatch
x ∈ Erasable Erasable ⊆ RecMatch

Erasable = RecMatch. ■

s, t ∈ RecMatch s ⋅ t ∈ RecMatch

AmbRecMatch ⊆ RecMatch

RecMatch = AmbRecMatch
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One way to determine if a string has matching brackets, that is, if it is in the set, RecMatch, of Definition 6.2.1 is to start with
0 and read the string from left to right, adding 1 to the count for each left bracket and subtracting 1 from the count for each
right bracket. For example, here are the counts for two sample strings:

A string has a good count if its running count never goes negative and ends with 0. So the second string above has a good
count, but the first one does not because its count went negative at the third step. Let

The empty string has a length 0 running count we’ll take as a good count by convention, that is, . The
matched strings can now be characterized precisely as this set of strings with good counts.

(a) Prove that GoodCount contains RecMatch by structural induction on the definition of RecMatch.

(b) Conversely, prove that RecMatch contains GoodCount.

Hint: By induction on the length of strings in GoodCount. Consider when the running count equals 0 for the second time.

Problems for Section 6.3

Homework Problems
Problem 6.17.

One version of the the Ackermann function, , is defined recursively by the following rules:

Prove that if  is a partial function that satisfies this same definition, then  is total and .

Problems for Section 6.4

Practice Problems
Problem 6.18. (a) Write out the evaluation of

according to the Environment Model and the Substitution Model, indicating where the rule for each case of the recursive
definitions of eval(,) and [:=] or substitution is first used. Compare the number of arithmetic operations and variable lookups.

(b) Describe an example along the lines of part (a) where the Environment Model would perform 6 fewer multiplications than
the Substitution model. You need not carry out the evaluations.

(c) Describe an example along the lines of part (a) where the Substitution Model would perform 6 fewer multiplications than
the Environment model. You need not carry out the evaluations.

Homework Problems
Problem 6.19. (a) Give a recursive definition of a function erase( ) that erases all the symbols in  but the brackets.
For example

(b) Prove that  for all .

(c) Give an example of a small string  such that  for any .

Problem 6.20.

0

0

[

1

[

1

]

0

[

2

]

−1

[

3

[

0

]

2

[

1

]

1

[

2

[

2

[

3

]

1

[

4

]

0

]

3

[

1

]

2

]

0

]

1

]

0

 GoodCount  ::= {s ∈ {], [ ∣ s has a good count } .}∗

λ ∈ GoodCount

A : → NN2

(m,n) ::= 2n,  if m = 0 or n ≤ 1  (A-base) 

A(m,n) ::= A(m−1,A(m,n−1)),  otherwise.  (AA). 

B : → NN2 B B = A

eval(subst(3x, x(x−1)), 2)

e e ∈ Aexp

erase([[3 ∗ [x ∗ x]] + [[2 ∗ x]+1]])= [[[]][[2 ∗ x]+1]]

 erase (e) ∈  RecMatch  e ∈ Aexp

s ∈ RecMatch [s]≠ erase(e) e ∈ Aexp
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We’re going to characterize a large category of games as a recursive data type and then prove, by structural induction, a
fundamental theorem about game strategies. The games we’ll consider are known as deterministic games of perfect
information, because at each move, the complete game situation is known to the players, and this information completely
determines how the rest of the game can be played. Games like chess, checkers, GO, and tic-tac-toe fit this description. In
contrast, most card games do not fit, since card players usually do not know exactly what cards belong to the other players.
Neither do games involving random features like dice rolls, since a player’s move does not uniquely determine what happens
next.

Chess counts as a deterministic game of perfect information because at any point of play, both players know whose turn it is to
move and the location of every chess piece on the board.  At the start of the game, there are 20 possible first moves: the player
with the White pieces can move one of his eight pawns forward 1 or 2 squares or one of his two knights forward and left or
forward and right. For the second move, the Black player can make one of the 20 corresponding moves of his own pieces. The
White player would then make the third move, but now the number of possible third moves depends on what the first two
moves happened to be. A nice way to think of these games is to regard each game situation as a game in its own right. For
example, after five moves in a chess game, we think of the players as being at the start of a new “chess” game determined by
the current board position and the fact that it is Black’s turn to make the next move.

At the end of a chess game, we might assign a score of 1 if the White player won, -1 if White lost, and 0 if the game ended in a
stalemate (a tie). Now we can say that White’s objective is to maximize the final score and Black’s objective is to minimize it.
We might also choose to score the game in a more elaborate way, taking into account not only who won, but also how many
moves the game took, or the final board configuration.

This leads to an elegant abstraction of this kind of game. We suppose there are two players, called the max-player and the min-
player, whose aim is, respectively, to maximize and minimize the final score. A game will specify its set of possible first
moves, each of which will simply be another game. A game with no possible moves is called an ended game, and will just
have a final score. Strategically, all that matters about an ended game is its score. If a game is not ended, it will have a label 

 or  indicating which player is supposed to move first.

This motivates the following formal definition:

Let  be a nonempty set of real numbers. The class VG of V-valued deterministic max-min games of perfect information
is defined recursively as follows:

Base case: A value  is a VG, and is called an ended game. 
Constructor case: If  is a nonempty set of VG's, and  is a label equal to  or , then

is a VG. Each game  is called a possible first move of .

In all the games like this that we’re familiar with, there are only a finite number of possible first moves. It’s worth noting that
the definition of VG does not require this. Since finiteness is not needed to prove any of the results below, it would arguably be
misleading to assume it. Later, we’ll suggest how games with an infinite number of possible first moves might come up.

A play of a game is a sequence of legal moves that either goes on forever or finishes with an ended game. More formally:

A play of a game  is defined recursively on the definition of VG:

Base case: (  is an ended game.) Then the length one sequence  is a play of 

Constructor case: (  is not an ended game.) Then a play of  is a sequence that starts with a possible first move, , of
 and continues with the elements of a play of .

If a play does not go on forever, its payoff is defined to be the value it ends with.

2

max min

Definition
V

v∈ V

{ , , …}G0 G1 a max min

G ::= (a, { , , …})G0 G1

Gi G

Definition
G∈ VG

G (G) G

G G Gi

G Gi
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Let’s first rule out the possibility of playing forever. Namely, every play will have a payoff.

(a) Prove that every play of a  is a finite sequence that ends with a value in . Hint: By structural induction on the
definition of VG.

A strategy for a game is a rule that tells a player which move to make when it’s his turn. Formally:

If  is one of the labels  or , then an  is a function  such that

 is 

Any pair of strategies for the two players determines a unique play of a game, and hence a unique payoff, in an obvious way.
Namely, when it is a player’s turn to move in a game , he chooses the move specified by his strategy. A strategy for the max-
player is said to ensure payoff  when, paired with any strategy for the min-player, the resulting payoff is at least . Dually, a
strategy for the min-player caps payoff at  when, paired with any strategy for the max-player, the resulting payoff is at most 

.

Assuming for simplicity that the set  of possible values of a game is finite, the WOP (Section 2.4) implies there will be a
strategy for the max-player that ensures the largest possible payoff; this is called the max-ensured-value of the game. Dually,
there will also be a strategy for the min-player that caps the payoff at the smallest possible value, which is called the min-
capped-value of the game.

The max-ensured-value of course cannot be larger than the min-capped-value. A unique value can be assigned to a game when
these two values agree:

If the max-ensured-value and min-capped-value of a game are equal, their common value is called the value of the game.

So if both players play optimally in a game with that has a value, , then there is actually no point in playing. Since the payoff
is ensured to be at least  and is also capped to be at most , it must be exactly . So the min-player may as well skip playing
and simply pay  to the max-player (a negative payment means the max-player is paying the min-player).

The punch line of our story is that the max-ensured-value and the min-cappedvalue are always equal.

(Fundamental Theorem for Deterministic Min-Max Games of Perfect Information).

Let  be a finite set of real numbers. Every  -valued deterministic max-min game of perfect information has a value.

(b) Prove this Fundamental Theorem for VG’s by structural induction.

(c) Conclude immediately that in chess, there is a winning strategy for White, or a winning strategy for Black, or both players
have strategies that guarantee at least a stalemate. (The only difficulty is that no one knows which case holds.)

So where do we come upon games with an infinite number of first moves? Well, suppose we play a tournament of  chess
games for some positive integer . This tournament will be a VG if we agree on a rule for combining the payoffs of the 
individual chess games into a final payoff for the whole tournament.

There still are only a finite number of possible moves at any stage of the -game chess tournament, but we can define a meta-
chess-tournament, whose first move is a choice of any positive integer , after which we play an -game tournament. Now the
meta-chess-tournament has an infinite number of first moves.

Of course only the first move in the meta-chess-tournament is infinite, but then we could set up a tournament consisting of 
meta-chess-tournaments. This would be a game with  possible infinite moves. And then we could have a meta-meta-chess-

G∈ VG V

Definition: Word
a max min a−strategy s : VG → VG

s(G) {
 a first move of G

 undefined, 

 if G has label a

 otherwise. 

G

v v

v

v

V

Definition

v

v v v

v

Theorem

V V

n

n n

n

n n

n

n
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tournament whose first move was to choose how many meta-chess-tournaments to play. This meta-meta-chess-tournament will
have an infinite number of infinite moves. Then we could move on to meta-meta-meta-chess-tournaments . . . .

As silly or weird as these meta games may seem, their weirdness doesn’t disqualify the Fundamental Theorem: each of these
games will still have a value.

(d) State some reasonable generalization of the Fundamental Theorem to games with an infinite set  of possible payoffs.
Optional: Prove your generalization.

In order to prevent the possibility of an unending game, chess rules specify a limit on the number of moves, or a limit on the
number of times a given board postion may repeat. So the number of moves or the number of position repeats would count as
part of the game situation known to both players.

V

2
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CHAPTER OVERVIEW
7: INFINITE SETS

This chapter is about infinite sets and some challenges in proving things about them.

Wait a minute! Why bring up infinity in a Mathematics for Computer Science text? After all, any
data set in a computer is limited by the size of the computer’s memory, and there is a bound on the
possible size of computer memory, for the simple reason that the universe is (or at least appears to
be) bounded. So why not stick with finite sets of some large, but bounded, size? This is a good
question, but let’s see if we can persuade you that dealing with infinite sets is inevitable.

You may not have noticed, but up to now you’ve already accepted the routine use of the integers, the
rationals and irrationals, and sequences of them—infinite sets, all. Further, do you really want
Physics or the other sciences to give up the real numbers on the grounds that only a bounded number
of bounded measurements can be made in a bounded universe? It’s pretty convincing—and a lot simpler—to ignore such big and
uncertain bounds (the universe seems to be getting bigger all the time) and accept theories using real numbers.

Likewise in computer science, it’s implausible to think that writing a program to add nonnegative integers with up to as many digits as,
say, the stars in the sky— billions of galaxies each with billions of stars—would be different from writing a program that would add any
two integers, no matter how many digits they had. The same is true in designing a compiler: it’s neither useful nor sensible to make use
of the fact that in a bounded universe, only a bounded number of programs will ever be compiled.

Infinite sets also provide a nice setting to practice proof methods, because it’s harder to sneak in unjustified steps under the guise of
intuition. And there has been a truly astonishing outcome of studying infinite sets. Their study led to the discovery of fundamental,
logical limits on what computers can possibly do. For example, in Section 7.2, we’ll use reasoning developed for infinite sets to prove
that it’s impossible to have a perfect type-checker for a programming language.

So in this chapter, we ask you to bite the bullet and start learning to cope with infinity.

7.1: INFINITE CARDINALITY
7.2: THE HALTING PROBLEM
7.3: THE LOGIC OF SETS
7.4: DOES ALL THIS REALLY WORK?
7.5: PROBLEMS FOR CHAPTER 7
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7.1: Infinite Cardinality
uIn the late nineteenth century, the mathematician Georg Cantor was studying the convergence of Fourier series and found
some series that he wanted to say converged “most of the time,” even though there were an infinite number of points where
they didn’t converge. As a result, Cantor needed a way to compare the size of infinite sets. To get a grip on this, he got the idea
of extending the Mapping Rule Theorem 4.5.4 to infinite sets: he regarded two infinite sets as having the “same size” when
there was a bijection between them. Likewise, an infinite set  should be considered “as big as” a set  when  surj . So
we could consider  to be “strictly smaller” than , which we abbreviate as  strict , when  is not “as big as” :

 strict  iff .

On finite sets, this strict relation really does mean “strictly smaller.” This follows immediately from the Mapping Rule
Theorem 4.5.4.

Corollary 7.1.2. For finite sets ,

 strict  iff .

Proof.

Cantor got diverted from his study of Fourier series by his effort to develop a theory of infinite sizes based on these ideas. His
theory ultimately had profound consequences for the foundations of mathematics and computer science. But Cantor made a lot
of enemies in his own time because of his work: the general mathematical community doubted the relevance of what they
called “Cantor’s paradise” of unheard-of infinite sizes.

A nice technical feature of Cantor’s idea is that it avoids the need for a definition of what the “size” of an infinite set might be
—all it does is compare “sizes.”

Warning: We haven’t, and won’t, define what the “size” of an infinite set is. The definition of infinite “sizes” requires the
definition of some infinite sets called ordinals with special well-ordering properties. The theory of ordinals requires getting
deeper into technical set theory than we want to go, and we can get by just fine without defining infinite sizes. All we need are
the “as big as” and “same size” relations, surj and bij, between sets.

But there’s something else to watch out for: we’ve referred to surj as an “as big as” relation and bij as a “same size” relation on
sets. Of course, most of the “as big as” and “same size” properties of surj and bij on finite sets do carry over to infinite sets,
but some important ones don’t—as we’re about to show. So you have to be careful: don’t assume that surj has any particular
“as big as” property on infinite sets until it’s been proved.

Let’s begin with some familiar properties of the “as big as” and “same size” relations on finite sets that do carry over exactly
to infinite sets:

Lemma 7.1.3. For any sets, ,

1. .
2. 
3. 
4. .

Part 1. follows from the fact that  has the  surjective function property iff  has the 
total, injective property. Part 2. follows from the fact that compositions of surjections are surjections. Parts 3. and 4. follow
from the first two parts because  is a bijection iff  and  are surjective functions. We'll leave verification of these facts
to Problem 4.22.

A B A B

A B A B A B

Definition 7.1.1.
A B NOT(A surj B)

A, B

A B |A| < |B|

A strict B iff  NOT(A surj B)

 iff  NOT(|A| ≥ |B|)

 iff  |A| < |B|.

(Def 7.1.1.)

(Theorem 4.5.4.(4.5))

■

A, B, C

A surj B iff B inj A
If A surj B and B surj C,  then A surj C.
If A bij B and B bij C,  then A bij C.
A bij B iff B bij A

R [≤ 1 out, ≥ 1 in] R−1 [≥ 1 out, ≤ 1 in]

R R R−1

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48326?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/01%3A_Proofs/07%3A_Infinite_Sets/7.01%3A_Infinite_Cardinality


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 7.1.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48326

Another familiar property of finite sets carries over to infinite sets, but this time some real ingenuity is needed to prove it:

[Schröder-Bernstein] For any sets , 

That is, the Schröder-Bernstein Theorem says that if  is at least as big as  and conversely,  is at least as big as , then 
is the same size as . Phrased this way, you might be tempted to take this theorem for granted, but that would be a mistake.
For infinite sets  and , the Schröder-Bernstein Theorem is actually pretty technical.

Just because there is a surjective function —which need not be a bijection—and a surjective function —
which also need not be a bijection—it’s not at all clear that there must be a bijection . The idea is to construct 
from parts of both  and . We’ll leave the actual construction to Problem 7.11.

Another familiar set property is that for any two sets, either the first is at least as big as the second, or vice-versa. For finite
sets this follows trivially from the Mapping Rule. It’s actually still true for infinite sets, but assuming it was obvious would be
mistaken again.

For all sets ,

Theorem 7.1.5 lets us prove that another basic property of finite sets carries over to infinite ones:

Lemma 7.1.6.

implies

for all sets .

Proof. (of Lemma 7.1.6)

Suppose 7.1 holds, and assume for the sake of contradiction that , which means that . Now since 
, Theorem 7.1.5 lets us conclude that . So we have

and Lemma 7.1.3.2 lets us conclude that , contradicting the fact that 

We’re omitting a proof of Theorem 7.1.5 because proving it involves technical set theory—typically the theory of ordinals
again—that we’re not going to get into. But since proving Lemma 7.1.6 is the only use we’ll make of Theorem 7.1.5, we hope
you won’t feel cheated not to see a proof.

Infinity is different
A basic property of finite sets that does not carry over to infinite sets is that adding something new makes a set bigger. That is,
if  is a finite set and , then , and so  and  are not the same size. But if  is infinite, then
these two sets are the same size!

Lemma 7.1.7. Let  be a set and . Then  is infinite iff  bij .

Proof. Since  is not the same size as  when  is finite, we only have to show that  is the same size as 
when  is infinite.

That is, we have to find a bijection between  and  when  is infinite. Here’s how: since  is infinite, it certainly has
at least one element; call it . But since  is infinite, it has at least two elements, and one of them must not equal to ; call
this new element . But since  is infinite, it has at least three elements, one of which must not equal both  and ; call

Theorem 7.1.4.
A, B if A surj B and B surj A,  then A bij B.

A B B A A

B

A B

f : A → B g : B → A

e : A → B e

f g

Theorem 7.1.1

A, B

A surj B OR B surj A

A strict B AND B strict C (7.1)

A strict C

A, B, C

NOT(A strict C) A surj C
B strict C C  surj B

A surj C  AND C  surj B.

A surj B A strict B. ■

A b ∉ A |A ∪ {b}| = |A| +1 A A ∪ {b} A

A b ∉ A A A A ∪ {b}

A A ∪ {b} A A ∪ {b} A

A

A ∪ {b} A A A

a0 A a0

a1 A a0 a1
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this new element . Continuing in this way, we conclude that there is an infinite sequence  of different
elements of . Now it’s easy to define a bijection :

Countable Sets
A set, , is countable iff its elements can be listed in order, that is, the elements in  are precisely the elements in the
sequence

Assuming no repeats in the list, saying that  can be listed in this way is formally the same as saying that the function, 
 defined by the rule that , is a bijection.

A set, , is countably infinite iff . A set is countable iff it is finite or countably infinite.

We can also make an infinite list using just a finite set of elements if we allow repeats. For example, we can list the elements in
the three-element set  as

This simple observation leads to an alternative characterization of countable sets that does not make separate cases of finite
and infinite sets. Namely, a set  is countable iff there is a list

of the elements of , possibly with repeats.

Lemma 7.1.9. A set, , is countable iff  surj . In fact, a nonempty set  is countable iff there is a total surjective function 
.

The proof is left to Problem 7.12.

The most fundamental countably infinite set is the set, , itself. But the set, , of all integers is also countably infinite,
because the integers can be listed in the order:

In this case, there is a simple formula for the th element of the list (7.2). That is, the bijection  such that  is
the th element of the list can be defined as:

There is also a simple way to list all pairs of nonnegative integers, which shows that  is also countably infinite
(Problem 7.16). From this, it’s a small step to reach the conclusion that the set, , of nonnegative rational numbers is
countable. This may be a surprise—after all, the rationals densely fill up the space between integers, and for any two, there’s
another in between. So it might seem as though you couldn’t write out all the rationals in a list, but Problem 7.10 illustrates
how to do it. More generally, it is easy to show that countable sets are closed under unions and products (Problems 7.1 and
7.16) which implies the countability of a bunch of familiar sets:

Corollary 7.1.10. The following sets are countably infinite:

A small modification of the proof of Lemma 7.1.7 shows that countably infinite sets are the “smallest” infinite sets, or more
precisely that if  is an infinite set, and  is countable, then  (see Problem 7.9).

a2 , , , … , , …a0 a1 a2 an

A e : A ∪ {b} → A

(b)

e ( )an

e(a)

::= ,a0

::= an+1

::= a

 for n ∈ N,

 for a ∈ A −{b, , , …} . ■a0 a1

(7.1.1)

C C

, , … , , …c0 c1 cn

C

f : N → C f(i) :: ci

Definition 7.1.8.
C N bij C

2, 4, 6

2, 4, 6, 6, 6, …

C

, , … , , …c0 c1 cn

C

C N C C

g : N → C

N Z

0, −1, 1, −2, 2, −3, 3, … (7.2)

n f : N → C f(n)
n

f(n) ::= {
n/2

−(n +1)/2

 if n is even,

 if n is odd.

(N ×N)

Q
≥0

, Z, N ×N, , Z ×Z, Q.Z
+

Q
+

A B A surj B
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Also, since adding one new element to an infinite set doesn’t change its size, you can add any finite number of elements
without changing the size by simply adding one element after another. Something even stronger is true: you can add a
countably infinite number of new elements to an infinite set and still wind up with just a set of the same size (Problem 7.13).

By the way, it’s a common mistake to think that, because you can add any finite number of elements to an infinite set and have
a bijection with the original set, that you can also throw in infinitely many new elements. In general it isn’t true that just
because it’s OK to do something any finite number of times, it also OK to do it an infinite number of times. For example,
starting from 3, you can increment by 1 any finite number of times, and the result will be some integer greater than or equal to
3. But if you increment an infinite number of times, you don’t get an integer at all.

Power sets are strictly bigger
Cantor’s astonishing discovery was that not all infinite sets are the same size. In particular, he proved that for any set, , the
power set, pow , is “strictly bigger” than . That is,

[Cantor] For any set, 

A strict pow( ).

Proof. To show that  is strictly smaller than pow( ), we have to show that if  is a function from  to pow( ), then  is not
a surjection. To do this, we’ll simply find a subset,  that is not in the range of . The idea is, for any element , to
look at the set  and ask whether or not  happens to be in . First, define

 is now a well-defined subset of , which means it is a member of pow . But  can’t be in the range of , because if it
were, we would have

for some , so by definition of ,

for all . Now letting  yields the contradiction

.

So  is not a surjection, because there is an element in the power set of , specifically the set , that is not in the range of . 

Cantor’s Theorem immediately implies:

Corollary 7.1.12. pow( ) is uncountable.

The bijection between subsets of an -element set and the length  bit-strings, , used to prove Theorem 4.5.5, carries
over to a bijection between subsets of a countably infinite set and the infinite bit-strings, . That is,

.

This immediately implies

Corollary 7.1.13.  is uncountable.

More Countable and Uncountable Sets

Once we have a few sets we know are countable or uncountable, we can get lots more examples using Lemma 7.1.3. In
particular, we can appeal to the following immediate corollary of the Lemma:

Corollary 7.1.14.

(a) If  is an uncountable set and , then  is uncountable.

(b) If  is a countable set and , then  is countable.

A

(A) A

Theorem 7.1.11.
A

A

A A g A A g

⊆ AAg g a ∈ A

g(a) ⊆ A a g(a)

::= {a ∈ A ∣ a ∉ g(a)}.Ag

Ag A (A) Ag g

= g( )Ag a0

∈ Aa0 Ag

a ∈ g( ) iff a ∈  iff a ∉ g(a)a0 Ag

a ∈ A a = a0

∈ g( ) iff  ∉ g( )a0 a0 a0 a0

g A Ag g

■

N

n n {0, 1}n

{0, 1}ω

pow(N) bij {0, 1}ω

{0, 1}ω

U A surj U A

C C  surj A A
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For example, now that we know that the set  of infinite bit strings is uncountable, it’s a small step to conclude that

Corollary 7.1.15. The set  of real numbers is uncountable.

To prove this, think about the infinite decimal expansion of a real number:

Let’s map any real number  to the infinite bit string  equal to the sequence of bits in the decimal expansion of , starting
at the decimal point. If the decimal expansion of  happens to contain a digit other than 0 or 1, leave  undefined. For
example,

Now  is a function from real numbers to infinite bit strings  It is not a total function, but it clearly is a surjection. This shows
that

and the uncountability of the reals now follows by Corollary 7.1.14.(a).

For another example, let’s prove

Corollary 7.1.16. The set  of all finite sequences of positive integers is countable.

To prove this, think about the prime factorization of a nonnegative integer:

Let’s map any nonnegative integer  to the finite sequence  of nonzero exponents in its prime factorization. For example,

Now  is a function from  to . It is defined on all positive integers, and it clearly is a surjection. This shows
that

and the countability of the finite strings of positive integers now follows by Corollary 7.1.14.(b).

Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the infinite set, , of nonnegative integers, we can
build the infinite sequence of sets

{0, 1}ω

R

2
–

√

5
1/10

1/3

1/9

4
1

99

= 1.4142 … ,

= 5.000 … ,
= 0.1000 … ,

= 0.333 … ,

= 0.111 … ,

= 4.010101 …

r b(r) r

r b(r)

b(5)

b(1/10)
b(1/9)

b(4 )
1

99
b( ), b(1/3)2

–
√

= 000 … ,

= 1000 … ,
= 111 … ,

= 010101 …

 are undefined.

b .1

R surj {0, 1 .}ω

(Z
+)∗

20

6615

= ⋅ ⋅ ⋅ ⋅ ⋅ … ,22 30 51 70 110 130

= ⋅ ⋅ ⋅ ⋅ ⋅ … .20 33 51 72 110 130

n e(n)

e(20)

e(6615)

e( ⋅ ⋅ ⋅ )513 119 47817 10344

e(1)

e(0)

= (2, 1),

= (3, 1, 2),

= (13, 9, 817, 44),

= λ,

 is undefined.

(the empty string)

e N (mathbbZ+)∗

N surj ( .Z+)∗

N

N strict pow(N) strict pow(pow(N)) strict pow(pow(pow(N))) strict  …
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By Cantor’s Theorem 7.1.11, each of these sets is strictly bigger than all the preceding ones. But that’s not all: the union of all
the sets in the sequence is strictly bigger than each set in the sequence (see Problem 7.23). In this way you can keep going
indefinitely, building “bigger” infinities all the way.

Diagonal Argument
Theorem 7.1.11 and similar proofs are collectively known as “diagonal arguments” because of a more intuitive version of the
proof described in terms of on an infinite square array. Namely, suppose there was a bijection between  and . If such a
relation existed, we would be able to display it as a list of the infinite bit strings in some countable order or another. Once we’d
found a viable way to organize this list, any given string in  would appear in a finite number of steps, just as any
integer you can name will show up a finite number of steps from 0. This hypothetical list would look something like the one
below, extending to infinity both vertically and horizontally:

But now we can exhibit a sequence that’s missing from our allegedly complete list of all the sequences. Look at the diagonal in
our sample list:

Here is why the diagonal argument has its name: we can form a sequence  consisting of the bits on the diagonal.

Then, we can form another sequence by switching the ’s and ’s along the diagonal. Call this sequence :

Now if th term of  is  then the th term of  is , and vice versa, which guarantees that  differs from . In other
words,  has at least one bit different from every sequence on our list. So  is an element of  that does not appear in
our list—our list can’t be complete!

This diagonal sequence  corresponds to the set  in the proof of Theorem 7.1.11. Both are defined in
terms of a countable subset of the uncountable infinity in a way that excludes them from that subset, thereby proving that no
countable subset can be as big as the uncountable set.

Some rational numbers can be expanded in two ways—as an infinite sequence ending in all 0’s or as an infinite sequence
ending in all 9’s. For example,

In such cases, define  to be the sequence that ends with all 0’s.

N {0, 1}ω

{0, 1}ω

D

D = 1 1 1 0 0 1 … ,

1 0 C

C = 0 0 0 1 1 0 … .

n An 1 n C 0 C An

C C {0, 1}ω

C {a ∈ A ∣ a ∉ g(a)}

1

5
1

10

= 5.000 … = 4.999 … ,

= 0.1000 … = 0.0999 … .

b(r)
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7.2: The Halting Problem
Although towers of larger and larger infinite sets are at best a romantic concern for a computer scientist, the reasoning that
leads to these conclusions plays a critical role in the theory of computation. Diagonal arguments are used to show that lots of
problems can’t be solved by computation, and there is no getting around it.

This story begins with a reminder that having procedures operate on programs is a basic part of computer science technology.
For example, compilation refers to taking any given program text written in some “high level” programming language like
Java, C++, Python, . . . , and then generating a program of low-level instructions that does the same thing but is targeted to run
well on available hardware. Similarly, interpreters or virtual machines are procedures that take a program text designed to be
run on one kind of computer and simulate it on another kind of computer. Routine features of compilers involve “type-
checking” programs to ensure that certain kinds of run-time errors won’t happen, and “optimizing” the generated programs so
they run faster or use less memory.

The fundamental thing that just can’t be done by computation is a perfect job of type-checking, optimizing, or any kind of
analysis of the overall run time behavior of programs. In this section, we’ll illustrate this with a basic example known as the
Halting Problem. The general Halting Problem for some programming language is, given an arbitrary program, to determine
whether the program will run forever if it is not interrupted. If the program does not run forever, it is said to halt. Real
programs may halt in many ways, for example, by returning some final value, aborting with some kind of error, or by awaiting
user input. But it’s easy to detect when any given program will halt: just run it on a virtual machine and wait till it stops. The
problem comes when the given program does not halt—you may wind up waiting indefinitely without realizing that the wait is
fruitless. So how could you detect that the program does not halt? We will use a diagonal argument to prove that if an analysis
program tries to recognize the non-halting programs, it is bound to give wrong answers, or no answers, for an infinite number
of the programs it is supposed to be able to analyze!

To be precise about this, let’s call a programming procedure—written in your favorite programming language—a string
procedure when it is applicable to strings over a standard alphabet—say, the 256 character  alphabet. As a simple
example, you might think about how to write a string procedure that halts precisely when it is applied to a double letter ASCII
string, namely, a string in which every character occurs twice in a row. For example, , and  are double
letter strings, but , , and  are not.

We’ll call a set of strings recognizable if there is a string procedure that halts when it is applied to any string in that set and
does not halt when applied to any string not in the set. For example, we’ve just agreed that the set of double letter strings is
recognizable.

Let  be the set of (finite) strings of  characters. There is no harm in assuming that every program can be written
using only the  characters; they usually are. When a string  is actually the  description of some
string procedure, we’ll refer to that string procedure as . You can think of  as the result of compiling .  It’s technically
helpful to treat every  string as a program for a string procedure. So when a string  doesn’t parse as a
proper string procedure, we’ll define  to be some default string procedure—say one that never halts on any input.

Focusing just on string procedures, the general Halting Problem is to decide, given strings  and , whether or not the
procedure  halts when applied to . We’ll show that the general problem can’t be solved by showing that a special case can’t
be solved, namely, whether or not  applied to  halts. So, let’s define

No-halt ::= 

We’re going to prove

No-halt is not recognizable.

ASCII

aaCC33 zz ++ccBB

aa; bb b33 AAAAA

ASCII∗ ASCII

ASCII s ∈ ASCII∗ ASCII

Ps Ps s 2

ASCII s ∈ ASCII∗

Ps

s t

Ps t

Ps s

Definition 7.2.1.
{s ∈ ∣  applied to s does not halt}. (7.3)ASCII∗ Ps

Theorem 7.2.2.
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We’ll use an argument just like Cantor’s in the proof of Theorem 7.1.11.

Proof. For any string , let  be the set of strings recognized by :

By convention, we associated a string procedure, , with every string, , which makes  a total function, and by
definition,

for all strings, 

Now suppose to the contrary that No-halt was recognizable. This means there is some procedure  that recognizes No-halt,
which is the same as saying that

No-halt = .

Combined with (7.4), we get

for all . Now letting  in (7.5) yields the immediate contradiction

This contradiction implies that  cannot be recognized by any string procedure.

So that does it: it’s logically impossible for programs in any particular language to solve just this special case of the general
Halting Problem for programs in that language. And having proved that it’s impossible to have a procedure that figures out
whether an arbitrary program halts, it’s easy to show that it’s impossible to have a procedure that is a perfect recognizer for
any overall run time property.

For example, most compilers do “static” type-checking at compile time to ensure that programs won’t make run-time type
errors. A program that type-checks is guaranteed not to cause a run-time type-error. But since it’s impossible to recognize
perfectly when programs won’t cause type-errors, it follows that the type-checker must be rejecting programs that really
wouldn’t cause a type-error. The conclusion is that no type-checker is perfect—you can always do better!

It’s a different story if we think about the practical possibility of writing programming analyzers. The fact that it’s logically
impossible to analyze perfectly arbitrary programs does not mean that you can’t do a very good job analyzing interesting
programs that come up in practice. In fact, these “interesting” programs are commonly intended to be analyzable in order to
confirm that they do what they’re supposed to do.

In the end, it’s not clear how much of a hurdle this theoretical limitation implies in practice. But the theory does provide some
perspective on claims about general analysis methods for programs. The theory tells us that people who make such claims
either

are exaggerating the power (if any) of their methods, perhaps to make a sale or get a grant, or
are trying to keep things simple by not going into technical limitations they’re aware of, or
perhaps most commonly, are so excited about some useful practical successes of their methods that they haven’t bothered
to think about the limitations which must be there.

So from now on, if you hear people making claims about having general program analysis/verification/optimization methods,
you’ll know they can’t be telling the whole story.

One more important point: there’s no hope of getting around this by switching programming languages. Our proof covered
programs written in some given programming language like Java, for example, and concluded that no Java program can
perfectly analyze all Java programs. Could there be a C++ analysis procedure that successfully takes on all Java programs?
After all, C++ does allow more intimate manipulation of computer memory than Java does. But there is no loophole here: it’s
possible to write a virtual machine for C++ in Java, so if there were a C++ procedure that analyzed Java programs, the Java
virtual machine would be able to do it too, and that’s impossible. These logical limitations on the power of computation apply
no matter what kinds of programs or computers you use.

s ∈ ASCII∗ f(s) Ps

f(s) ::= {t ∈ ∣  halts when applied to t}.ASCII∗ Ps

Ps s ∈ ASCII∗ f

s ∈  No-halt IFF s ∉ f(s), (7.4)

s ∈ .ASCII∗

Ps0

f( )s0

s ∈ f( ) iff s ∉ f(s) (7.5)s0

s ∈ ASCII∗ s = s0

∈ f( ) iff  ∉ f( )s0 s0 s0 s0

No-halt ■

3
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The string, , and the procedure, , have to be distinguished to avoid a type error: you can’t apply a string to
string. For example, let  be the string that you wrote as your program to recognize the double letter strings. Applying  to a
string argument, say , should throw a type exception; what you need to do is compile  to the procedure  and then
apply  to .

The weasel word “overall” creeps in here to rule out some run time properties that are easy to recognize because they depend
only on part of the run time behavior. For example, the set of programs that halt after executing at most 100 instructions is
recognizable.

2 s ∈ ASCII∗ Ps

s s

aabbccdd s Ps

Ps aabbccdd

3
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7.3: The Logic of Sets

Russell’s Paradox
Reasoning naively about sets turns out to be risky. In fact, one of the earliest attempts to come up with precise axioms for sets
in the late nineteenth century by the logician Gotlob Frege, was shot down by a three line argument known as Russell’s
Paradox  which reasons in nearly the same way as the proof of Cantor’s Theorem 7.1.11. This was an astonishing blow to
efforts to provide an axiomatic foundation for mathematics:

Russell’s Paradox

Let  be a variable ranging over all sets, and define

.

So by definition,

,

for every set . In particular, we can let  be , and obtain the contradictory result that

.

The simplest reasoning about sets crashes mathematics! Russell and his colleague Whitehead spent years trying to develop a
set theory that was not contradictory, but would still do the job of serving as a solid logical foundation for all of mathematics.

Actually, a way out of the paradox was clear to Russell and others at the time: it’s unjustified to assume that  is a set. The
step in the proof where we let  be  has no justification, because  ranges over sets, and  might not be a set. In fact, the
paradox implies that  had better not be a set!

But denying that  is a set means we must reject the very natural axiom that every mathematically well-defined collection of
sets is actually a set. The problem faced by Frege, Russell and their fellow logicians was how to specify which well-defined
collections are sets. Russell and his Cambridge University colleague Whitehead immediately went to work on this problem.
They spent a dozen years developing a huge new axiom system in an even huger monograph called Principia Mathematica,
but for all intents and purposes, their approach failed. It was so cumbersome no one ever used it, and it was subsumed by a
much simpler, and now widely accepted, axiomatization of set theory by the logicians Zermelo and Fraenkel.

The ZFC Axioms for Sets
A formula of set theory  is a predicate formula that only uses the predicates “ ” and “ .” The domain of discourse is
the collection of sets, and “ ” is interpreted to mean that  and  are variables that range over sets, and  is one of the
elements in .

It’s generally agreed that, using some simple logical deduction rules, essentially all of mathematics can be derived from some
formulas of set theory called the Axioms of Zermelo-Fraenkel Set Theory with Choice (ZFC).

For example, since  is a subset of  iff every element of  is also an element of , here’s how we can express  being a subset
of  with a formula of set theory:

Now we can express formulas of set theory using “ ” as an abbreviation for formula (7.6).

We’re not going to be studying the axioms of ZFC in this text, but we thought you might like to see them—and while you’re at
it, get some practice reading quantified formulas:

Extensionality. Two sets are equal if they have the same members.

Pairing. For any two sets  and , there is a set, , with  and  as its only elements:

Union. The union, , of a collection, , of sets is also a set:

4

S

W ::= {S ∣ S ∉ S}

S ∈ W  iff S ∉ S

S S W

W ∈ W  iff W ∉ W

W

S W S W

W

W

5 x = y x ∈ y

x ∈ y x y x

y

x y x y x

y

(x ⊆ y) ::= ∀z. (z ∈ x IMPLIES z ∈ y). (7.6)

x ⊆ y

(∀z. z ∈ x IFF z ∈ y) IMPLIES x = y.

x y {x, y} x y

∀x, y. ∃u. ∀z. [z ∈ u iff (z = x OR z = y)]

u z
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Infinity. There is an infinite set. Specifically, there is a nonempty set, , such that for any set , the set  is also a
member of .

Subset. Given any set, , and any definable property of sets, there is a set containing precisely those elements  that have
the property.

where  is any assertion about  definable in the notation of set theory.

Power Set. All the subsets of a set form another set:

Replacement. Suppose a formula, , of set theory defines the graph of a function, that is,

Then the image of any set, , under that function is also a set, . Namely,

.

Foundation. There cannot be an infinite sequence

of sets each of which is a member of the previous one. This is equivalent to saying every nonempty set has a “member-
minimal” element. Namely, define

.

Then the foundation axiom is

Choice. Given a set, , whose members are nonempty sets no two of which have any element in common, then there is a set, ,
consisting of exactly one element from each set in . The formula is given in Problem 7.28.

Avoiding Russell’s Paradox
These modern ZFC axioms for set theory are much simpler than the system Russell and Whitehead first came up with to avoid
paradox. In fact, the ZFC axioms are as simple and intuitive as Frege’s original axioms, with one technical addition: the
Foundation axiom. Foundation captures the intuitive idea that sets must be built up from “simpler” sets in certain standard
ways. And in particular, Foundation implies that no set is ever a member of itself. So the modern resolution of Russell’s
paradox goes as follows: since  for all sets , it follows that , defined above, contains every set. This means  can’t
be a set—or it would be a member of itself.

Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twentieth Century. He reported that
when he felt too old to do mathematics, he began to study and write about philosophy, and when he was no longer smart
enough to do philosophy, he began writing about politics. He was jailed as a conscientious objector during World War I. For
his extensive philosophical and political writing, he won a Nobel Prize for Literature.

Technically this is called a first-order predicate formula of set theory

∀z. ∃u. ∀x. (∃y. x ∈ y AND y ∈ z) IFF x ∈ u.

x y ∈ x {y}
x

x y ∈ x

∀x. ∃z. ∀y. y ∈ z IFF [y ∈ x AND ϕ(y)]

ϕ(y) y

∀x. ∃p. ∀u. u ⊆ x IFF u ∈ p.

ϕ

∀x, y, z. [ϕ(x, y) IFF ϕ(x, z)] IMPLIES y = z.

s t

∀s ∃t ∀y. [∃x. ϕ(x, y) IFF y ∈ t]

⋯ ∈ ∈ ⋯ ∈xn x1 x0

member-minimal(m, x) ::= [m ∈ x AND ∀y ∈ x. y ∉ m]

∀x. x ≠ ∅ IMPLIES ∃m. member-minimal(m, x).

s c

s

S ∉ S S W W

4

5
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7.4: Does All This Really Work?
So this is where mainstream mathematics stands today: there is a handful of ZFC axioms from which virtually everything else
in mathematics can be logically derived. This sounds like a rosy situation, but there are several dark clouds, suggesting that the
essence of truth in mathematics is not completely resolved.

The ZFC axioms weren’t etched in stone by God. Instead, they were mostly made up by Zermelo, who may have been a
brilliant logician, but was also a fallible human being—probably some days he forgot his house keys. So maybe Zermelo,
just like Frege, didn’t get his axioms right and will be shot down by some successor to Russell who will use his axioms to
prove a proposition  and its negation . Then math as we understand it would be broken—this may sound crazy, but it
has happened before.

In fact, while there is broad agreement that the ZFC axioms are capable of proving all of standard mathematics, the
axioms have some further consequences that sound paradoxical. For example, the Banach-Tarski Theorem says that, as a
consequence of the axiom of choice, a solid ball can be divided into six pieces and then the pieces can be rigidly
rearranged to give two solid balls of the same size as the original!

Some basic questions about the nature of sets remain unresolved. For example, Cantor raised the question whether there is
a set whose size is strictly between the smallest infinite set,  (see Problem 7.9), and the strictly larger set, pow ?
Cantor guessed not:

Cantor’s Contiuum Hypothesis: There is no set, , such that

The Continuum Hypothesis remains an open problem a century later. Its difficulty arises from one of the deepest results
in modern Set Theory— discovered in part by Gödel in the 1930’s and Paul Cohen in the 1960’s— namely, the ZFC
axioms are not sufficient to settle the Continuum Hypothesis: there are two collections of sets, each obeying the laws of
ZFC, and in one collection the Continuum Hypothesis is true, and in the other it is false. Until a mathematician with a
deep understanding of sets can extend ZFC with persuasive new axioms, the Continuum Hypothesis will remain
undecided.

But even if we use more or different axioms about sets, there are some unavoidable problems. In the 1930’s, Godel ¨
proved that, assuming that an axiom system like ZFC is consistent—meaning you can’t prove both  and  for any
proposition, —then the very proposition that the system is consistent (which is not too hard to express as a logical
formula) cannot be proved in the system. In other words, no consistent system is strong enough to verify itself.

Large Infinities in Computer Science
If the romance of different-size infinities and continuum hypotheses doesn’t appeal to you, not knowing about them is not
going to limit you as a computer scientist. These abstract issues about infinite sets rarely come up in mainstream mathematics,
and they don’t come up at all in computer science, where the focus is generally on “countable,” and often just finite, sets. In
practice, only logicians and set theorists have to worry about collections that are “too big” to be sets. That’s part of the reason
that the 19th century mathematical community made jokes about “Cantor’s paradise” of obscure infinities. But the challenge
of reasoning correctly about this far-out stuff led directly to the profound discoveries about the logical limits of computation
described in Section 7.2, and that really is something every computer scientist should understand.

P P
¯ ¯¯̄

N (N)

A

N strict A strict pow(N).

P P
¯ ¯¯̄

P
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7.5: Problems for Chapter 7

Problems for Section 7.1

Practice Problems
Problem 7.1.

Prove that if  and  are countable sets, then so is .

Problem 7.2.

Show that the set  of finite binary strings is countable.

Problem 7.3.

Describe an example of two uncountable sets  and  such that there is no bijection between  and .

Problem 7.4.

Prove that if there is a total injective  relation from , then  is countable.

Problem 7.5.

For each of the following sets, indicate whether it is finite, countably infinite, or uncountable.

1. The set of solutions to the equation 
2. The set of natural numbers .
3. The set of rational numbers .
4. The set of real numbers .
5. The set of integers .
6. The set of complex numbers .
7. The set of words in the English language no more than 20 characters long.
8. The powerset of the set of all possible bijections from  to itself.
9. An infinite set  with the property that there exists a total surjective function .

10. A set  where  is countable and  is uncountable.

Problem 7.6.

Circle the correct completions (there may be more than one)

 strict  IFF ...

 is undefined.
 is countably infinite.
 is uncountable.
 is finite.

Problem 7.7.

Let  to be some infinite set and  to be some countable set. We know from Lemma 7.1.7 that

for any element . An easy induction implies that

for any finite subset .

A B A ∪ B

{0, 1}∗

A B A B

([≥ 1 out, ≤ 1 in]) S →N S

−x = −0.1.x3

N

Q

R

Z

C

{1, 2, … , 10}
S f : N → S

A ∪ B A B

A N

|A|
A

A

A

N surj A.
∀n ∈ N, |A| ≤ n.
∀n ∈ N, |A| ≥ n.
∃n ∈ N, |A| ≤ n.
∃n ∈ N, |A| < n.

A B

A bij (A ∪ { })b0

∈ Bb0

A bij (A ∪ { , , … , }) (7.7)b0 b1 bn

{ , , … , } ⊂ Bb0 b1 bn
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Students sometimes think that (7.7) shows that . Now it’s true that  for all such  and  for any
countable set  (Problem 7.13), but the facts above do not prove it.

To explain this, let’s say that a predicate  is finitely discontinuous when  is true for every finite subset ,
but  is false. The hole in the claim that (7.7) implies  is the assumption (without proof) that the
predicate

is not finitely discontinuous. This assumption about  is correct, but it’s not completely obvious and takes some proving.

To illustrate this point, let  be the nonnegative integers and  be the nonnegative rational numbers, and remember that both 
 and  are countably infinite. Some of the predicates  below are finitely discontinuous and some are not. Indicate

which is which.

1.  is finite.
2.  is countable.
3.  is uncountable.
4.  contains only finitely many non-integers.
5.  contains the rational number 2/3.
6. There is a maximum non-integer in .
7. There is an  such that any two elements of  are  apart.
8.  is countable.
9.  is uncountable.

10.  has no infinite decreasing sequence .
11. Every nonempty subset of  has a minimum element.
12.  has a maximum element.
13.  has a minimum element.

Class Problems
Problem 7.8.

Show that the set  of finite sequences of nonnegative integers is countable.

Problem 7.9. (a) Several students felt the proof of Lemma 7.1.7 was worrisome, if not circular. What do you think?

(b) Use the proof of Lemma 7.1.7 to show that if  is an infinite set, then , that is, every infinite set is “as big as” the
set of nonnegative integers.

Problem 7.10.

The rational numbers fill the space between integers, so a first thought is that there must be more of them than the integers, but
it’s not true. In this problem you’ll show that there are the same number of positive rationals as positive integers. That is, the
positive rationals are countable.

(a) Define a bijection between the set, , of positive integers, and the set, , of all pairs of positive integers:

(b) Conclude that the set, , of all positive rational numbers is countable.

Problem 7.11.

This problem provides a proof of the [Schröder - Bernstein] Theorem:

A bij (A ∪ B) A bij (A ∪ B) A B

B

P (C) P (A ∪ F ) F ⊂ B

P (A ∪ B) A bij (A ∪ B)

(C) ::= [A bij C]P0

P0

A B

A B P (C)

C

C

C

C

C

C

ϵ > 0 C ϵ

C

C

C > > ⋯c0 c1

C

C

C

N∗

A A surj N

Z+ ( × )Z+ Z+

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), …
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), …
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), …

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), …
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), …

⋮

Q
+

]textIfA surj B and B surj A,  then A bij B. (7.8)
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(a) It is OK to assume that  and  are disjoint. Why?

(b) Explain why there are total injective functions , and .

Picturing the diagrams for  and , there is exactly one arrow out of each element —a left-to-right -arrow if the element is in 
 and a right-to-left -arrow if the element is in . This is because  and  are total functions. Also, there is at most one

arrow into any element, because  and  are injections.

So starting at any element, there is a unique and unending path of arrows going forwards. There is also a unique path of arrows
going backwards, which might be unending, or might end at an element that has no arrow into it. These paths are completely
separate: if two ran into each other, there would be two arrows into the element where they ran together.

This divides all the elements into separate paths of four kinds:

1. paths that are infinite in both directions,
2. paths that are infinite going forwards starting from some element of .
3. paths that are infinite going forwards starting from some element of .
4. paths that are unending but finite.

(c) What do the paths of the last type (iv) look like?

(d) Show that for each type of path, either

the -arrows define a bijection between the  and  elements on the path, or
the -arrows define a bijection between  and  elements on the path, or
both sets of arrows define bijections.

For which kinds of paths do both sets of arrows define bijections?

(e) Explain how to piece these bijections together to prove that  and  are the same size.

Problem 7.12. (a) Prove that if a nonempty set, , is countable, then there is a total surjective function .

(b) Conversely, suppose that , that is, there is a not necessarily total surjective function . Prove that  is
countable.

Homework Problems
Problem 7.13.

Prove that if  is an infinite set and  is a countably infinite set that has no elements in common with , then

.

Reminder: You may assume any of the results from class, MITx, or the text as long as you state them explicitly.

Problem 7.14.

In this problem you will prove a fact that may surprise you—or make you even more convinced that set theory is nonsense: the
half-open unit interval is actually the “same size” as the nonnegative quadrant of the real plane!  Namely, there is a bijection
from .

(a) Describe a bijection from .

Hint:  almost works.

(b) An infinite sequence of the decimal digits  will be called long if it does not end with all 0’s. An equivalent
way to say this is that a long sequence is one that has infinitely many occurrences of nonzero digits. Let  be the set of all
such long sequences. Describe a bijection from  to the half-open real interval .

Hint: Put a decimal point at the beginning of the sequence.

(c) Describe a surjective function from  to  that involves alternating digits from two long sequences. Hint: The surjection
need not be total.

(d) Prove the following lemma and use it to conclude that there is a bijection from  to .

A B

f : A → B fg : B → A

f g f

A g B f g

f g

A

B

f A B

g B A

A B

C f : N → C

N surj D f : ND D

A B A

A bij (A ∪ B)

6

(0, 1] to [0, ∞) ×[0, ∞)

(0, 1] to [0, ∞)

1/x

{0, 1, … , 9}
L

L (0, 1]

L L2

L2 (0, 1]2
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Lemma 7.4.1. Let  and  be nonempty sets. If there is a bijection from  to , then there is also a bijection from  to 
.

(e) Conclude from the previous parts that there is a surjection from  to . Then appeal to the Schröder-Bernstein
Theorem to show that there is actually a bijection from  to .

(f) Complete the proof that there is a bijection from  to .

Exam Problems
Problem 7.15.

Prove that if  is an infinite sequence of countable sets, then so is

Problem 7.16.

Let  and  be countably infinite sets:

Show that their product, , is also a countable set by showing how to list the elements of . You need only show
enough of the initial terms in your sequence to make the pattern clear—a half dozen or so terms usually suffice.

Problem 7.17. (a) Prove that if  and  are countable sets, then so is .

(b) Prove that if  is a countable set and  is infinite, then there is a bijection between  and .

Problem 7.18.

Let  be the set of finite binary sequences,  be the set of infinite binary sequences, and  be the set of sequences
in  that contain only a finite number of occurrences of 1’s.

(a) Describe a simple surjective function from  to .

(b) The set  consists of all the infinite binary sequences with infinitely many 1’s. Use the previous problem
part to prove that  is uncountable.

Hint: We know that  is countable and  is not.

Problem 7.19.

Let  be the set of infinite binary strings, and let  be the set of infinite binary strings containing infinitely
many occurrences of 1’s. Prove that  is uncountable. (We have already shown that  is uncountable.)

Hint: Define a suitable function from  to .

Problem 7.20.

A real number is called quadratic when it is a root of a degree two polynomial with integer coefficients. Explain why there are
only countably many quadratic reals.

Problem 7.21.

Describe which of the following sets have bijections between them:

Problems for Section 7.2

A B A B A ×A

B ×B

(0, 1] (0, 1]2

(0, 1] (0, 1]2

(0, 1] [0, ∞)2

, , … , . …A0 A1 An

⋃∞
n=0 An

A B

A = { , , , , …}a0 a1 a2 a3

B = { , , , , …}b0 b1 b2 b3

A ×B A ×B

A B A ∪ B

C D D C ∪ D

{0, 1}∗ {0, 1}ω F

{0, 1}ω

{0, 1}∗ F

::= {0, 1 −FF
¯ ¯¯̄ }ω

F
¯ ¯¯̄

{0, 1}∗ {0, 1}ω

{0, 1}ω B ⊂ {0, 1}ω

B {0, 1}ω

{0, 1}ω B

Z (integers),
C (complex numbers),

pow(Z) (all subsets of integers),
pow(pow(∅)),
{0, 1  (infinite binary sequences)}ω

pow({T, F}),

R (real numbers),
Q (rational numbers),

pow(∅),
{0, 1  (finite binary sequences),}∗

{T, F} (truth values)
pow({0, 1 )}ω
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Class Problems
Problem 7.22.

Let  be the set of infinite sequences of nonnegative integers. For example, some sequences of this kind are:

Prove that this set of sequences is uncountable.

Problem 7.23.

There are lots of different sizes of infinite sets. For example, starting with the infinite set, , of nonnegative integers, we can
build the infinite sequence of sets

where each set is “strictly smaller” than the next one by Theorem 7.1.11. Let  be the th set in the sequence, and

(a) Prove that

for all .

(b) Prove that

for all .

Now of course, we could take , ,  and keep on in this way building still bigger infinities
indefinitely.

Problem 7.24.

The method used to prove Cantor’s Theorem that the power set is “bigger” than the set, leads to many important results in
logic and computer science. In this problem we’ll apply that idea to describe a set of binary strings that can’t be described by
ordinary logical formulas. To be provocative, we could say that we will describe an undescribable set of strings!

The following logical formula illustrates how a formula can describe a set of strings. The formula

where the variables range over the set, , of finite binary strings, says that the binary string, , does not contain a 1.

We’ll call such a predicate formula, , about strings a string formula, and we’ll use the notation strings  for the set of
binary strings with the property described by . That is,

A set of binary strings is describable if it equals strings  for some string formula, . So the set, , of finite strings of 0’s is
describable because it equals . 

The idea of representing data in binary is a no-brainer for a computer scientist, so it won’t be a stretch to agree that any string
formula can be represented by a binary string. We’ll use the notation  for the string formula with binary representation 

. The details of the representation don’t matter, except that there ought to be a display procedure that can actually
display  given .

Standard binary representations of formulas are often based on character-bycharacter translation into binary, which means that
only a sparse set of binary strings actually represent string formulas. It will be technically convenient to have every binary
string represent some string formula. This is easy to do: tweak the display procedure so it displays some default formula, say
no-1s, when it gets a binary string that isn’t a standard representation of a string formula. With this tweak, every binary string, 

, will now represent a string formula, .

N
ω

(0, 1, 2, 3, 4, …),
(2, 3, 5, 7, 11, …),
(3, 1, 4, 5, 9, …).

N

N strict pow(N) strict pow(pow(N)) strict pow(pow(pow(N))) strict …

(N)pown n

U ::= (N).⋃∞
n=0 pown

U (N), (7.9) surj pow n

n > 0

(N) strict Upown

n ∈ N

U pow(U) pow(pow(U)), …

NOT[∃y, ∃z. s = y1z], (no-1s(s))

{0, 1}∗ s

G(s) (G)
G

strings(G) ::= {s ∈ {0, 1 ∣ Gs}.}∗

(G) G 0∗

strings(no-1s(s)) 7

Gx

x ∈ {0, 1}∗

Gx x

x Gx
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Now we have just the kind of situation where a Cantor-style diagonal argument can be applied, namely, we’ll ask whether a
string describes a property of itself! That may sound like a mind-bender, but all we’re asking is whether .

For example, using character-by-character translations of formulas into binary, neither the string 0000 nor the string 10 would
be the binary representation of a formula, so the display procedure applied to either of them would display no-1s.

That is,  and so . This means that

Now we are in a position to give a precise mathematical description of an “undescribable” set of binary strings, namely, let

Define

The set U is not describable.

Use reasoning similar to Cantor’s Theorem 7.1.11 to prove this Theorem.

Homework Problems
Problem 7.25.

For any sets, , and , let  be the set of total functions from  to . Prove that if  is not empty and  has more
than one element, then .

Hint: Suppose that  is a function from  to  mapping each element  to a function . Pick any two
elements of ; call them 0 and 1. Then define

Exam Problems
Problem 7.26.

Let  be the set of infinite sequences containing only the numbers 1, 2, and 3. For example, some sequences of this
kind are:

Prove that  is uncountable.

Hint: One approach is to define a surjective function from  to the power set pow( ).

Problems for Section 7.3

Class Problems
Problem 7.27.

Forming a pair  of items  and  is a mathematical operation that we can safely take for granted. But when we’re trying
to show how all of mathematics can be reduced to set theory, we need a way to represent the pair  as a set.

(a) Explain why representing  by  won’t work.

(b) Explain why representing  by  won’t work either. Hint: What pair does  represent?

(c) Define

.

x ∈ strings( )Gx

= G10 = no-1sG0000 strings =  strings =G0000 G10 0∗

0000 ∈ strings( ) and 10 ∉ strings( ).G0000 G10

Theorem

U ::= {x ∈ {0, 1 ∣ x ∉ strings( )}. (7.10)}∗ Gx

A B [A → B] A B A B

NOT(A surj [A → B])

σ A [A → B] a ∈ A : A → Bσa

B

diag(a) ::= {
0
1

 if  (a) = 1,σa

 otherwise.

{1, 2, 3}ω

(1, 1, 1, 1 …),

(2, 2, 2, 2 …),
(3, 2, 1, 3 …).

{1, 2, 3}ω

{1, 2, 3}ω N

(a, b) a b

(a, b)

(a, b) {a, b}

(a, b) {a, {b}} {{1}, {2}}

pair(a, b) ::= {a, {a, b}}
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Explain why representing  as  uniquely determines  and . Hint: Sets can’t be indirect members of
themselves:  never holds for any set , and neither can  hold for any .

Problem 7.28.

The axiom of choice says that if  is a set whose members are nonempty sets that are pairwise disjoint —that is no two sets in 
 have an element in common —then there is a set, , consisting of exactly one element from each set in .

In formal logic, we could describe  with the formula,

Similarly we could describe  with the formula

Here “ ” is fairly standard notation for “there exists a unique .”

Now we can give the formal definition:

(Axiom of Choice).

The only issue here is that set theory is technically supposed to be expressed in terms of pure formulas in the language of sets,
which means formula that uses only the membership relation, , propositional connectives, the two quantifies  and , and
variables ranging over all sets. Verify that the axiom of choice can be expressed as a pure formula, by explaining how to
replace all impure subformulas above with equivalent pure formulas.

For example, the formula  could be replaced with the pure formula .

Problem 7.29.

Let  be a binary relation on a set, . If   , we'll say that  is " -smaller" than .  is called well founded
when there is no infinite " -decreasing" sequence:

     

of elements .

For example, if  and  is the <-relation, then  is well founded because if you keep counting down with nonnegative
integers, you eventually get stuck at zero:

But you can keep counting up forever, so the >-relation is not well founded:

Also, the -relation on  is not well founded because a constant sequence of, say, 2's, gets -smaller forever:

(a) If  is a subset of , an element  is defined to be -minimal in  iff there is no -smaller element in . Prove that 
 is well founded iff every nonempty subset of  has an -minimal element.

A logic formula of set theory has only predicates of the form " " for variables  ranging over sets, along with
quantifiers and propositional operations. For example,

is a formula of set theory that means that "  is empty."

(a, b) pair(a, b) a b

a ∈ a a a ∈ b ∈ a b

s

s c s

s

::=
 pairwise-disjoint (s)
∀x ∈ s. x ≠ ∅ AND 
∀x, y ∈ s. x ≠ y IMPLIES x ∩ y = ∅.

c

choice-set(c, s) ::= ∀x ∈ s. ∃!z. z ∈ c ∩ x.

∃!z. z

Definition

∀s.  pairwise-disjoint(s) IMPLIES ∃c. choice-set(c, s).

∈ ∀ ∃

x = y ∀z. z ∈ x IFF z ∈ y

R : A → A A a1 R a0 a1 R a0 R

R

⋯ R an R ⋯ R a1 R (7.11)a0

∈ Aai

A =N R R

0 < ⋯ < n −1 < n

⋯ > n > ⋯ > 1 > 0

≤ N ≤

⋯ ≤ 2 ≤ ⋯ ≤ 2 ≤ 2.

B A b ∈ B R B R B

R : A → A A R

x ∈ y x, y

isempty(x) ::= ∀w. NOT(w ∈ x)

x
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(b) Write a formula, member-minimal , of set theory that means that  is -minimal in .

(c) The Foundation axiom of set theory says that  is a well founded relation on sets. Express the Foundation axiom as a
formula of set theory. You may use “member-minimal” and “isempty” in your formula as abbreviations for the formulas
defined above.

(d) Explain why the Foundation axiom implies that no set is a member of itself.

Homework Problems
Problem 7.30. (a) Explain how to write a formula, , of set theory that means 

.

(b) Now use the formula  to write a formula, , of set theory that means that  has at most  elements.

(c) Explain how to write a formula, , of set theory that means that  has exactly  elements. Your formula should
only be about twice the length of the formula .

(d) The obvious way to write a formula, , of set theory that means that  are distinct elements is to
write an  of subformulas " " for . Since there are  such subformulas, this approach
leads to a formula  whose length grows proportional to . Describe how to write such a formula  whose
length only grows proportional to .

Hint: Use Subset  and .

Exam Problems
Problem 7.31. (a) Explain how to write a formula Members  of set theory  that means .

Hint: Say that everything in  is either  or . It's OK to use subformulas of the form " ," since we can regard " "
as an abbreviation for a genuine set theory formula.

A  is simply a sequence of length two whose first item is  and whose second is . Sequences are a basic
mathematical data type we take for granted, but when we're trying to show how all of mathematics can be reduced to set
theory, we need a way to represent the ordered  as a set. One way that will work is to represent  as

.

(b) Explain how to write a formula , of set theory  that means .

Hint: Now it’s OK to use subformulas of the form “ .”

(c) Explain how to write a formula , of set theory that means  is a pair whose second item is .

Problems for Section 7.4

Homework Problems
Problem 7.32.

For any set , define  to be the set consisting of all the elements of , along with  itself:

So by definition,

Now we give a recursive definition of a collection, Ord, of sets called ordinals that provide a way to count infinite sets.
Namely,

(u, v) u ∈ v

∈

(x, , , … , )Subsetn y1 y2 yn
8 

x ⊆ { , , … , }y1 y2 yn

Subsetn (x)Almostn x n

Exactlyn x n

Almostn

( , … , )Dn y1 yn , … ,y1 yn

AND ≠yi yj 1 ≤ i < j ≤ n n(n −1)/2
Dn n2 ( , … , )Dn y1 yn

n

Subsetn Exactlyn

(p, a, b) 9 p = {a, b}

p a b x = y x = y

pair(a, b) a b

pair(a, b) 10 a, b

pair(a, b) ::= {a, {a, b}}

Pair(p, a, b) 11 p = pair(a, b)

Members(p, a, b)

Second(p, b) p b

x next(x) x x

next(x) ::= x ∪ {x}.

x ∈ next(x) and x ⊂ next(x). (7.12)

Definition: Word
∅ ∈ Ord,

if v ∈  Ord, then next(v) ∈ Ord,

if s ⊂  Ord, then v ∈ Ord.⋃v∈s
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There is a method for proving things about ordinals that follows directly from the way they are defined. Namely, let  be
some property of sets. The Ordinal Induction Rule says that to prove that  is true for all ordinals , you need only show
two things

If  holds for all the members of , then it holds for , and
if  holds for all members of some set , then it holds for their union.

That is:

Rule. Ordinal Induction

The intuitive justification for the Ordinal Induction Rule is similar to the justification for strong induction. We will accept the
soundness of the Ordinal Induction Rule as a basic axiom. 
(a) A set  is closed under membership if every element of  is also a subset of , that is

Prove that every ordinal  is closed under membership.

(b) A sequence

of ordinals  is called a member-decreasing sequence starting at . Use Ordinal Induction to prove that no ordinal starts an
infinite member-decreasing sequence.

The half-open unit interval,  is  Similarly, 

no-1s and similar formulas were examined in Problem 3.25, but it is not necessary to have done that problem to do this one.

See Section 7.3.2.

See Section 7.3.2.

Some similar ways that don’t work are described in problem 7.27.

See Section 7.3.2.

Do not assume the Foundation Axiom of ZFC (Section 7.3.2) which says that there isn’t any set that starts an infinite
member-decreasing sequence. Even in versions of set theory in which the Foundation Axiom does not hold, there cannot be
any infinite member-decreasing sequence of ordinals.

P (x)
P (v) v

P next(x) next(x)
P S

∀x. (∀y ∈ next(x). P (y)) IMPLIES P (next(x)),

∀S. (∀x ∈ S. P (x)) IMPLIES P ( x)⋃x∈S

∀v ∈  Ord. P (v)

x x x

∀y ∈ x. y ⊂ x

v

⋯ ∈ ∈ ∈ ⋯ ∈ ∈ (7.13)vn+1 vn v1 v0

vi v0
12

6 (0, 1], {r ∈ R ∣ 0 < r ≤ 1}. [0, ∞) ::= {r ∈ R ∣ r ≥ 0}.
7

8

9

10

11

12
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CHAPTER OVERVIEW
8: NUMBER THEORY

Number theory is the study of the integers. Why anyone would want to study the integers may not be
obvious. First of all, what’s to know? There’s 0, there’s 1, 2, 3, and so on, and, oh yeah, -1, -2, . . . .
Which one don’t you understand? What practical value is there in it?

The mathematician G. H. Hardy delighted at its impracticality. He wrote:

[Number theorists] may be justified in rejoicing that there is one science, at any rate, and that their
own, whose very remoteness from ordinary human activities should keep it gentle and clean.

Hardy was especially concerned that number theory not be used in warfare; he was a pacifist. You
may applaud his sentiments, but he got it wrong: number theory underlies modern cryptography,
which is what makes secure online communication possible. Secure communication is of course crucial in war—leaving poor Hardy
spinning in his grave. It’s also central to online commerce. Every time you buy a book from Amazon, use a certificate to access a web
page, or use a PayPal account, you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and apply the proof techniques that we developed in previous
chapters. We’ll work out properties of greatest common divisors (gcd’s) and use them to prove that integers factor uniquely into primes.
Then we’ll introduce modular arithmetic and work out enough of its properties to explain the RSA public key crypto-system.

Since we’ll be focusing on properties of the integers, we’ll adopt the default convention in this chapter that variables range over the set,
, of integers.

8.1: DIVISIBILITY
8.2: THE GREATEST COMMON DIVISOR
8.3: PRIME MYSTERIES
8.4: THE FUNDAMENTAL THEOREM OF ARITHMETIC
8.5: ALAN TURING
8.6: MODULAR ARITHMETIC
8.7: REMAINDER ARITHMETIC
8.8: TURING’S CODE (VERSION 2.0)
8.9: MULTIPLICATIVE INVERSES AND CANCELLING
8.10: EULER'S THEOREM
8.11: RSA PUBLIC KEY ENCRYPTION
In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a highly secure cryptosystem, called RSA, based on
number theory. The purpose of the RSA scheme is to transmit secret messages over public communication channels. As with Turing’s
codes, the messages transmitted are nonnegative integers of some fixed size.

8.12: WHAT HAS SAT GOT TO DO WITH IT?

Z
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8.1: Divisibility
The nature of number theory emerges as soon as we consider the divides relation.

 divides  (notation ) iff there is an integer  such that

The divides relation comes up so frequently that multiple synonyms for it are used all the time. The following phrases all say
the same thing:

Some immediate consequences of Definition 8.1.1 are that for all 

Also,

Dividing seems simple enough, but let’s play with this definition. The Pythagoreans, an ancient sect of mathematical mystics,
said that a number is perfect if it equals the sum of its positive integral divisors, excluding itself. For example, 
and  are perfect numbers. On the other hand, 10 is not perfect because , and 12 is not
perfect because . Euclid characterized all the even perfect numbers around 300 BC (Problem 8.2). But
is there an odd perfect number? More than two thousand years later, we still don’t know! All numbers up to about  have
been ruled out, but no one has proved that there isn’t an odd perfect number waiting just over the horizon.

So a half-page into number theory, we’ve strayed past the outer limits of human knowledge. This is pretty typical; number
theory is full of questions that are easy to pose, but incredibly difficult to answer. We’ll mention a few more such questions in
later sections.

Facts about Divisibility
The following lemma collects some basic facts about divisibility

Lemma 8.1.2.

1. If  and , then .
2. If  and , then  for all  and .
3. For all ,  if and only if .

Proof. These facts all follow directly from Definition 8.1.1. To illustrate this, we’ll prove just part 2:

Given that , there is some  such that . Likewise, , so

Therefore  where , which means that

A number of the form  is called an integer linear combination of  and , or, since in this chapter we’re only talking
about integers, just a linear combination. So Lemma 8.1.2.2 can be rephrased as

If  divides  and , then  divides every linear combination of  and .

Definition 8.1.1.
a b a ∣ b k

ak = b.

a ∣ b,

a divides b,

a is a divisor of b,

a is a factor of b,

b is divisible by a,

b is a multiple of a.

n

n ∣ 0, n ∣ n,  and  ±1 ∣ n.

0 ∣ n IMPLIES n = 0.

6 = 1 +2 +3

28 = 1 +2 +4 +7 +14 1 +2 +5 = 8

1 +2 +3 +4 +6 = 16

10300

1

a ∣ b b ∣ c a ∣ c

a ∣ b a ∣ c a ∣ sb+ tc s t

c ≠ 0 a ∣ b ca ∣ cb

a ∣ b ∈ Zk1 a = bk1 a = ck2

sb± tc = s( a) + t( a) = (s + t )a.k1 k2 k1 k2

sb+ tc = ak3 ::= (s + t )k3 k1 k2

a ∣ sb+ tc. ■

sb+ tc b c

a b c a b c
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We’ll be making good use of linear combinations, so let’s get the general definition on record:

An integer  is a linear combination of numbers  iff

for some integers .

When Divisibility Goes Bad
As you learned in elementary school, if one number does not evenly divide another, you get a “quotient” and a “remainder”
left over. More precisely:

[Division Theorem]  Let  and  be integers such that . Then there exists a unique pair of integers  and , such
that

The number  is called the quotient and the number  is called the remainder of  divided by . We use the notation 
 for the quotient and  for the remainder. For example,  and ,

since . Similarly, , since .

There is a remainder operator built into many programming languages. For example, “32 % 5” will be familiar as remainder
notation to programmers in Java, C, and C++; it evaluates to  in all three languages. On the other hand, these
and other languages treat remainders involving negative numbers inconsistently, so don’t be distracted by your programming
language’s behavior, and remember to stick to the definition according to the Division Theorem 8.1.4.

The remainder on division by  is a number in the (integer) interval from 0 to . Such intervals come up so often that it is
useful to have a simple notation for them.

Die Hard
Die Hard 3 is just a B-grade action movie, but we think it has an inner message: everyone should learn at least a little number
theory. In Section 5.4.4, we formalized a state machine for the Die Hard jug-filling problem using 3 and 5 gallon jugs, and also
with 3 and 9 gallon jugs, and came to different conclusions about bomb explosions. What’s going on in general? For example,
how about getting 4 gallons from 12- and 18-gallon jugs, getting 32 gallons with 899- and 1147-gallon jugs, or getting 3
gallons into a jug using just 21- and 26-gallon jugs?

It would be nice if we could solve all these silly water jug questions at once. This is where number theory comes in handy.

A Water Jug Invariant

Suppose that we have water jugs with capacities  and  with . Let’s carry out some sample operations of the state
machine and see what happens, assuming the -jug is big enough:

Definition 8.1.3.
n , … ,b0 bk

n = + +⋯ +s0b0 s1b1 skbk

, … ,s0 sk

Theorem 8.1.4.
2 n d d > 0 q r

n = q ⋅ r AND 0 ≤ r < d (8.1)

q r n d

qcnt(n, d) rem(n, d) qcnt(2716, 10) = 271 rem(2716, 10) = 6

2716 = 271 ⋅ 10 +6 rem(−11, 7) = 3 −11 = (−2) ⋅ 7 +3

rem(32, 5) = 2

n n−1

(k. .n) ::=

(k. .n] ::=

[k. .n) ::=

[k. .n] ::=

{i ∣ k < i < n},

(k,n) ∪ {n},

{k} ∪ (k,n),

{k} ∪ (k,n) ∪ {n} = {i ∣ k ≤ i ≤ n}.

a b b ≥ a

b
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What leaps out is that at every step, the amount of water in each jug is a linear combination of  and \b\). This is easy to prove
by induction on the number of transitions:

Lemma 8.1.5 (Water Jugs). In the Die Hard state machine of Section 5.4.4 with jugs of sizes  and , the amount of water in
each jug is always a linear combination of  and .

Proof. The induction hypothesis, , is the proposition that after  transitions, the amount of water in each jug is a linear
combination of  and .

Base case :  is true, because both jugs are initially empty, and .

Inductive step: Suppose the machine is in state  after n steps, that is, the little jug contains x gallons and the big one
contains  gallons. There are two cases:

If we fill a jug from the fountain or empty a jug into the fountain, then that jug is empty or full. The amount in the other jug
remains a linear combination of  and . So  holds.

Otherwise, we pour water from one jug to another until one is empty or the other is full. By our assumption, the amount  and 
 in each jug is a linear combination of  and  before we begin pouring. After pouring, one jug is either empty (contains 0

gallons) or full (contains  or  gallons). Thus, the other jug contains either  gallons, , or  gallons, all
of which are linear combinations of  and  since  and  are. So  holds in this case as well.

Since  holds in any case, this proves the inductive step, completing the proof by induction. 

So we have established that the jug problem has a preserved invariant, namely, the amount of water in every jug is a linear
combination of the capacities of the jugs. Lemma 8.1.5 has an important corollary:

Corollary. In trying to get 4 gallons from 12- and 18-gallon jugs, and likewise to get 32 gallons from 899- and 1147-gallon
jugs,

Bruce will die!

Proof. By the Water Jugs Lemma 8.1.5, with 12- and 18-gallon jugs, the amount in any jug is a linear combination of 12 and
18. This is always a multiple of 6 by Lemma 8.1.2.2, so Bruce can’t get 4 gallons. Likewise, the amount in any jug using 899-
and 1147-gallon jugs is a multiple of 31, so he can’t get 32 either. 

But the Water Jugs Lemma doesn’t tell the complete story. For example, it leaves open the question of getting 3 gallons into a
jug using just 21- and 26-gallon jugs: the only positive factor of both 21 and 26 is 1, and of course 1 divides 3, so the Lemma
neither rules out nor confirms the possibility of getting 3 gallons.

A bigger issue is that we’ve just managed to recast a pretty understandable question about water jugs into a technical question
about linear combinations. This might not seem like a lot of progress. Fortunately, linear combinations are closely related to
something more familiar, greatest common divisors, and will help us solve the general water jug problem.

Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These super-hard unsolved problems
rarely get put on problem sets.

This theorem is often called the “Division Algorithm,” but we prefer to call it a theorem since it does not actually describe a
division procedure for computing the quotient and remainder.

(0, 0) → (a, 0)

→ (0, a)

→ (a, a)

→ (2a−b, b)

→ (2a−b, 0)

→ (0, 2a−b)

→ (a, 2a−b)

→ (3a−2b, b)

 fill first jug 

 pour first into second 

 fill first jug 

 pour first into second (assuming 2a ≥ b)

 empty second jug 

 pour first into second 

 fill first 

 pour first into second (assuming 3a ≥ 2b)

a

a b

a b

P (n) n

a b

(n = 0) P (0) 0 ⋅ a+0 ⋅ b = 0

(x, y)

y

a b P (n+1

x

y a b

a b x+y x+y−a x+y−b

a b x y P (n+1

P (n+1 ■

■

1

2
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8.2: The Greatest Common Divisor
A common divisor of  and  is a number that divides them both. The greatest common divisor of  and  is written .
For example, .

As long as  and  are not both 0, they will have a gcd. The gcd turns out to be very valuable for reasoning about the
relationship between  and  and for reasoning about integers in general. We’ll be making lots of use of gcd’s in what follows.

Some immediate consequences of the definition of gcd are that for ,

where the last equality follows from the fact that everything is a divisor of 0.

Euclid’s Algorithm
The first thing to figure out is how to find gcd’s. A good way called Euclid’s algorithm has been known for several thousand
years. It is based on the following elementary observation.

Lemma 8.2.1. For ,

Proof. By the Division Theorem 8.1.4,

where . So  is a linear combination of  and , which implies that any divisor of  and  is a divisor of a by
Lemma 8.1.2.2. Likewise,  is a linear combination, , of  and , so any divisor of  and  is a divisor of . This means
that  and  have the same common divisors as  and , and so they have the same greatest common divisor.

Lemma 8.2.1 is useful for quickly computing the greatest common divisor of two numbers. For example, we could compute
the greatest common divisor of 1147 and 899 by repeatedly applying it:

This calculation that  was how we figured out that with water jugs of sizes 1147 and 899, Bruce dies
trying to get 32 gallons.

On the other hand, applying Euclid’s algorithm to 26 and 21 gives

so we can’t use the reasoning above to rule out Bruce getting 3 gallons into the big jug. As a matter of fact, because the gcd
here is 1, Bruce will be able to get any number of gallons into the big jug up to its capacity. To explain this, we will need a
little more number theory.

Euclid’s Algorithm as a State Machine

Euclid’s algorithm can easily be formalized as a state machine. The set of states is  and there is one transition rule:

for . By Lemma 8.2.1, the gcd stays the same from one state to the next. That means the predicate

a b a b gcd(a, b)
gcd(18, 24) = 6

a b

a b

n > 0

gcd(n, n) = n, gcd(n, 1) = 1, gcd(n, 0) = 0

b ≠ 0

gcd(a, b) = gcd(b, rem(a, b)).

a = qb +r (8.2)

r = rem(a, b) a b r b r

r a −qb a b a b r

a b b r ■

gcd(1147, 899) = gcd(899, )rem(1147, 899)
  

=248

= gcd(248, rem(899, 248) = 155)

= gcd(155, rem(248, 155) = 93)

= gcd(93, rem(155, 93) = 62)

= gcd(62, rem(93, 62) = 31)

= gcd(31, rem(62, 31) = 0)

= 31

gcd(1147, 899) = 31

gcd(26, 21) = gcd(21, 5) = gcd(5, 1) = 1.

N
2

(x, y)⟶ (y, rem(x, y)), (8.3)

y > 0

gcd(x, y) = gcd(a, b).
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is a preserved invariant on the states . This preserved invariant is, of course, true in the start state . So by the
Invariant Principle, if  ever becomes 0, the invariant will be true and so

Namely, the value of  will be the desired gcd.

What’s more, , and therefore also , gets to be 0 pretty fast. To see why, note that starting from , two transitions leads to
a state whose the first coordinate is , which is at most half the size of x.  Since  starts off equal to  and gets halved
or smaller every two steps, it will reach its minimum value—which is —after at most 2 log  transitions. After that,
the algorithm takes at most one more transition to terminate. In other words, Euclid’s algorithm terminates after at most 
log  transitions.

The Pulverizer
We will get a lot of mileage out of the following key fact:

The greatest common divisor of  and  is a linear combination of  and . That is,

for some integers  and .

We already know from Lemma 8.1.2.2 that every linear combination of  and  is divisible by any common factor of  and ,
so it is certainly divisible by the greatest of these common divisors. Since any constant multiple of a linear combination is also
a linear combination, Theorem 8.2.2 implies that any multiple of the gcd is a linear combination, giving:

Corollary 8.2.3. An integer is a linear combination of  and  iff it is a multiple of .

We’ll prove Theorem 8.2.2 directly by explaining how to find  and . This job is tackled by a mathematical tool that dates
back to sixth-century India, where it was called kuttak, which means “The Pulverizer.” Today, the Pulverizer is more
commonly known as “the extended Euclidean gcd algorithm,” because it is so close to Euclid’s algorithm.

For example, following Euclid’s algorithm, we can compute the gcd of 259 and 70 as follows:

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we compute , we
keep track of how to write each of the remainders (49, 21, and 7, in the example) as a linear combination of  and . This is
worthwhile, because our objective is to write the last nonzero remainder, which is the GCD, as such a linear combination. For
our example, here is this extra bookkeeping:

We began by initializing two variables,  and . In the first two columns above, we carried out Euclid’s algorithm. At
each step, we computed  which equals . Then, in this linear combination of  and , we replaced 

(x, y) (a, b)
y

x = gcd(x, 0) = gcd(a, b).

x

x y (x, y)
rem(x, y) 3 x a

gcd(a, b) a

1 +2
a 4

Theorem 8.2.2.
a b a b

gcd(a, b) = sa + tb,

s t

a b a b

a b gcd(a, b)

s t

gcd(259, 70) = gcd(70, 49)

= gcd(49, 21)

= gcd(21, 7)

= gcd(7, 0)

= 7.

since rem(259, 70) = 49

since rem(70, 49) = 21

since rem(49, 21) = 7

since rem(21, 7) = 0

gcd(a, b)
a b

x = a y = b

rem(x, y) x −qcnt(x, y) ⋅ y x y
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 and  by equivalent linear combinations of  and , which we already had computed. After simplifying, we were left with a
linear combination of  and  equal to , as desired. The final solution is boxed.

This should make it pretty clear how and why the Pulverizer works. If you have doubts, it may help to work through Problem
8.13, where the Pulverizer is formalized as a state machine and then verified using an invariant that is an extension of the one
used for Euclid’s algorithm.

Since the Pulverizer requires only a little more computation than Euclid’s algorithm, you can “pulverize” very large numbers
very quickly by using this algorithm. As we will soon see, its speed makes the Pulverizer a very useful tool in the field of
cryptography.

Now we can restate the Water Jugs Lemma 8.1.5 in terms of the greatest common divisor:

Corollary 8.2.4. Suppose that we have water jugs with capacities  and . Then the amount of water in each jug is always a
multiple of .

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, because 4 is not a multiple of .

One Solution for All Water Jug Problems
Corollary 8.2.3 says that 3 can be written as a linear combination of 21 and 26, since 3 is a multiple of . So the
Pulverizer will give us integers  and  such that

The coefficient  could be either positive or negative. However, we can readily transform this linear combination into an
equivalent linear combination

where the coefficient  is positive. The trick is to notice that if in equation (8.5) we increase  by 26 and decrease  by 21,
then the value of the expression  is unchanged overall. Thus, by repeatedly increasing the value of  (by 26 at a
time) and decreasing the value of  (by 21 at a time), we get a linear combination  where the coefficient 
is positive. (Of course  must then be negative; otherwise, this expression would be much greater than 3.)

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply repeat the following steps  times:

1. Fill the 21-gallon jug.
2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time the 26-gallon jug becomes full, empty it out,

and continue pouring the 21- gallon jug into the 26-gallon jug.

At the end of this process, we must have emptied the 26-gallon jug exactly  times. Here’s why: we’ve taken  gallons of
water from the fountain, and we’ve poured out some multiple of 26 gallons. If we emptied fewer than  times, then by (8.6),
the big jug would be left with at least  gallons, which is more than it can hold; if we emptied it more times, the big jug
would be left containing at most  gallons, which is nonsense. But once we have emptied the 26-gallon jug exactly 
times, equation (8.6) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients  and  in order to use this strategy! Instead of repeating the outer
loop  times, we could just repeat until we obtain 3 gallons, since that must happen eventually. Of course, we have to keep
track of the amounts in the two jugs so we know when we’re done. Here’s the solution using this approach starting with empty
jugs, that is, at (0, 0):

x y a b

a b rem(x, y)

a b

gcd(a, b)

gcd(3, 6) = 3

gcd(21, 26) = 1
s t

3 = s ⋅ 21 + t ⋅ 26 (8.5)

s

3 = ⋅ 21 + ⋅ 26 (8.6)s′ t′

s′ s t

s ⋅ 21 + t ⋅ 26 s

t ⋅ 21 + ⋅ 26 = 3s′ t′ s′

t′

s′

t′ ⋅ 21s′

t′

3 +26
3 −26 −t′

s′ t′

s′
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The same approach works regardless of the jug capacities and even regardless of the amount we’re trying to produce! Simply
repeat these two steps until the desired amount of water is obtained:

1. Fill the smaller jug.
2. Pour all the water in the smaller jug into the larger jug. If at any time the larger jug becomes full, empty it out, and continue

pouring the smaller jug into the larger jug.

By the same reasoning as before, this method eventually generates every multiple— up to the size of the larger jug—of the
greatest common divisor of the jug capacities, all the quantities we can possibly produce. No ingenuity is needed at all!

So now we have the complete water jug story:

Suppose that we have water jugs with capacities  and . For any , it is possible to get  gallons in the size 
jug iff  is a multiple of .

In other words,

This is immediate if , since the remainder of  divided by  is less than  by definition. On the other hand, if 
, then .

A tighter analysis shows that at most  transitions are possible where  is the golden ratio , see Problem
8.14.

Theorem 8.2.5.
a b c ∈ [0..a] c a

c gcd(a, b)

3

rem(x, y) ≤ x/2 for 0 < y ≤ x. (8.4)

y ≤ x/2 x y y

y > x/2 rem(x, y) = x −y < x/2

4 (a)logϕ ϕ (1 + )/25
–

√
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8.3: Prime Mysteries
Some of the greatest mysteries and insights in number theory concern properties of prime numbers:

A prime is a number greater than 1 that is divisible only by itself and 1. A number other than 0, 1, and -1 that is not a
prime is called composite.

Here are three famous mysteries:

Twin Prime Conjecture There are infinitely many primes  such that  is also a prime.

In 1966, Chen showed that there are infinitely many primes  such that  is the product of at most two primes. So
the conjecture is known to be almost true!

Conjectured Inefficiency of Factoring Given the product of two large primes , there is no efficient procedure to
recover the primes  and . That is, no polynomial time procedure (see Section 3.5) is guaranteed to find  and  in a number
of steps bounded by a polynomial in the length of the binary representation of  (not  itself). The length of the binary
representation at most .

The best algorithm known is the “number field sieve,” which runs in time proportional to:

This number grows more rapidly than any polynomial in  and is infeasible when  has 300 digits or more.

Efficient factoring is a mystery of particular importance in computer science, as we’ll explain later in this chapter.

Goldbach’s Conjecture We’ve already mentioned Goldbach’s Conjecture 1.1.8 several times: every even integer greater than
two is equal to the sum of two primes. For example, , etc.

In 1939, Schnirelman proved that every even number can be written as the sum of not more than 300,000 primes, which was a
start. Today, we know that every even number is the sum of at most 6 primes.

Primes show up erratically in the sequence of integers. In fact, their distribution seems almost random:

One of the great insights about primes is that their density among the integers has a precise limit. Namely, let  denote the
number of primes up to :

For example, , and  because 2, 3, 5, and 7 are the primes less than or equal to 10. Step by step, 
grows erratically according to the erratic spacing between successive primes, but its overall growth rate is known to smooth
out to be the same as the growth of the function :

(Prime Number Theorem).

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every  in the vicinity of  is a prime.

Definition 8.3.1.

5

p p +2

p p +2

n = pq

p q p q

n n

1 + nlog2

.e
1.9(ln n (ln ln n)1/3 )2/3

log n n

4 = 2 +2, 6 = 3 +3, 8 = 3 +5

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, …

π(n)

n

Definition 8.3.2.
π(n) ::= |{p ∈ [2..n] ∣ p is prime}|.

π(1) = 0, π(2) = 1 π(10) = 4 π

n/ lnn

Theorem 8.3.3.

= 1limn→∞

π(n)

n/ lnn

lnn n
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The Prime Number Theorem was conjectured by Legendre in 1798 and proved a century later by de la Vallée Poussin and
Hadamard in 1896. However, after his death, a notebook of Gauss was found to contain the same conjecture, which he
apparently made in 1791 at age 15. (You have to feel sorry for all the otherwise “great” mathematicians who had the
misfortune of being contemporaries of Gauss.)

A proof of the Prime Number Theorem is beyond the scope of this text, but there is a manageable proof (see Problem 8.22) of
a related result that is sufficient for our applications:

(Chebyshev’s Theorem on Prime Density). For ,

.

A Prime for Google

In late 2004 a billboard appeared in various locations around the country:

Substituting the correct number for the expression in curly-braces produced the URL for a Google employment page. The idea
was that Google was interested in hiring the sort of people that could and would solve such a problem.

How hard is this problem? Would you have to look through thousands or millions or billions of digits of  to find a 10-digit
prime? The rule of thumb derived from the Prime Number Theorem says that among 10-digit numbers, about 1 in

is prime. This suggests that the problem isn’t really so hard! Sure enough, the first 10-digit prime in consecutive digits of 
appears quite early:

So 0, 1, and -1 are the only integers that are neither prime nor composite.

Theorem 8.3.4.
n > 1

π(n) >
n

3 lnn

{ } ⋅  com 
 first 10 -digit prime found 

 in consecutive digits of e

e

ln ≈ 231010

e

e = 2.718281828459045235360287471352662497757247093699959574966

9676277240766303535475945713821785251664274274663919320030

599218174135966290435729003342952605956307381323286279434 …

5

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48333?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 8.4.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48334

8.4: The Fundamental Theorem of Arithmetic
There is an important fact about primes that you probably already know: every positive integer number has a unique prime
factorization. So every positive integer can be built up from primes in exactly one way. These quirky prime numbers are the
building blocks for the integers.

Since the value of a product of numbers is the same if the numbers appear in a different order, there usually isn’t a unique way
to express a number as a product of primes. For example, there are three ways to write 12 as a product of primes:

What’s unique about the prime factorization of 12 is that any product of primes equal to 12 will have exactly one 3 and two
2’s. This means that if we sort the primes by size, then the product really will be unique.

Let’s state this more carefully. A sequence of numbers is weakly decreasing when each number in the sequence is at least as
big as the numbers after it. Note that a sequence of just one number as well as a sequence of no numbers—the empty sequence
—is weakly decreasing by this definition.

[Fundamental Theorem of Arithmetic] Every positive integer is a product of a unique weakly decreasing sequence of
primes.

For example, 75237393 is the product of the weakly decreasing sequence of primes

and no other weakly decreasing sequence of primes will give 75237393.

Notice that the theorem would be false if 1 were considered a prime; for example, 15 could be written as , or , or 

There is a certain wonder in unique factorization, especially in view of the prime number mysteries we’ve already mentioned.
It’s a mistake to take it for granted, even if you’ve known it since you were in a crib. In fact, unique factorization actually fails
for many integer-like sets of numbers, such as the complex numbers of the form  for  (see Problem
8.25).

The Fundamental Theorem is also called the Unique Factorization Theorem, which is a more descriptive and less pretentious,
name—but we really want to get your attention to the importance and non-obviousness of unique factorization.

Proving Unique Factorization
The Fundamental Theorem is not hard to prove, but we’ll need a couple of preliminary facts.

Lemma 8.4.2. If  is a prime and , then  or .

Lemma 8.4.2 follows immediately from Unique Factorization: the primes in the product  are exactly the primes from  and
from . But proving the lemma this way would be cheating: we’re going to need this lemma to prove Unique Factorization, so
it would be circular to assume it. Instead, we’ll use the properties of gcd’s and linear combinations to give an easy, noncircular
way to prove Lemma 8.4.2.

Proof. One case is if . Then the claim holds, because  is a multiple of .

Otherwise, . In this case  must be 1, since 1 and  are the only positive divisors of . Now  is
a linear combination of  and , so we have  for some . Then , that is,  is a linear
combination of  and . Since p divides both ab and p, it also divides their linear combination 

A routine induction argument extends this statement to:

Lemma 8.4.3. Let  be a prime. If , then  divides some .

Now we’re ready to prove the Fundamental Theorem of Arithmetic.

12 = 2 ⋅ 2 ⋅ 3 = 2 ⋅ 3 ⋅ 2 = 3 ⋅ 2 ⋅ 2.

Theorem 8.4.1.

23, 17, 17, 11, 7, 7, 7, 3,

6

5 ⋅ 3 5 ⋅ 3 ⋅ 1
5 ⋅ 3 ⋅ 1 ⋅ 1, …

n +m −5
−−−

√ m, n ∈ Z

p p ∣ ab p ∣ a p ∣ b

ab a

b

gcd(a, p) = p a p

gcd(a, p) ≠ p gcd(a, p) p p gcd(a, p)
a p 1 = sa + tp s, t b = s(ab) +(tb)p b

ab p b. ■

p p ∣ ⋯a1a2 an p ai
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Proof. Theorem 2.3.1 showed, using the Well Ordering Principle, that every positive integer can be expressed as a product of
primes. So we just have to prove this expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist positive integers that can be written as products of
primes in more than one way. By the Well Ordering Principle, there is a smallest integer with this property. Call this integer ,
and let

where both products are in weakly decreasing order and .

If , then  would also be the product of different weakly decreasing sequences of primes, namely,

Since , this can’t be true, so we conclude that .

Since the ’s are weakly decreasing, all the ’s are less than . But

,

so Lemma 8.4.3 implies that  divides one of the ’s, which contradicts the fact that  is bigger than all them. 

The “product” of just one number is defined to be that number, and the product of no numbers is by convention defined to be
1. So each prime, , is uniquely the product of the primes in the lengthone sequence consisting solely of , and 1, which you
will remember is not a prime, is uniquely the product of the empty sequence.

n

n = ⋅ ⋯ ,p1 p2 pj

= ⋅ ⋯ ,q1 q2 qk

≤p1 q1

=q1 p1 n/q1

⋯ ,p2 pj

⋯ ,q2 qk

n/ < nq1 <p1 q1

pi pi q1

∣ n = ⋅ ⋅q1 p1 p2 pj

q1 pi q1 ■

6

p p
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8.5: Alan Turing
The man pictured in Figure 8.1 is Alan Turing, the most important figure in the history of computer science. For decades, his
fascinating life story was shrouded by government secrecy, societal taboo, and even his own deceptions.

Figure 8.1 Alan Turing

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Application to the Entscheidungsproblem. The crux
of the paper was an elegant way to model a computer in mathematical terms. This was a breakthrough, because it allowed the
tools of mathematics to be brought to bear on questions of computation. For example, with his model in hand, Turing
immediately proved that there exist problems that no computer can solve—no matter how ingenious the programmer. Turing’s
paper is all the more remarkable because he wrote it in 1936, a full decade before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathematical problems posed by David Hilbert in 1900
as challenges to mathematicians of the 20th century. Turing knocked that one off in the same paper. And perhaps you’ve heard
of the “Church-Turing thesis”? Same paper. So Turing was a brilliant guy who generated lots of amazing ideas. But this lecture
is about one of Turing’s less-amazing ideas. It involved codes. It involved number theory. And it was sort of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf Hitler, world-shattering war looked imminent,
and—like us —Alan Turing was pondering the usefulness of number theory. He foresaw that preserving military secrets would
be vital in the coming conflict and proposed a way to encrypt communications using number theory. This is an idea that has
ricocheted up to our own time. Today, number theory is the basis for numerous public-key cryptosystems, digital signature
schemes, cryptographic hash functions, and electronic payment systems. Furthermore, military funding agencies are among the
biggest investors in cryptographic research. Sorry, Hardy!

Soon after devising his code, Turing disappeared from public view, and half a century would pass before the world learned the
full story of where he’d gone and what he did there. We’ll come back to Turing’s life in a little while; for now, let’s investigate
the code Turing left behind. The details are uncertain, since he never formally published the idea, so we’ll consider a couple of
possibilities.

Turing’s Code (Version 1.0)
The first challenge is to translate a text message into an integer so we can perform mathematical operations on it. This step is
not intended to make a message harder to read, so the details are not too important. Here is one approach: replace each letter of
the message with two digits , etc.) and string all the digits together to form one huge number. For
example, the message “victory” could be translated this way:

Turing’s code requires the message to be a prime number, so we may need to pad the result with some more digits to make a
prime. The Prime Number Theorem indicates that padding with relatively few digits will work. In this case, appending the
digits 13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below,  is the unencoded message (which we want to keep
secret),  is the encrypted message (which the Nazis may intercept), and  is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime .

(A = 01, B = 02, C = 03

→
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Encryption The sender encrypts the message  by computing:

Decryption The receiver decrypts mb by computing:

For example, suppose that the secret key is the prime number  and the message  is “victory.” Then the
encrypted message is:

There are a couple of basic questions to ask about Turing’s code.

1. How can the sender and receiver ensure that  and  are prime numbers, as required?

The general problem of determining whether a large number is prime or composite has been studied for centuries, and
tests for primes that worked well in practice were known even in Turing’s time. In the past few decades, very fast
primality tests have been found as described in the text box below.

2. Is Turing’s code secure?

The Nazis see only the encrypted message , so recovering the original message  requires factoring .
Despite ef b immense efforts, no really ficient factoring algorithm has ever been found. It appears to be a fundamentally
difficult problem. So, although a breakthrough someday can’t be ruled out, the conjecture that there is no efficient way
to factor is widely accepted. In effect, Turing’s code puts to practical use his discovery that there are limits to the power
of computation. Thus, provided  and  are sufficiently large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

Primality Testing
It’s easy to see that an integer  is prime iff it is not divisible by any number from 2 to  (see Problem 1.9). Of course this
naive way to test if  is prime takes more than  steps, which is exponential in the size of  measured by the number of
digits in the decimal or binary representation of . Through the early 1970’s, no prime testing procedure was known that
would never blow up like this.

In 1974, Volker Strassen invented a simple, fast probabilistic primality test. Strassens’s test gives the right answer when
applied to any prime number, but has some probability of giving a wrong answer on a nonprime number. However, the
probability of a wrong answer on any given number is so tiny that relying on the answer is the best bet you’ll ever make.

Still, the theoretical possibility of a wrong answer was intellectually bothersome—even if the probability of being wrong was a
lot less than the probability of an undetectable computer hardware error leading to a wrong answer. Finally in 2002, in a
breakthrough paper beginning with a quote from Gauss emphasizing the importance and antiquity of primality testing,
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena presented an amazing, thirteen line description of a polynomial time
primality test.

This definitively places primality testing way below the exponential effort apparently needed for SAT and similar problems.
The polynomial bound on the Agrawal et al. test had degree 12, and subsequent research has reduced the degree to 5, but this
is still too large to be practical, and probabilistic primality tests remain the method used in practice today. It’s plausible that the
degree bound can be reduced a bit more, but matching the speed of the known probabilistic tests remains a daunting challenge.

Breaking Turing’s Code (Version 1.0)
Let’s consider what happens when the sender transmits a second message using Turing’s code and the same key. This gives the
Nazis two encrypted messages to look at:

 and 

m

= m ⋅ km̂

= m.
m̂

k

k = 22801763489 m

m̂ = m ⋅ k

= 2209032015182513 ⋅ 22801763489

= 50369825549820718594667857

m k

= m ⋅ km̂ m m̂

m k

n [ ]n
−−

√
n [ ]n

−−
√ n

n

= ⋅ km1^ m1 = ⋅ km2^ m2
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The greatest common divisor of the two encrypted messages,  and , is the secret key . And, as we’ve seen, the GCD of
two numbers can be computed very efficiently. So after the second message is sent, the Nazis can recover the secret key and
read every message!

A mathematician as brilliant as Turing is not likely to have overlooked such a glaring problem, and we can guess that he had a
slightly different system in mind, one based on modular arithmetic.

m1^ m2^ k
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8.6: Modular Arithmetic
On the first page of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss introduced the notion of
“congruence.” Now, Gauss is another guy who managed to cough up a half-decent idea every now and then, so let’s take a
look at this one. Gauss said that  is congruent to  modulo  iff . This is written

For example:

 because 

It’s not useful to allow a modulus , and so we will assume from now on that moduli are greater than 1.

There is a close connection between congruences and remainders:

Lemma 8.6.1 (Remainder).

 iff 

Proof. By the Division Theorem 8.1.4, there exist unique pairs of integers  and  such that:

where . Subtracting the second equation from the first gives:

where  is in the interval . Now  if and only if  divides the left side of this equation. This is
true if and only if  divides the right side, which holds if and only if  is a multiple of . But the only multiple of  in 

 is 0, so  must in fact equal 0, that is, when 

So we can also see that

 because 

Notice that even though “(mod 7)” appears on the end, the  symbol isn’t any more strongly associated with the 15 than with
the 29. It would probably be clearer to write , for example, but the notation with the modulus at the end is
firmly entrenched, and we’ll just live with it.

The Remainder Lemma 8.6.1 explains why the congruence relation has properties like an equality relation. In particular, the
following properties  follow immediately:

Lemma 8.6.2.

We’ll make frequent use of another immediate corollary of the Remainder Lemma 8.6.1:

Corollary 8.6.3.

Still another way to think about congruence modulo  is that it defines a partition of the integers into  sets so that congruent
numbers are all in the same set. For example, suppose that we’re working modulo 3. Then we can partition the integers into 3
sets as follows:

a b n n ∣ (a−b)

a ≡ b (mod n).

29 ≡ 15 (mod 7) 7 ∣ (29 −15)

n ≤ 1

a ≡ b (mod n) rem(a,n) = rem(b,n)

,q1 r1 ,q2 r2

a

b

= n+r1q1

= n+r2,q2

, ∈ [0..n)r1 r2

a−b = ( − )n+( − )q1 q2 r1 r2

−r1 r2 (−n,n) a ≡ b (mod n) n

n −r1 r2 n n

(−n,n) −r1 r2 ::= rem(a,n) = ::= rem(b,n). ■r1 r2

29 ≡ 15 (mod 7) rem(29, 7) = 1 = rem(15, 7)

≡

29 15≡ mod 7

7

a ≡ a (mod n)

a ≡ b IFF b ≡ a (mod n)

(a ≡ b AND b ≡ c) IMPLIES a ≡ c (mod n)

(reflexivity)

(symmetry)

(transitivity)

a ≡ rem(a,n) (mod n)

n n

{… , −6, −3, 0, 3, 6, 9, …}

{… , −5, −2, 1, 4, 7, 10, …}

{… , −4, −1, 2, 5, 8, 11, …}
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according to whether their remainders on division by 3 are 0, 1, or 2. The upshot is that when arithmetic is done modulo ,
there are really only  different kinds of numbers to worry about, because there are only  possible remainders. In this sense,
modular arithmetic is a simplification of ordinary arithmetic.

The next most useful fact about congruences is that they are preserved by addition and multiplication:

Lemma 8.6.4 (Congruence). If  and , then

Proof. Let’s start with 8.7. Since , we have by definition that , so

Since , the same reasoning leads to

Now transitivity (Lemma 8.6.2) gives

The proof for 8.8 is virtually identical, using the fact that if  divides , then it certainly also divides .

Binary relations with these properties are called equivalence relations, see Section 9.10.

n

n n

a ≡ b (mod n) c ≡ d (mod n)

a+c ≡ b+d (mod n), (8.7)

ac ≡ bd (mod n), (8.8)

a ≡ b (mod n) n ∣ (b−a) = (b+c) −(a+c)

a+c ≡ b+c (mod n).

c ≡ d (mod n)

b+c ≡ b+d (mod n).

a+c ≡ b+d (mod n).

n b−a (bc−ac) ■

7
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8.7: Remainder Arithmetic
The Congruence Lemma 8.6.1 says that two numbers are congruent iff their remainders are equal, so we can understand
congruences by working out arithmetic with remainders. And if all we want is the remainder modulo  of a series of additions,
multiplications, subtractions applied to some numbers, we can take remainders at every step so that the entire computation
only involves number in the range .

General Principle of Remainder Arithmetic

To find the remainder on division by  of the result of a series of additions and multiplications, applied to some integers

replace each integer operand by its remainder on division by ,
keep each result of an addition or multiplication in the range  by immediately replacing any result outside that range
by its remainder on division by .

For example, suppose we want to find

This looks really daunting if you think about computing these large powers and then taking remainders. For example, the
decimal representation of  has about 20 million digits, so we certainly don’t want to go that route. But
remembering that integer exponents specify a series of multiplications, we follow the General Principle and replace the
numbers being multiplied by their remainders. Since , , and , we
find that (8.9) equals the remainder on division by 36 of

That’s a little better, but  has about a million digits in its decimal representation, so we still don’t want to compute that.
But let’s look at the remainders of the first few powers of 3:

We got a repeat of the second step,  after just two more steps. This means means that starting at , the sequence
of remainders of successive powers of 3 will keep repeating every 2 steps. So a product of an odd number of at least three 3’s
will have the same remainder on division by 36 as a product of just three 3’s. Therefore,

What a win!

Powers of 6 are even easier because , so 0’s keep repeating after the second step. Powers of 7 repeat after six
steps, but on the fifth step you get a 1, that is , so (8.10) successively simplifies to be the remainders of the
following terms:

Notice that it would be a disastrous blunder to replace an exponent by its remainder. The general principle applies to numbers
that are operands of plus and times, whereas the exponent is a number that controls how many multiplications to perform.
Watch out for this.

The ring 
It’s time to be more precise about the general principle and why it works. To begin, let’s introduce the notation  for doing
an addition and then immediately taking a remainder on division by , as specified by the general principle; likewise for

n

[0..n)

n

n

[0..n)

n

rem(( + ) , 36). (8.9)444273456789 155558585555 4036666666

444273456789

rem(44427, 36) = 3 rem15555858, 36) = 6 rem403, 36) = 7

( + ) . (8.10)33456789 65555 76666666

33456789

rem(3, 36)

rem( , 36)32

rem( , 36)33

rem( , 36)34

= 3

= 9

= 27

= 9.

rem( , 36)32 32

rem( , 36) = rem( , 36) = 27.33456789 33

rem( , 36) = 062

rem( , 36) = 176

( + )33456789 65555 76666666

( + ⋅ )(33 62 65553 76)1111111

( +0 ⋅ )33 65553 11111111

= 27

Zn

+n

n
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multiplying:

Now the General Principle is simply the repeated application of the following lemma.

Lemma 8.7.1.

Proof. By Corollary 8.6.3,  and , so by the Congruence Lemma 8.6.4

By Corollary 8.6.3 again, the remainders on each side of this congruence are equal, which immediately gives (8.11). An
identical proof applies to (8.12). 

The set of integers in the range  together with the operations  and  is referred to as , the ring of integers modulo 
. As a consequence of Lemma 8.7.1, the familiar rules of arithmetic hold in , for example:

These subscript- 's on arithmetic operations really clog things up, so instead we'll just write " " on the side to get a
simpler looking equation:

In particular, all of the following equalities  are true in :

Associativity implies the familiar fact that it’s safe to omit the parentheses in products:

comes out the same in  no matter how it is parenthesized.

The overall theme is that remainder arithmetic is a lot like ordinary arithmetic. But there are a couple of exceptions we’re
about to examine.

i j+n

i j⋅n

::= rem(i +j, n),

::= rem(ij, n).

rem(i +j, n) = rem(i, n) rem(j, n), (8.11)+n

rem(ij, n) = rem(i, n) rem(j, n), (8.12)+n

i ≡ rem(i, n) j ≡ rem(j, n)

i +j ≡ rem(i, n) +rem(j, n) (mod n).

■

[0. . n) +n ⋅n Zn

n Zn

(i j) k = i (j k).⋅n ⋅n ⋅n ⋅n

n ( )Zn

(i ⋅ j) ⋅ k = i ⋅ (j ⋅ k) ( )Zn

8 Zn

(i ⋅ j) ⋅ k

(i +j) +k

1 ⋅ k

0 +k

k +(−k)

i +j

i ⋅ (j+k)

i ⋅ j

= i ⋅ (j ⋅ k)

= i +(j+k)

= k

= k

= 0

= j+ i

= (i ⋅ j) +(i ⋅ k)

= j ⋅ i

 (associativity of ⋅),

 (associativity of +),

identity for ⋅),

(identity for +),

(inverse for +),

(commutativity of +)

(distributivity),

(commutativity of ⋅)

⋅ ⋯k1 k2 km

Zn
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8.8: Turing’s Code (Version 2.0)
In 1940, France had fallen before Hitler’s army, and Britain stood alone against the Nazis in western Europe. British resistance
depended on a steady flow of supplies brought across the north Atlantic from the United States by convoys of ships. These
convoys were engaged in a cat-and-mouse game with German “U-boats” —submarines—which prowled the Atlantic, trying to
sink supply ships and starve Britain into submission. The outcome of this struggle pivoted on a balance of information: could
the Germans locate convoys better than the Allies could locate U-boats, or vice versa?

Germany lost.

A critical reason behind Germany’s loss was not made public until 1974: Germany’s naval code, Enigma, had been broken by
the Polish Cipher Bureau,  and the secret had been turned over to the British a few weeks before the Nazi invasion of Poland
in 1939. Throughout much of the war, the Allies were able to route convoys around German submarines by listening in to
German communications. The British government didn’t explain how Enigma was broken until 1996. When the story was
finally released (by the US), it revealed that Alan Turing had joined the secret British codebreaking effort at Bletchley Park in
1939, where he became the lead developer of methods for rapid, bulk decryption of German Enigma messages. Turing’s
Enigma deciphering was an invaluable contribution to the Allied victory over Hitler.

Governments are always tight-lipped about cryptography, but the half-century of official silence about Turing’s role in
breaking Enigma and saving Britain may be related to some disturbing events after the war—more on that later. Let’s get back
to number theory and consider an alternative interpretation of Turing’s code. Perhaps we had the basic idea right (multiply the
message by the key), but erred in using conventional arithmetic instead of modular arithmetic. Maybe this is what Turing
meant:

Beforehand The sender and receiver agree on a large number , which may be made public. (This will be the modulus for all
our arithmetic.) As in Version 1.0, they also agree that some prime number  will be the secret key.

Encryption As in Version 1.0, the message  should be another prime in . The sender encrypts the message  to
produce  by computing , but this time modulo :

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way as before by dividing the encrypted message 
by the key . The difficulty is that  is the remainder when  is divided by . So dividing  by  might not even give us
an integer!

This decoding difficulty can be overcome with a better b understanding of when it is ok to divide by  in modular arithmetic.

A set with addition and multiplication operations that satisfy these equalities is known as a commutative ring. In addition to 
, the integers, rationals, reals, and polynomials with integer coefficients are all examples of commutative rings. On the other

hand, the set  of truth values with  for addition and  for multiplication is not a commutative ring because it
fails to satisfy one of these equalities. The  matrices of integers are not a commutative ring because they fail to satisfy
another one of these equalities.

See http://en.Wikipedia.org/wiki/Polish_Cipher_Bureau.
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n

k < n

m [0..n) m

m̂ mk n

::= m ⋅ k( ) (8.13)m̂ Zn
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k m̂ mk n m̂ k

k
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8.9: Multiplicative Inverses and Cancelling
The multiplicative inverse of a number  is another number  such that

From now on, when we say “inverse,” we mean multiplicative (not relational) inverse.

For example, over the rational numbers,  is, of course, an inverse of 3, since,

In fact, with the sole exception of 0, every rational number  has an inverse, namely, . On the other hand, over the
integers, only 1 and -1 have inverses. Over the ring , things get a little more complicated. For example, in , 2 is a
multiplicative inverse of 8, since

On the other hand, 3 does not have a multiplicative inverse in . We can prove this by contradiction: suppose there was an
inverse  for 3, that is

Then multiplying both sides of this equality by 5 leads directly to the contradiction :

So there can’t be any such inverse .

So some numbers have inverses modulo 15 and others don’t. This may seem a little unsettling at first, but there’s a simple
explanation of what’s going on.

Relative Primality
Integers that have no prime factor in common are called relatively prime.  This is the same as having no common divisor
(prime or not) greater than 1. It’s also equivalent to saying .

For example, 8 and 15 are relatively prime, since . On the other hand, 3 and 15 are not relatively prime, since 
. This turns out to explain why 8 has an inverse over  and 3 does not.

Lemma 8.9.1. If  is relatively prime to , then  has an inverse in .

Proof. If  is relatively prime to , then  by definition of gcd. This means we can use the Pulverizer from
section 8.2.2 to find a linear combination of  and  equal to 1:

.

So applying the General Principle of Remainder Arithmetic (Lemma 8.7.1), we get

But , and  since , so we get

Thus,  is a multiplicative inverse of 

By the way, it's nice to know that when they exist, inverses are unique. That is,

Lemma 8.9.2. If  and  are both inverses of  in , then .

Proof.

x x−1

⋅ x = 1x−1

1/3

⋅ 3 = 1.
1

3

n/m m/n

Zn Z
15

2 ⋅ 8 = 1( ).Z15

Z15

j

1 = 3 ⋅ j( ).Z15

5 = 0

5 = 5 ⋅ (3 ⋅ j)

= (5 ⋅ 3) ⋅ j

= 0 ⋅ j = 0( )Z15

j
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gcd(a, b) = 1

gcd(8, 15) = 1

gcd(3, 15) = 3 ≠ 1 Z15

k ∈ [0..n) n k Zn

k n gcd(n, k) = 1

n k

sn + tk = 1

rem(s, n) ⋅ rem(n, n)) +(rem(t, n) ⋅ rem(k, n)) = 1( ).Zn

rem(n, n) = 0 rem(k, n) = k k ∈ [0. . n)

rem(t, n) ⋅ k = 1( )Zn

rem(t, n) k. ■

i j k Zn i = j

i = i ⋅ 1 = i ⋅ (k ⋅ j) = (i ⋅ k) ⋅ j = 1 ⋅ j = j( ). ■Zn
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So the proof of Lemma 8.9.1 shows that for any  relatively prime to , the inverse of  in  is simply the remainder of a
coefficient we can easily find using the Pulverizer.

Working with a prime modulus is attractive here because, like the rational and real numbers, when  is prime, every nonzero
number has an inverse in . But arithmetic modulo a composite is really only a little more painful than working modulo a
prime—though you may think this is like the doctor saying, “This is only going to hurt a little,” before he jams a big needle in
your arm.

Cancellation
Another sense in which real numbers are nice is that it’s ok to cancel common factors. In other words, if we know that 
for real numbers , then as long as , we can cancel the ’s and conclude that . In general, cancellation is not
valid in . For example,

but cancelling the 3’s leads to the absurd conclusion that 10 equals 5.

The fact that multiplicative terms cannot be cancelled is the most significant way in which  arithmetic differs from ordinary
integer arithmetic.

A number  is cancellable in  iff

 implies 

for all 

If a number is relatively prime to 15, it can be cancelled by multiplying by its inverse. So cancelling works for numbers that
have inverses:

Lemma 8.9.4. If  has an inverse in , then it is cancellable.

But 3 is not relatively prime to 15, and that’s why it is not cancellable. More generally, if  is not relatively prime to , then
we can show it isn’t cancellable in  in the same way we showed that 3 is not cancellable in (8.14).

To summarize, we have

The following are equivalent for :

,

 has an inverse in ,

 is cancellable in .

Decrypting (Version 2.0)
Multiplicative inverses are the key to decryption in Turing’s code. Specifically, we can recover the original message by
multiplying the encoded message by the -inverse, , of the key:

So all we need to decrypt the message is to find an inverse of the secret key , which will be easy using the Pulverizer—
providing  has an inverse. But  is positive and less than the modulus , so one simple way to ensure that  is relatively
prime to the modulus is to have  be a prime number.

Breaking Turing’s Code (Version 2.0)
The Germans didn’t bother to encrypt their weather reports with the highly-secure Enigma system. After all, so what if the
Allies learned that there was rain off the south coast of Iceland? But amazingly, this practice provided the British with a
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critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been transmitted using Enigma from U-boats out in the
Atlantic. Thus, the British obtained both unencrypted reports and the same reports encrypted with Enigma. By comparing the
two, the British were able to determine which key the Germans were using that day and could read all other Enigma-encoded
traffic. Today, this would be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Suppose that the Nazis know both the plain text, ,
and its encrypted form, . Now in ersion 2.0,

and since  is positive and less than b the prime , the Nazis can use the Pulverizer to find the -inverse, , of . Now

So by computing , the Nazis get the secret key and can then decrypt any message!

This is a huge vulnerability b , so Turing’s hypothetical Version 2.0 code has no practical value. Fortunately, Turing got better
at cryptography after devising this code; his subsequent deciphering of Enigma messages surely saved thousands of lives, if
not the whole of Britain.

Turing Postscript
A few years after the war, Turing’s home was robbed. Detectives soon determined that a former homosexual lover of Turing’s
had conspired in the robbery. So they arrested him—that is, they arrested Alan Turing—because at that time in Britain,
homosexuality was a crime punishable by up to two years in prison. Turing was sentenced to a hormonal “treatment” for his
homosexuality: he was given estrogen injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His mother explained what happened in a
biography of her own son. Despite her repeated warnings, Turing carried out chemistry experiments in his own home.
Apparently, her worst fear was realized: by working with potassium cyanide while eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a devout woman who considered suicide a sin. And, other
biographers have pointed out, Turing had previously discussed committing suicide by eating a poisoned apple. Evidently, Alan
Turing, who founded computer science and saved his country, took his own life in the end, and in just such a way that his
mother could believe it was an accident.

Turing’s last project before he disappeared from public view in 1939 involved the construction of an elaborate mechanical
device to test a mathematical conjecture called the Riemann Hypothesis. This conjecture first appeared in a sketchy paper by
Bernhard Riemann in 1859 and is now one of the most famous unsolved problems in mathematics.

Other texts call them coprime.
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8.10: Euler's Theorem
The RSA cryptosystem examined in the next section, and other current schemes for encoding secret messages, involve
computing remainders of numbers raised to large powers. A basic fact about remainders of powers follows from a theorem due
to Euler about congruences.

For , define 

This function  is known as Euler’s  function.

For example,  because all 6 positive numbers in  are relatively prime to the prime number 7. Only 0 is not
relatively prime to 7. Also,  since 1, 5, 7, and 11 are the only numbers in  that are relatively prime to 12.

More generally, if  is prime, then  since every positive number in  is relatively prime to . When  is
composite, however, the  function gets a little complicated. We’ll get back to it in the next section.

Euler’s Theorem is traditionally stated in terms of congruence:

(Euler’s Theorem). If n and k are relatively prime, then

The Riemann Hypothesis

The formula for the sum of an infinite geometric series says:

Substituting , and so on for each prime number gives a sequence of equations:

Multiplying together all the left sides and all the right sides gives:

The sum on the left is obtained by multiplying out all the infinite series and applying the Fundamental Theorem of Arithmetic.
For example, the term  in the sum is obtained by multiplying  from the first equation by  in the second and 

 in the third. Riemann noted that every prime appears in the expression on the right. So he proposed to learn about the
primes by studying the equivalent, but simpler expression on the left. In particular, he regarded  as a complex number and the
left side as a function, . Riemann found that the distribution of primes is related to values of  for which , which
led to his famous conjecture:
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ϕ(n) ::= the number of integers in [0..n),  that are relatively prime to n.

ϕ ϕ 12

ϕ(7) = 6 [0..7)

ϕ(12) = 4 [0..12)

p ϕ(p) = p −1 [0..p) p n

ϕ

Theorem

≡ 1 (mod n) (8.15)kϕ(n)

1 +x + + +⋯ =x2 x3 1

1 −x

x = , x = , x =1
2s

1
3s

1
5s

1 + + + +⋯
1

2s

1

22s

1

23s

1 + + + +⋯
1

3s

1

32s

1

33s

1 + + + +⋯
1

5s

1

52s

1

53s

=
1

1 −1/2s

=
1

1 −1/3s

=
1

1 −1/5s

etc.

= ( )∑∞
n=1

1

ns
∏p∈ primes 

1

1 −1/ps

1/300s 1/22s 1/es

1/52s

s

ξ(s) s ξ(s) = 0

Definition 8.9.6.

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48340?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/02%3A_Structures/08%3A_Number_Theory/8.10%3A_Euler's_Theorem


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 8.10.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48340

The Riemann Hypothesis: Every nontrivial zero of the zeta function  lies on the line  in the complex
plane.

A proof would immediately imply, among other things, a strong form of the Prime Number Theorem.

Researchers continue to work intensely to settle this conjecture, as they have for over a century. It is another of the Millennium
Problems whose solver will earn $1,000,000 from the Clay Institute.

Things get simpler when we rephrase Euler’s Theorem in terms of .

Let  be the integers in , that are relatively prime to : 

Consequently,

(Euler's Theorem for  ). For all ,

Theorem 8.10.3 will follow from two very easy lemmas.

Let's start by observing that  is closed under multiplication in :

Lemma 8.10.4. If , then .

There are lots of easy ways to prove this (see Problem 8.67).

For any element  and subset  of , let

Lemma 8.10.6. If  and , then

.

Proof. Since , by Theorem 8.9.5. it is cancellable. Therefore,

So mulitplying by  in  maps all the elements of  to distinct elements of , which implies  and  are the same size. 

Corollary 8.10.7. If 

Proof. A product of elements in  remains in  by Lemma 8.10.4. So if , then . But by Lemma 8.10.6, 
 and  are the same size, so they must be equal. 

Proof. (of Euler's Theorem 8.10.3 for )
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for some . Factoring out  's immediately gives

But  is the same as the product of the numbers in , and , so we realize that  is the product of the same
numbers as , just in a different order. Altogether, we have

Furthermore,  by Lemma 8.10.4, and so it can be cancelled from both sides of this equality, giving

Euler’s theorem offers another way to find inverses modulo : if  is relatively prime to , then  is a -inverse of ,
and we can compute this power of  efficiently using fast exponentiation. However, this approach requires computing . In
the next section, we’ll show that computing  is easy if we know the prime factorization of . But we know that finding
the factors of  is generally hard to do when  is large, and so the Pulverizer remains the best approach to computing inverses
modulo .

Fermat’s Little Theorem

For the record, we mention a famous special case of Euler’s Theorem that was known to Fermat a century earlier.

Corollary 8.10.8 (Fermat’s Little Theorem). Suppose  is a prime and  is not a multiple of . Then:

Computing Euler’s  Function
RSA works using arithmetic modulo the product of two large primes, so we begin with an elementary explanation of how to
compute  for primes  and :

Lemma 8.10.9.

for primes .

Proof. Since  and  are prime, any number that is not relatively prime to  must be a multiple of  or a multiple of . Among
the  numbers in , there are precisely  multiples of  and  multiples of . Since  and  are relatively prime, the only
number in  that is a multiple of both  and  is 0. Hence, there are  numbers in  that are not relatively
prime to . This means that

as claimed.  

The following theorem provides a way to calculate  for arbitrary .

(a) If  is a prime, then  for . 
(b) If  and  are relatively prime, then .

Here's an example of using Theorem 8.10.10. to compute  :

Note that Lemma 8.10.9 also follows as a special case of Theorem 8.10.10.(b), since we know that  for any
prime, .
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To prove Theorem 8.10.10.(a), notice that every th number among the  numbers in  is divisible by , and only these
are divisible by . So  of these numbers are divisible by  and the remaining ones are not. That is,

We'll leave a proof of Theorem 8.10.10.(b) to Problem 8.62.

As a consequence of Theorem 8.10.10, we have

Corollary 8.10.11. For any number , if  are the (distinct) prime factors of , then

We’ll give another proof of Corollary 8.10.11 based on rules for counting in Section 14.9.5.

Since 0 is not relatively prime to anything,  could equivalently be defined using the interval  instead of .

Some texts call it Euler’s totient function.

Some other texts use the notation  for .

This proof previews a kind of counting argument that we will explore more fully in Part III.
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8.11: RSA Public Key Encryption
Turing’s code did not work as he hoped. However, his essential idea—using number theory as the basis for cryptography—
succeeded spectacularly in the decades after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a highly secure cryptosystem, called RSA, based
on number theory. The purpose of the RSA scheme is to transmit secret messages over public communication channels. As
with Turing’s codes, the messages transmitted are nonnegative integers of some fixed size.

Moreover, RSA has a major advantage over traditional codes: the sender and receiver of an encrypted message need not meet
beforehand to agree on a secret key. Rather, the receiver has both a private key, which they guard closely, and a public key,
which they distribute as widely as possible. A sender wishing to transmit a secret message to the receiver encrypts their
message using the receiver’s widelydistributed public key. The receiver can then decrypt the received message using their
closely held private key. The use of such a public key cryptography system allows you and Amazon, for example, to engage in
a secure transaction without meeting up beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s hypothetical Version 2.0 may have, but rather modulo the
product of two large primes—typically primes that are hundreds of digits long. Also, instead of encrypting by multiplication
with a secret key, RSA exponentiates to a secret power—which is why Euler’s Theorem is central to understanding RSA.

The scheme for RSA public key encryption appears in the box.

If the message  is relatively prime to , then a simple application of Euler’s Theorem implies that this way of decoding the
encrypted message indeed reproduces the original unencrypted message. In fact, the decoding always works—even in (the
highly unlikely) case that  is not relatively prime to . The details are worked out in Problem 8.81.

RSA Cryptosystem
A Receiver who wants to be able to receive secret numerical messages creates a private key, which they keep secret, and a
public key, which they make publicly available. Anyone with the public key can then be a Sender who can publicly send
secret messages to the Receiver—even if they have never communicated or shared any information besides the public key.

Here is how they do it:

Beforehand The Receiver creates a public key and a private key as follows.

1. Generate two distinct primes,  and . These are used to generate the private key, and they must be kept hidden. (In current
practice,  and  are chosen to be hundreds of digits long.)

2. Let .
3. Select an integer  such that . The public key is the pair . This should be

distributed widely.
4. Let the private key  be the inverse of  in the ring . This private key can be found using the

Pulverizer. The private key  should be kept hidden!

Encoding To transmit a message  to Receiver, a Sender uses the public key to encrypt  into a numerical
message

The Sender can then publicly transmit  to the Receiver.

Decoding The Receiver decrypts message  back to message  using the private key:

Why is RSA thought to be secure? It would be easy to figure out the private key  if you knew  and —you could do it the
same way the Receiver does using the Pulverizer. But assuming the conjecture that it is hopelessly hard to factor a number that
is the product of two primes with hundreds of digits, an effort to factor n is not going to break RSA.

Could there be another approach to reverse engineer the private key  from the public key that did not involve factoring ?
Not really. It turns out that given just the private and the public keys, it is easy to factor   (a proof of this is sketched in
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Problem 8.83). So if we are confident that factoring is hopelessly hard, then we can be equally confident that finding the
private key just from the public key will be hopeless.

But even if we are confident that an RSA private key won’t be found, this doesn’t rule out the possibility of decoding RSA
messages in a way that sidesteps the private key. It is an important unproven conjecture in cryptography that any way of
cracking RSA—not just by finding the secret key—would imply the ability to factor. This would be a much stronger
theoretical assurance of RSA security than is presently known.

But the real reason for confidence is that RSA has withstood all attacks by the world’s most sophisticated cryptographers for
nearly 40 years. Despite decades of these attacks, no significant weakness has been found. That’s why the mathematical,
financial, and intelligence communities are betting the family jewels on the security of RSA encryption.

You can hope that with more studying of number theory, you will be the first to figure out how to do factoring quickly and,
among other things, break RSA. But be further warned that even Gauss worked on factoring for years without a lot to show for
his efforts—and if you do figure it out, you might wind up meeting some humorless fellows working for a Federal agency in
charge of security. . . .

In practice, for this reason, the public and private keys should be randomly chosen so that neither is "too small".15
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8.12: What has SAT got to do with it?
So why does society, or at least everybody’s secret codes, fall apart if there is an efficient test for satisfiability (SAT), as we
claimed in Section 3.5? To explain this, remember that RSA can be managed computationally because multiplication of two
primes is fast, but factoring a product of two primes seems to be overwhelmingly demanding.

Let’s begin with the observation from Section 3.2 that a digital circuit can be described by a bunch of propositional formulas
of about the same total size as the circuit. So testing circuits for satisfiability is equivalent to the SAT problem for
propositional formulas (see Problem 3.18).

Now designing digital multiplication circuits is completely routine. We can easily build a digital “product checker” circuit out
of , , and  gates with 1 output wire and  digital input wires. The first  inputs are for the binary
representation of an integer , the next  inputs for the binary representation of an integer , and the remaining  inputs for
the binary representation of an integer . The output of the circuit is 1 iff  and . A straightforward design for
such a product checker uses proportional to  gates.

Now here’s how to factor any number  with a length  binary representation using a SAT solver. First, fix the last 
digital inputs—the ones for the binary representation of —so that  equals .

Next, set the first of the  digital inputs for the representation of  to be 1. Do a SAT test to see if there is a satisfying
assignment of values for the remaining  inputs used for the  and  representations. That is, see if the remaining inputs
for  and  can be filled in to cause the circuit to give output 1. If there is such an assignment, fix the first -input to be 1,
otherwise fix it to be 0. So now we have set the first -input equal to the first digit of the binary representations of an  such
that .

Now do the same thing to fix the second of the  digital inputs for the representation of , and then third, proceeding in this
way through all the  inputs for the number . At this point, we have the complete -bit binary representation of an  such

 for some . In other words, we have found an integer  that is a factor of . We can now find  by dividing  by 
.

So after  SAT tests, we have factored . This means that if SAT for digital circuits with  inputs and about  gates could
be determined by a procedure taking a number of steps bounded above by a degree  polynomial in , then  digit numbers
can be factored in  times this many steps, that is, with a number of steps bounded by a polynomial of degree  in . So if
SAT could be solved in polynomial time, then so could factoring, and consequently RSA would be “easy” to break.
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9: DIRECTED GRAPHS AND PARTIAL ORDERS

Directed graphs, called digraphs for short, provide a handy way to represent how things are
connected together and how to get from one thing to another by following those connections. They
are usually pictured as a bunch of dots or circles with arrows between some of the dots, as in Figure
9.1. The dots are called nodes or vertices and the lines are called directed edges or arrows; the
digraph in Figure 9.1 has 4 nodes and 6 directed edges.

Digraphs appear everywhere in computer science. For example, the digraph in Figure 9.2 represents
a communication net, a topic we’ll explore in depth in Chapter 10. Figure 9.2 has three “in” nodes
(pictured as little squares) representing locations where packets may arrive at the net, the three “out”
nodes representing destination locations for packets, and the remaining six nodes (pictured with little
circles) represent switches. The 16 edges indicate paths that packets can take through the router.

Another place digraphs emerge in computer science is in the hyperlink structure of the World Wide Web. Letting the vertices 
correspond to web pages, and using arrows to indicate when one page has a hyperlink to another, results in a digraph like the one in
Figure 9.3—although the graph of the real World Wide Web would have  be a number in the billions and probably even the trillions.
At first glance, this graph wouldn’t seem to be very interesting. But in 1995, two students at Stanford, Larry Page and Sergey Brin,
ultimately became multibillionaires from the realization of how useful the structure of this graph could be in building a search engine.
So pay attention to graph theory, and who knows what might happen!

Figure 9.1 A 4-node directed graph with 6 edges.

Figure 9.2 A 6-switch packet routing digraph.
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Figure 9.3 Links among Web Pages.

Figure 9.4 A directed edge . The edge  starts at the tail vertex, , and ends at the head vertex, .

Definition 9.0.1.

A directed graph, , consists of a nonempty set, , called the vertices of , and a set, , called the edges of . An element of 
 is called a vertex. A vertex is also called a node; the words “vertex” and “node” are used interchangeably. An element of  is

called a directed edge. A directed edge is also called an “arrow” or simply an “edge.” A directed edge starts at some vertex, , called
the tail of the edge, and ends at some vertex, , called the head of the edge, as in Figure 9.4. Such an edge can be represented by the
ordered pair . The notation  denotes this edge.

There is nothing new in Definition 9.0.1 except for a lot of vocabulary. Formally, a digraph  is the same as a binary relation on the set,
—that is, a digraph is just a binary relation whose domain and codomain are the same set, . In fact, we’ve already referred

to the arrows in a relation  as the “graph” of . For example, the divisibility relation on the integers in the interval  could be
pictured by the digraph in Figure 9.5.

9.1: VERTEX DEGREES
The in-degree of a vertex in a digraph is the number of arrows coming into it, and similarly its out-degree is the number of arrows out
of it.

9.2: WALKS AND PATHS
9.3: ADJACENCY MATRICES
9.4: WALK RELATIONS
9.5: DIRECTED ACYCLIC GRAPHS AND SCHEDULING
9.6: PARTIAL ORDERS
9.7: REPRESENTING PARTIAL ORDERS BY SET CONTAINMENT
9.8: LINEAR ORDERS
9.9: PRODUCT ORDERS
9.10: EQUIVALENCE RELATIONS
9.11: SUMMARY OF RELATIONAL PROPERTIES

e = ⟨u → v⟩ e u v

G V (G) G E(G) G

V (G) E(G)
u

v

(u, v) ⟨u → v⟩

G

V = V (G) V

G G [1..12]
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9.1: Vertex Degrees
The in-degree of a vertex in a digraph is the number of arrows coming into it, and similarly its out-degree is the number of
arrows out of it. More precisely,

If  is a digraph and , then

An immediate consequence of this definition is

Lemma 9.1.2.

Proof. Both sums are equal to . 

Figure 9.5 The Digraph for Divisibility on .

Definition 9.1.1
G v ∈ V (G)

indeg(v) ::=∣ {e ∈ E(G) ∣ head(e) = v}∣

outdeg(v) ::=∣ {e ∈ E(G) ∣ tail(e) = v}∣

indeg(v) = outdeg(v)∑
v∈V(G)

∑
v∈V(G)

∣E(G)∣ ■

{1, 2, … , 12}
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9.2: Walks and Paths
Picturing digraphs with points and arrows makes it natural to talk about following successive edges through the graph. For
example, in the digraph of Figure 9.5, you might start at vertex 1, successively follow the edges from vertex 1 to vertex 2,
from 2 to 4, from 4 to 12, and then from 12 to 12 twice (or as many times as you like). The sequence of edges followed in this
way is called a walk through the graph. A path is a walk which never visits a vertex more than once. So following edges from
1 to 2 to 4 to 12 is a path, but it stops being a path if you go to 12 again.

The natural way to represent a walk is with the sequence of successive vertices it went through, in this case:

1 2 4 12 12 12.

However, it is conventional to represent a walk by an alternating sequence of successive vertices and edges, so this walk would
formally be

The redundancy of this definition is enough to make any computer scientist cringe, but it does make it easy to talk about how
many times vertices and edges occur on the walk. Here is a formal definition:

A walk in a digraph, , is an alternating sequence of vertices and edges that begins with a vertex, ends with a vertex, and
such that for every edge  in the walk, vertex  is the element just before the edge, and vertex  is the next
element after the edge.

So a walk, , is a sequence of the form

where  for . The walk is said to start at , to end at , and the length, , of the walk is defined
to be .

The walk is a path iff all the ’s are different, that is, if , then .

A closed walk is a walk that begins and ends at the same vertex. A cycle is a positive length closed walk whose vertices are
distinct except for the beginning and end vertices.

Note that a single vertex counts as a length zero path that begins and ends at itself. It also is a closed walk, but does not count
as a cycle, since cycles by definition must have positive length. Length one cycles are possible when a node has an arrow
leading back to itself. The graph in Figure 9.1 has none, but every vertex in the divisibility relation digraph of Figure 9.5 is in a
length one cycle. Length one cycles are sometimes called self-loops.

Although a walk is officially an alternating sequence of vertices and edges, it is completely determined just by the sequence of
successive vertices on it, or by the sequence of edges on it. We will describe walks in these ways whenever it’s convenient. For
example, for the graph in Figure 9.1,

, or simply , is a (vertex-sequence description of a) length two path,
, or simply , is (an edge-sequence description of) the same length two path,

 is a length four walk,
 is a length five closed walk,

 is a length three cycle,
 is a length two cycle, and

 is not a walk. A walk is not allowed to follow edges in the wrong direction.

If you walk for a while, stop for a rest at some vertex, and then continue walking, you have broken a walk into two parts. For
example, stopping to rest after following two edges in the walk (9.1) through the divisibility graph breaks the walk into the
first part of the walk

1⟨1 → 2⟩2⟨2 → 4⟩4⟨4 → 12⟩12⟨12 → 12⟩12⟨12 → 12⟩12. (9.2.1)

Definition 9.2.1.
G

⟨u → v⟩ u v

v

v ::= ⟨ → ⟩ ⟨ → ⟩ … ⟨ → ⟩v0 v0 v1 v1 v1 v2 v2 vk−1 vk vk

→ ∈ E(G)vi vi+1 i ∈ [0..k) v0 vk ∣v∣

k

vi i ≠ j ≠vi vj

(a, b, d) abd

(⟨a → b⟩, ⟨b → d⟩) ⟨a → b⟩⟨b → d⟩

abcbd

dcbcbd

bdcb

⟨b → c⟩⟨c → b⟩

⟨c → b⟩⟨b → a⟩⟨a → d⟩
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from 1 to 4, and the rest of the walk

from 4 to 12, and we’ll say the whole walk (9.1) is the merge of the walks (9.2) and (9.3). In general, if a walk  ends with a
vertex, , and a walk  starts with the same vertex, , we’ll say that their merge, , is the walk that starts with  and
continues with .  Two walks can only be merged if the first ends with the same vertex, , that the second one starts with.
Sometimes it’s useful to name the node  where the walks merge; we’ll use the notation  to describe the merge of a walk 
that ends at  with a walk  that begins at .

A consequence of this definition is that

Lemma 9.2.2.

In the next section we’ll get mileage out of walking this way.

Finding a Path
If you were trying to walk somewhere quickly, you’d know you were in trouble if you came to the same place twice. This is
actually a basic theorem of graph theory.

The shortest walk from one vertex to another is a path.

Proof. If there is a walk from vertex  to another vertex , then by the Well Ordering Principle, there must be a minimum
length walk  from  to . We claim  is a path.

To prove the claim, suppose to the contrary that  is not a path, meaning that some vertex  occurs twice on this walk. That is,

for some walks  where the length of  is positive. But then “deleting”  yields a strictly shorter walk

from  to , contradicting the minimality b of 

The distance, , in a graph from vertex  to vertex  is the length of a shortest path from  to .

As would be expected, this definition of distance satisfies:

Lemma 9.2.5. [The Triangle Inequality]

for all vertices  with equality holding iff  is on a shortest path from  to .

Of course, you might expect this property to be true, but distance has a technical definition and its properties can’t be taken for
granted. For example, unlike ordinary distance in space, the distance from  to  is typically different from the distance from 
to . So, let’s prove the Triangle Inequality

Proof. To prove the inequality, suppose  is a shortest path from  to  and  is a shortest path from  to . Then by Lemma
9.2.2,  is a walk of length  from  to , so this sum is an upper bound on the length of the shortest
path from  to  by Theorem 9.2.3.

Proof of the “iff” is in Problem 9.3. 

Finally, the relationship between walks and paths extends to closed walks and cycles:

1⟨1 → 2⟩2⟨2 → 4⟩4

4⟨4 → 12⟩12⟨12 → 12⟩12⟨12 → 12⟩12.

f

v r v f r^ f

r 1 v

v f rv̂ f

v r v

|f r| = |f| + |r|^

Theorem 9.2.3.

u v≠ u

w u v w

w x

w = e f gx̂ x̂

e, f, g f f

e gx̂

u v w. ■

Definition 9.2.4.
dist(u, v) u v u v

dist(u, v) ≤ dist(u, x) +dist(x, v)

u, v, x x u v

u v v

u

f u x r x v

f rx̂ dist(u, x) +dist(x, v) u v

u v

■
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Lemma 9.2.6. The shortest positive length closed walk through a vertex is a cycle through that vertex.

The proof of Lemma 9.2.6 is essentially the same as for Theorem 9.2.3; see Problem 9.7.

It’s tempting to say the merge is the concatenation of the two walks, but that wouldn’t quite be right because if the walks were
concatenated, the vertex  would appear twice in a row where the walks meet.

1

v
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9.3: Adjacency Matrices
If a graph, , has  vertices, , a useful way to represent it is with an  matrix of zeroes and ones called
its adjacency matrix, . The ijth entry of the adjacency matrix, , is 1 if there is an edge from vertex  to vertex 
and 0 otherwise. That is,

For example, let  be the 4-node graph shown in Figure 9.1. Its adjacency matrix, , is the  matrix:

A payoff of this representation is that we can use matrix powers to count numbers of walks between vertices. For example,
there are two length two walks between vertices  and  in the graph :

and these are the only length two walks from  to . Also, there is exactly one length two walk from  to  and exactly one
length two walk from  to  and from  to , and these are the only length two walks in . It turns out we could have read
these counts from the entries in the matrix :

More generally, the matrix : provides a count of the number of length  walks between vertices in any digraph, , as
we’ll now explain.

The length-  walk counting matrix for an -vertex graph  is the  matrix  such that

Notice that the adjacency matrix  is the length-1 walk counting matrix for , and that , which by convention is the
identity matrix, is the length-0 walk counting matrix.

If  is the length-  walk counting matrix for a graph , and  is the length-  walk counting matrix, then  is the
length  walk counting matrix for .

According to this theorem, the square  of the adjacency matrix is the length two walk counting matrix for . Applying
the theorem again to  shows that the length-3 walk counting matrix is . More generally, it follows by
induction that

Corollary 9.3.3. The length-k counting matrix of a digraph, , is , for all .

G n , , ⋯ ,v0 v1 vn−1 n×n

AG (AG)ij vi vj

( ::= {AG)ij
1

0

 if ⟨ → ⟩ ∈ E(G),vi vj

otherwise.

H AH 4 ×4

a c H

a⟨a → b⟩b⟨b → c⟩c

a⟨a → d⟩d⟨d → c⟩c

a c b c

c c d b H

(AH)2  

(AG)k  k G

Definition 9.3.1.
k n G n×n C

::= the number of length-k walks from u to v. (9.4)Cuv

AG G (AG)0

Theorem 9.3.2.
C k G D m CD

k+m G

(AG)2 G

(AG)2AG (AG)3

G (AG)k k ∈ N
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In other words, you can determine the number of length  walks between any pair of vertices simply by computing the th
power of the adjacency matrix!

That may seem amazing, but the proof uncovers this simple relationship between matrix multiplication and numbers of walks.

Proof of Theorem 9.3.2. Any length  walk between vertices  and  begins with a length  walk starting at  and
ending at some vertex, , followed by a length  walk starting at  and ending at . So the number of length  walks
from  to  that go through  at the th step equals the number  of length  walks from  to , times the number  of
length  walks from  to . We can get the total number of length  walks from  to  by summing, over all possible
vertices , the number of such walks that go through  at the th step. In other words,

But the right hand side of (9.5) is precisely the definition of . Thus,  is indeed the length-  walk counting
matrix.

Shortest Paths
The relation between powers of the adjacency matrix and numbers of walks is cool—to us math nerds at least—but a much
more important problem is finding shortest paths between pairs of nodes. For example, when you drive home for vacation, you
generally want to take the shortest-time route.

One simple way to find the lengths of all the shortest paths in an -vertex graph, , is to compute the successive powers of 
 one by one up to the st, watching for the first power at which each entry becomes positive. That’s because Theorem

9.3.2 implies that the length of the shortest path, if any, between  and , that is, the distance from  to , will be the smallest
value  for which  is nonzero, and if there is a shortest path, its length will be . Refinements of this idea lead
to methods that find shortest paths in reasonably efficient ways. The methods apply as well to weighted graphs, where edges
are labelled with weights or costs and the objective is to find least weight, cheapest paths. These refinements are typically
covered in introductory algorithm courses, and we won’t go into them any further.

k k

(k+m) u v k u

w m w v (k+m)

u v w k Cuw k u w Dwv

m w v k+m u v

w w k

#length (k+m) walks from u to v= ⋅ (9.5)∑u∈V(G) Cuw Dwv

(CD)uv CD (k+m)

n G

AG n−1

u v u v

k (AG)kuv ≤ n−1
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9.4: Walk Relations
A basic question about a digraph is whether there is a way to get from one particular vertex to another. So for any digraph, ,
we are interested in a binary relation, , called the walk relation on  where

Similarly, there is a positive walk relation

When there is a walk from vertex  to vertex , we say that  is reachable from , or equivalently, that  is connected to 
.

Composition of Relations
There is a simple way to extend composition of functions to composition of relations, and this gives another way to talk about
walks and paths in digraphs.

Let  and  be binary relations. Then the composition of  with  is the binary relation 
 defined by the rule

This agrees with the Definition 4.3.1 of composition in the special case when  and  are functions.

Remembering that a digraph is a binary relation on its vertices, it makes sense to compose a digraph  with itself. Then if we
let  denote the composition of  with itself  times, it’s easy to check (see Problem 9.9) that  is the length-  walk
relation:

 iff there is a length  walk in  from  to .

This even works for , with the usual convention that  is the identity relation  on the set of vertices.  Since there
is a walk iff there is a path, and every path is of length at most , we now have

The final equality points to the use of repeated squaring as a way to compute  with  rather than  compositions of
relations.

The reversal of the order of  and  in (9.8) is not a typo. This is so that relational composition generalizes function
composition. The value of function  composed with function  at an argument, , is . So in the composition, ,
the function  is applied first.

G

G∗ V (G)

u v ::=  there is a walk in G from u to v. (9.6)G∗

u v ::=  there is a positive length walk in G from u to v. (9.7)G+

Definition: 9.4.1
v w w v v

w

Definition 9.4.2
R : B → C S : A → B R S

(R∘S) : A → C

a∘ (R∘S)c ::= ∃b ∈ B. (aSb) AND (bRc). (9.8)

R S 2

G

Gn G n Gn n

a bGn n G a b

n = 0 G0 IdV(G)
3

|V (G)| −1 4

= ∪ ∪ ∪ … ∪ = (G∪ . (9.9)G∗ G0 G1 G2 G|V(G)−1| G0)|V(G)|−1

G∗ logn n−1

2 R S

f g x f(g(x)) f ∘ g

g
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9.5: Directed Acyclic Graphs and Scheduling
Some of the prerequisites of MIT computer science subjects are shown in Figure 9.6. An edge going from subject  to subject 
 indicates that  is listed in the catalogue as a direct prerequisite of . Of course, before you can take subject , you have to

take not only subject , but also all the prerequisites of , and any prerequisites of those prerequisites, and so on. We can state
this precisely in terms of the positive walk relation: if  is the direct prerequisite relation on subjects, then subject  has to be
completed before taking subject  iff .

Of course it would take forever to graduate if this direct prerequisite graph had a positive length closed walk. We need to
forbid such closed walks, which by Lemma 9.2.6 is the same as forbidding cycles. So, the direct prerequisite graph among
subjects had better be acyclic:

A directed acyclic graph (DAG) is a directed graph with no cycles.

DAGs have particular importance in computer science. They capture key concepts used in analyzing task scheduling and
concurrency control. When distributing a program across multiple processors, we’re in trouble if one part of the program needs
an output that another part hasn’t generated yet! So let’s examine DAGs and their connection to scheduling in more depth.

Figure 9.6 Subject prerequisites for MIT Computer Science (6-3) Majors.

Figure 9.7 DAG describing which clothing items have to be put on before others.

s

t s t t

s s

D u

v u vD+

Definition 9.5.1.
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Scheduling
In a scheduling problem, there is a set of tasks, along with a set of constraints specifying that starting certain tasks depends on
other tasks being completed beforehand. We can map these sets to a digraph, with the tasks as the nodes and the direct
prerequisite constraints as the edges.

For example, the DAG in Figure 9.7 describes how a man might get dressed for a formal occasion. As we describe above,
vertices correspond to garments and the edges specify which garments have to be put on before which others.

When faced with a set of prerequisites like this one, the most basic task is finding an order in which to perform all the tasks,
one at a time, while respecting the dependency constraints. Ordering tasks in this way is known as topological sorting.

A topological sort of a finite DAG is a list of all the vertices such that each vertex  appears earlier in the list than every
other vertex reachable from .

There are many ways to get dressed one item at a time while obeying the constraints of Figure 9.7. We have listed two such
topological sorts in Figure 9.8.

Figure 9.8 Two possible topological sorts of the prerequisites described in Figure 9.7

In fact, we can prove that every finite DAG has a topological sort. You can think of this as a mathematical proof that you can
indeed get dressed in the morning. Topological sorts for finite DAGs are easy to construct by starting from minimal elements:

An vertex  of a DAG, , is minimum iff every other vertex is reachable from .

A vertex  is minimal iff  is not reachable from any other vertex.

It can seem peculiar to use the words “minimum” and “minimal” to talk about vertices that start paths. These words come from
the perspective that a vertex is “smaller” than any other vertex it connects to. We’ll explore this way of thinking about DAGs
in the next section, but for now we’ll use these terms because they are conventional.

One peculiarity of this terminology is that a DAG may have no minimum element but lots of minimal elements. In particular,
the clothing example has four minimal elements: leftsock, rightsock, underwear, and shirt.

To build an order for getting dressed, we pick one of these minimal elements— say, shirt. Now there is a new set of minimal
elements; the three elements we didn’t chose as step 1 are still minimal, and once we have removed shirt, tie becomes minimal
as well. We pick another minimal element, continuing in this way until all elements have been picked. The sequence of
elements in the order they were picked will be a topological sort. This is how the topological sorts above were constructed.

So our construction shows:

Definition 9.5.2.
v

v

Definition 9.5.3.
v D v

v v

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48348?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 9.5.3 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48348

Every finite DAG has a topological sort.

There are many other ways of constructing topological sorts. For example, instead of starting from the minimal elements at the
beginning of paths, we could build a topological sort starting from maximal elements at the end of paths. In fact, we could
build a topological sort by picking vertices arbitrarily from a finite DAG and simply inserting them into the list wherever they
will fit.

Parallel Task
Scheduling For task dependencies, topological sorting provides a way to execute tasks one after another while respecting those
dependencies. But what if we have the ability to execute more than one task at the same time? For example, say tasks are
programs, the DAG indicates data dependence, and we have a parallel machine with lots of processors instead of a sequential
machine with only one. How should we schedule the tasks? Our goal should be to minimize the total time to complete all the
tasks. For simplicity, let’s say all the tasks take the same amount of time and all the processors are identical.

So given a finite set of tasks, how long does it take to do them all in an optimal parallel schedule? We can use walk relations
on acyclic graphs to analyze this problem.

In the first unit of time, we should do all minimal items, so we would put on our left sock, our right sock, our underwear, and
our shirt.  In the second unit of time, we should put on our pants and our tie. Note that we cannot put on our left or right shoe
yet, since we have not yet put on our pants. In the third unit of time, we should put on our left shoe, our right shoe, and our
belt. Finally, in the last unit of time, we can put on our jacket. This schedule is illustrated in Figure 9.9.

The total time to do these tasks is 4 units. We cannot do better than 4 units of time because there is a sequence of 4 tasks that
must each be done before the next. We have to put on a shirt before pants, pants before a belt, and a belt before a jacket. Such a
sequence of items is known as a chain.

Two vertices in a DAG are comparable when one of them is reachable from the other. A chain in a DAG is a set of
vertices such that any two of them are comparable. A vertex in a chain that is reachable from all other vertices in the
chain is called a maximum element of the chain. A finite chain is said to end at its maximum element.

Figure 9.9 A parallel schedule for the tasks-getting-dressed digraph in Figure 9.7. The tasks in  can be performed in step 
for . A chain of 4 tasks (the critical path in this example) is shown with bold edges.

The time it takes to schedule tasks, even with an unlimited number of processors, is at least as large as the number of vertices
in any chain. That’s because if we used less time than the size of some chain, then two items from the chain would have to be
done at the same step, contradicting the precedence constraints. For this reason, a largest chain is also known as a critical path.
For example, Figure 9.9 shows the critical path for the getting-dressed digraph.

Theorem 9.5.4.

5

6

Definition 9.5.5.

Ai i
1 ≤ i ≤ 4
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In this example, we were able to schedule all the tasks with  steps, where  is the size of the largest chain. A nice feature of
DAGs is that this is always possible! In other words, for any DAG, there is a legal parallel schedule that runs in  total steps.

In general, a schedule for performing tasks specifies which tasks to do at successive steps. Every task, , has to be scheduled
at some step, and all the tasks that have to be completed before task  must be scheduled for an earlier step. Here’s a rigorous
definition of schedule.

A partition of a set  is a set of nonempty subsets of  called the blocks  of the partition, such that every element of  is
in exactly one block.

For example, one possible partition of the set  into three blocks is

A parallel schedule for a DAG, , is a partition of  into blocks  such that when  no vertex in 
is reachable from any vertex in . The block  is called the set of elements scheduled at step , and the time of the
schedule is the number of blocks. The maximum number of elements scheduled at any step is called the number of
processors required by the schedule.

A largest chain ending at an element  is called a critical path to , and the number of elements less than  in the chain is
called the depth of . So in any possible parallel schedule, there must be at least depth  steps before task  can be started.
In particular, the minimal elements are precisely the elements with depth 0.

There is a very simple schedule that completes every task in its minimum number of steps: just use a “greedy” strategy of
performing tasks as soon as possible. Schedule all the elements of depth  at step . That’s how we found the above schedule
for getting dressed.

A minimum time schedule for a finite DAG  consists of the sets  where

We’ll leave to Problem 9.19 the proof that the sets  are a parallel schedule according to Definition 9.5.7. We can summarize
the story above in this way: with an unlimited number of processors, the parallel time to complete all tasks is simply the size of
a critical path:

Corollary 9.5.9. Parallel time = size of critical path.

Things get more complex when the number of processors is bounded; see Problem 9.20 for an example.

Dilworth’s Lemma

An antichain in a DAG is a set of vertices such that no two elements in the set are comparable—no walk exists between
any two different vertices in the set.

Our conclusions about scheduling also tell us something about antichains.

Corollary 9.5.11. In a DAG, , if the size of the largest chain is , then  can be partitioned into  antichains.

Proof. Let the antichains be the sets . It is an easy exercise to verify that each  is an
antichain (Problem 9.19). 

t t

t

a

a

Definition 9.5.6.
A A 7 A

{a, b, c, d, e}

{a, c} {b, e} {d}.

Definition 9.5.7.
D V (D) , , … ,A0 A1 j< k Aj

Ak Ak k

a a a

a (a) a
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Theorem 9.5.8.
D , , … ,A0 A1

::= {a ∈ V (D) ∣ depth(a) = k}.Ak
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Definition 9.5.10
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Corollary 9.5.11 implies  a famous result about acyclic digraphs:

Lemma 9.5.12 (Dilworth). For all , every DAG with  vertices must have either a chain of size greater than  or an
antichain of size at least .

Proof. Assume that there is no chain of size greater than . Let  be the size of the largest antichain. If we make a parallel
schedule according to the proof of Corollary 9.5.11, we create a number of antichains equal to the size of the largest chain,
which is less than or equal . Each element belongs to exactly one antichain, none of which are larger than . So the total
number of elements at most  times —that is, . Simple division implies that .

Corollary 9.5.13. Every DAG with  vertices has a chain of size greater than  or an antichain of size at least .

Proof. Set  in Lemma 9.5.12. 

Example 9.5.14. When the man in our example is getting dressed, .

Try . There is a chain of size 4.

Try . There is no chain of size 5, but there is an antichain of size .

In fact, the DAG doesn’t even need to be finite, but you’ll be relieved to know that we have no need to go into this.

Yes, we know that you can’t actually put on both socks at once, but imagine you are being dressed by a bunch of robot
processors and you are in a big hurry. Still not working for you? Ok, forget about the clothes and imagine they are programs
with the precedence constraints shown in Figure 9.7.

We think it would be nicer to call them the parts of the partition, but “blocks” is the standard terminology.

Lemma 9.5.12 also follows from a more general result known as Dilworth’s Theorem, which we will not discuss.
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9.6: Partial Orders
After mapping the “direct prerequisite” relation onto a digraph, we were then able to use the tools for understanding computer
scientists’ graphs to make deductions about something as mundane as getting dressed. This may or may not have impressed
you, but we can do better. In the introduction to this chapter, we mentioned a useful fact that bears repeating: any digraph is
formally the same as a binary relation whose domain and codomain are its vertices. This means that any binary relation whose
domain is the same as its codomain can be translated into a digraph! Talking about the edges of a binary relation or the image
of a set under a digraph may seem odd at first, but doing so will allow us to draw important connections between different
types of relations. For instance, we can apply Dilworth’s lemma to the “direct prerequisite” relation for getting dressed,
because the graph of that relation was a DAG.

But how can we tell if a binary relation is a DAG? And once we know that a relation is a DAG, what exactly can we conclude?
In this section, we will abstract some of the properties that a binary relation might have, and use those properties to define
classes of relations. In particular, we’ll explain this section’s title, partial orders.

The Properties of the Walk Relation in DAGs
To begin, let’s talk about some features common to all digraphs. Since merging a walk from  to  with a walk from  to 
gives a walk from u to w, both the walk and positive walk relations have a relational property called transitivity:

A binary relation, , on a set, , is transitive iff

for every .

So we have

Lemma 9.6.2. For any digraph, , the walk relations  and  are transitive.

Since there is a length zero walk from any vertex to itself, the walk relation has another relational property called reflexivity:

A binary relation, , on a set, , is reflexive iff  for all .

Now we have

Lemma 9.6.4. For any digraph, , the walk relation  is reflexive.

We know that a digraph is a DAG iff it has no positive length closed walks. Since any vertex on a closed walk can serve as the
beginning and end of the walk, saying a graph is a DAG is the same as saying that there is no positive length path from any
vertex back to itself. This means that the positive walk relation of  of a DAG has a relational property called irreflexivity.

A binary relation, , on a set, , is irreflexive iff

for all 

So we have

Lemma 9.6.6. R is a DAG iff  is irreflexive.

Strict Partial Orders

u v v w

Definition 9.6.1.
R A

(aRb AND bRc) IMPLIES aRc

a, b, c ∈ A

G G+ G∗

Definition 9.6.3.
R A aRa a ∈ A

G G∗

D+

Definition 9.6.5.
R A

NOT(aRa)

a ∈ A.

R+
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Here is where we begin to define interesting classes of relations:

A relation that is transitive and irreflexive is called a strict partial order.

A simple connection between strict partial orders and DAGs now follows from Lemma 9.6.6:

A relation  is a strict partial order iff  is the positive walk relation of a DAG.

Strict partial orders come up in many situations which on the face of it have nothing to do with digraphs. For example, the
less-than order, , on numbers is a strict partial order:

if  and  then , so less-than is transitive, and
, so less-than is irreflexive.

The proper containment relation  is also a partial order:

if  and  then , so containment is transitive, and
, so proper containment is irreflexive.

If there are two vertices that are reachable from each other, then there is a positive length closed walk that starts at one vertex,
goes to the other, and then comes back. So DAGs are digraphs in which no two vertices are mutually reachable. This
corresponds to a relational property called asymmetry.

A binary relation, , on a set, , is asymmetric iff

for all 

So we can also characterize DAGs in terms of asymmetry:

Corollary 9.6.10. A digraph  is a DAG iff  is asymmetric.

Corollary 9.6.10 and Theorem 9.6.8 combine to give

Corollary 9.6.11. A binary relation  on a set  is a strict partial order iff it is transitive and asymmetric.

A strict partial order may be the positive walk relation of different DAGs. This raises the question of finding a DAG with the
smallest number of edges that determines a given strict partial order. For finite strict partial orders, the smallest such DAG
turns out to be unique and easy to find (see Problem 9.25).

Weak Partial Orders
The less-than-or-equal relation, , is at least as familiar as the less-than strict partial order, and the ordinary containment
relation, , is even more common than the proper containment relation. These are examples of weak partial orders, which are
just strict partial orders with the additional condition that every element is related to itself. To state this precisely, we have to
relax the asymmetry property so it does not apply when a vertex is compared to itself; this relaxed property is called
antisymmetry:

A binary relation, , on a set , is antisymmetric iff, for all ,

Definition 9.6.7.

Theorem 9.6.8.
R R

<

x < y y < z x < z

NOT(x < x)

⊂

A ⊂ B B ⊂ C A ⊂ C

NOT(A ⊂ A)

Definition 9.6.9.
R A

aRb IMPLIES NOT(bRa)

a, b ∈ A.

D D+

R A 9

≤

⊆

Definition 9.6.12.
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Now we can give an axiomatic definition of weak partial orders that parallels the definition of strict partial orders.

A binary relation on a set is a weak partial order iff it is transitive, reflexive, and antisymmetric.

The following lemma gives another characterization of weak partial orders that follows directly from this definition.

Lemma 9.6.14. A relation  on a set, , is a weak partial order iff there is a strict partial order, , on  such that

for all .

Since a length zero walk goes from a vertex to itself, this lemma combined with Theorem 9.6.8 yields:

Corollary 9.6.15. A relation is a weak partial order iff it is the walk relation of a DAG.

For weak partial orders in general, we often write an ordering-style symbol like  or  instead of a letter symbol like . 
Likewise, we generally use  or  to indicate a strict partial order.

Two more examples of partial orders are worth mentioning:

Example 9.6.16. Let  be some family of sets and define . Then  is a strict partial order.

Example 9.6.17. The divisibility relation is a weak partial order on the nonnegative integers.

For practice with the definitions, you can check that two more examples are vacuously partial orders on a set : the identity
relation  is a weak partial order, and the empty relation—the relation with no arrows—is a strict partial order.

Some texts use this Corollary to define strict partial orders.

Some authors define partial orders to be what we call weak partial orders, but we’ll use the phrase “partial order” to mean
either a weak or strict one.

General relations are usually denoted by a letter like  instead of a cryptic squiggly symbol, so  is kind of like the musical
performer/composer Prince, who redefined the spelling of his name to be his own squiggly symbol. A few years ago he gave
up and went back to the spelling “Prince.”

10

Definition 9.6.13.

R A S A

aRb iff (aSb OR a = b),

a, b ∈ A

⪯ ⊑ R 11
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9.7: Representing Partial Orders by Set Containment
Axioms can be a great way to abstract and reason about important properties of objects, but it helps to have a clear picture of
the things that satisfy the axioms. DAGs provide one way to picture partial orders, but it also can help to picture them in terms
of other familiar mathematical objects. In this section, we’ll show that every partial order can be pictured as a collection of sets
related by containment. That is, every partial order has the “same shape” as such a collection. The technical word for “same
shape” is “isomorphic.”

A binary relation, , on a set, , is isomorphic to a relation, , on a set  iff there is a relation-preserving bijection from 
 to ; that is, there is a bijection  such that for all ,

To picture a partial order, , on a set, , as a collection of sets, we simply represent each element  by the set of elements
that are  to that element, that is,

For example, if  is the divisibility relation on the set of integers, , then we represent each of these integers
by the set of integers in  that divides it. So

So, the fact that  corresponds to the fact that 

In this way we have completely captured the weak partial order  by the subset relation on the corresponding sets. Formally,
we have

Lemma 9.7.2. Let  be a weak partial order on a set, . Then  is isomorphic to the subset relation, , on the collection of
inverse images under the  relation of elements .

We leave the proof to Problem 9.29. Essentially the same construction shows that strict partial orders can be represented by
sets under the proper subset relation,  (Problem 9.30). To summarize:

Every weak partial order, , is isomorphic to the subset relation, , on a collection of sets.

Every strict partial order, , is isomorphic to the proper subset relation, , on a collection of sets.

Definition 9.7.1.
R A S B

A B f : A → B a, ∈ Aa′

aR  iff f(a)Sf( ).a′ a′

⪯ A A

⪯

a⟷ {b ∈ A ∣ b ⪯ a}.
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3|12 {1, 3} ⊆ {1, 3, 4, 6, 12}.
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⪯ A ⪯ ⊆
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⊂
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9.8: Linear Orders
The familiar order relations on numbers have an important additional property: given two different numbers, one will be
bigger than the other. Partial orders with this property are said to be linear orders. You can think of a linear order as one where
all the elements are lined up so that everyone knows exactly who is ahead and who is behind them in the line. 

Let  be a binary relation on a set, , and let  be elements of . Then  and  are comparable with respect to  iff 
. A partial order for which every two different elements are comparable is called a linear order.

So < and  are linear orders on . On the other hand, the subset relation is not linear, since, for example, any two different
finite sets of the same size will be incomparable under . The prerequisite relation on Course 6 required subjects is also not
linear because, for example, neither 8.01 nor 6.042 is a prerequisite of the other.

Linear orders are often called “total” orders, but this terminology conflicts with the definition of “total relation,” and it
regularly confuses students.

Being a linear order is a much stronger condition than being a partial order that is a total relation. For example, any weak
partial order is a total relation but generally won’t be linear.

12

Definition 9.8.1.
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9.9: Product Orders
Taking the product of two relations is a useful way to construct new relations from old ones.

The product, , of relations  and  is defined to be the relation with

It follows directly from the definitions that products preserve the properties of transitivity, reflexivity, irreflexivity, and
antisymmetry (see Problem 9.41). If  and  both have one of these properties, then so does . This implies that if 

 and  are both partial orders, then so is .

Example 9.9.2. Define a relation, , on age-height pairs of being younger and shorter. This is the relation on the set of 
 where  is a nonnegative integer  that we interpret as an age in months, and  is a nonnegative integer 

 describing height in inches. We define  by the rule

That is,  is the product of the -relation on ages and the -relation on heights.

Since both ages and heights are ordered numerically, the age-height relation  is a partial order. Now suppose we have a class
of 101 students. Then we can apply Dilworth’s lemma 9.5.12 to conclude that there is a chain of 11 students—that is, 11
students who get taller as they get older–or an antichain of 11 students—that is, 11 students who get taller as they get younger,
which makes for an amusing in-class demo.

On the other hand, the property of being a linear order is not preserved. For example, the age-height relation  is the product
of two linear orders, but it is not linear: the age 240 months, height 68 inches pair, (240,68), and the pair (228,72) are
incomparable under .

Definition 9.9.1.
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9.10: Equivalence Relations

A relation is an equivalence relation if it is reflexive, symmetric, and transitive.

Congruence modulo  is an important example of an equivalence relation:

It is reflexive because .
It is symmetric because  implies .
It is transitive because  and  imply that .

There is an even more well-known example of an equivalence relation: equality itself.

Any total function defines an equivalence relation on its domain:

If  is a total function, define a relation  by the rule:

From its definition,  is reflexive, symmetric and transitive because these are properties of equality. That is,  is an
equivalence relation. This observation gives another way to see that congruence modulo  is an equivalence relation: the
Remainder Lemma 8.6.1 implies that congruence modulo  is the same as  where  is the remainder of  divided by .

In fact, a relation is an equivalence relation iff it equals  for some total function  (see Problem 9.47). So equivalence
relations could have been defined using Definition 9.10.2.

Equivalence Classes
Equivalence relations are closely related to partitions because the images of elements under an equivalence relation are the
blocks of a partition.

Given an equivalence relation , the equivalence class, , of an element  is the set of all elements of 
 related to  by .

Namely,

In other words,  is the image .

For example, suppose that  and  means that . Then

.

Notice that 7,12, 17, etc., all have the same equivalence class; that is, 

There is an exact correspondence between equivalence relations on  and partitions of . Namely, given any partition of a set,
being in the same block is obviously an equivalence relation. On the other hand we have:

The equivalence classes of an equivalence relation on a set  are the blocks of a partition of .

We’ll leave the proof of Theorem 9.10.4 as a basic exercise in axiomatic reasoning (see Problem 9.46), but let’s look at an
example. The congruent-mod-5 relation partitions the integers into five equivalence classes:

Definition 9.10.1.

n

x ≡ x (mod n)

x ≡ y (mod n) y ≡ x (mod n)

x ≡ y (mod n) y ≡ z (mod n) x ≡ z (mod n)

Definition 9.10.2.
f : A → B ≡f

a  IFF f(a) = f( ).≡f a′ a′

≡f ≡f

n

n ≡r r(a) a n

≡f f

Definition 9.10.3.
R : A → A [a]R a ∈ A

A a R

[a ::= {x ∈ A ∣ aRx}.]R

[a]R R(a)

A = Z aRb a ≡ b (mod 5)

[7 = {… , −3, 2, 7, 12, 22, …}]R

[7 = [12 = [17 = ⋯ .]R ]R ]R

A A

Theorem 9.10.4.
A A
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In these terms,  is equivalent to the assertion that  and  are both in the same block of this partition. For
example, , because they’re both in the second block, but  because 2 is in the third block
while 9 is in the last block.

In social terms, if “likes” were an equivalence relation, then everyone would be partitioned into cliques of friends who all like
each other and no one else.

{… , −5, 0, 5, 10, 15, 20, …}

{… , −4, 1, 6, 11, 16, 21, …}

{… , −3, 2, 7, 12, 17, 22, …}

{… , −2, 3, 8, 13, 18, 23, …}

{… , −1, 4, 9, 14, 19, 24, …}

x ≡ y (mod 5) x y

6 ≡ 16 (mod 5) 2 ≢ 9 (mod 5)
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9.11: Summary of Relational Properties
A relation  is the same as a digraph with vertices .

Reflexivity  is reflexive when

Every vertex in  has a self-loop.

Irreflexivity  is irreflexive when

There are no self-loops in .

Symmetry  is symmetric when

If there is an edge from  to  in , then there is an edge back from  to  as well.

Asymmetry  is asymmetric when

There is at most one directed edge between any two vertices in , and there are no self-loops.

Antisymmetry R is antisymmetric when

Equivalently,

There is at most one directed edge between any two distinct vertices, but there may be self-loops.

Transitivity  is transitive when

If there is a positive length path from  to , then there is an edge from  to .

Linear  is linear when

Given any two vertices in , there is an edge in one direction or the other between them.

For any finite, nonempty set of vertices of , there is a directed path going through exactly these vertices.

Strict Partial Order  is a strict partial order iff  is transitive and irreflexive iff  is transitive and asymmetric iff it is the
positive length walk relation of a DAG.

Weak Partial Order  is a weak partial order iff  is transitive and anti-symmetric and reflexive iff  is the walk relation of
a DAG.

Equivalence Relation  is an equivalence relation iff  is reflexive, symmetric and transitive iff  equals the in-the-same-
block-relation for some partition of domain( ).

R : A → A A

R

∀x ∈ A. xRx.

R

R

NOT[∃x ∈ A. xRx].

R

R

∀x, y ∈ A. xRyIMP LIESyRx.

x y R y x

R

∀x, y ∈ A. xRyIMP LIESNOT yRx.

R

∀x ≠ y ∈ A. xRyIMP LIESNOT yRx.

∀x, y ∈ A. (xRyANDyRx) IMPLIES x = y.

R

∀x, y, z ∈ A. (xRyANDyRz) IMPLIES xRz.

u v u v

R

∀x ≠ y ∈ A. (xRyORyRx)

R

R

R R R

R R R

R R R

R
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CHAPTER OVERVIEW
10: COMMUNICATION NETWORKS

Modeling communication networks is an important application of digraphs in computer science. In
this such models, vertices represent computers, processors, and switches; edges will represent wires,
fiber, or other transmission lines through which data flows. For some communication networks, like
the internet, the corresponding graph is enormous and largely chaotic. Highly structured networks,
by contrast, find application in telephone switching systems and the communication hardware inside
parallel computers. In this chapter, we’ll look at some of the nicest and most commonly used
structured networks.

10.1: COMPLETE BINARY TREE
10.2: ROUTING PROBLEMS
10.3: NETWORK DIAMETER
10.4: SWITCH COUNT
10.5: NETWORK LATENCY
10.6: CONGESTION
10.7: 2-D ARRAY
10.8: BUTTERFLY
10.9: BENEŠ NETWORK
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10.1: Complete Binary Tree
Let’s start with a complete binary tree. Here is an example with 4 inputs and 4 outputs. The kinds of communication networks
we consider aim to transmit packets of data between computers, processors, telephones, or other devices. The term packet
refers to some roughly fixed-size quantity of data— 256 bytes or 4096 bytes or whatever. In this diagram and many that
follow, the squares represent terminals, sources and destinations for packets of data. The circles represent switches, which
direct packets through the network. A switch receives packets on incoming edges and relays them forward along the outgoing
edges. Thus, you can imagine a data packet hopping through the network from an input terminal, through a sequence of
switches joined by directed edges, to an output terminal.

Recall that there is a unique path between every pair of vertices in a tree. So, the natural way to route a packet of data from an
input terminal to an output in the complete binary tree is along the corresponding directed path. For example, the route of a
packet traveling from input 1 to output 3 is shown in bold.
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10.2: Routing Problems
Communication networks are supposed to get packets from inputs to outputs, with each packet entering the network at its own
input switch and arriving at its own output switch. We’re going to consider several different communication network designs,
where each network has  inputs and  outputs; for convenience, we’ll assume  is a power of two.

Which input is supposed to go where is specified by a permutation of . So a permutation, , defines a
routing problem: get a packet that starts at input  to output . A routing, , that solves a routing problem, , is a set of
paths from each input to its specified output. That is,  is a set of  paths, , for , where  goes from input
 to output .

N N N

{0, 1, … , N −1} π

i π(i) P π

P n Pi i = 0 … , N −1 Pi

i π(i)
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10.3: Network Diameter
The delay between the time that a packets arrives at an input and arrives at its designated output is a critical issue in
communication networks. Generally, this delay is proportional to the length of the path a packet follows. Assuming it takes
one time unit to travel across a wire, the delay of a packet will be the number of wires it crosses going from input to output.

Packets are usually routed from input to output by the shortest path possible. With a shortest-path routing, the worst-case delay
is the distance between the input and output that are farthest apart. This is called the diameter of the network. In other words,
the diameter of a network  is the maximum length of any shortest path between an input and an output. For example, in the
complete binary tree above, the distance from input 1 to output 3 is six. No input and output are farther apart than this, so the
diameter of this tree is also six.

More broadly, the diameter of a complete binary tree with  inputs and outputs is . This is quite good, because the
logarithm function grows very slowly. We could connect up  inputs and outputs using a complete binary tree and
the worst input-output delay for any packet would be 

Switch Size
One way to reduce the diameter of a network is to use larger switches. For example, in the complete binary tree, most of the
switches have three incoming edges and three outgoing edges, which makes them  switches. If we had  switches,
then we could construct a complete ternary tree with an even smaller diameter. In principle, we could even connect up all the
inputs and outputs via a single monster  switch.

This isn’t very productive, however. Using an  switch would just conceal the original network design problem inside
this abstract switch. Eventually, we’ll have to design the internals of the monster switch using simpler components, and then
we’re right back where we started. So, the challenge in designing a communication network is figuring out how to get the
functionality of an  switch using fixed size, elementary devices, like  switches.

The usual definition of diameter for a general graph (simple or directed) is the largest distance between any two vertices, but
in the context of a communication network we’re only interested in the distance between inputs and outputs, not between
arbitrary pairs of vertices.

1

N 2 logN +2

= 1024210

2 log( ) +2 = 22.210

3 ×3 4 ×4

N ×N

N ×N

N ×N 3 ×3

1
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10.4: Switch Count
Another goal in designing a communication network is to use as few switches as possible. The number of switches in a
complete binary tree is , since there is 1 switch at the top (the “root switch”), 2 below it, 4 below
those, and so forth. By the formula for geometric sums from Problem 5.4,

the total number of switches is , which is nearly the best possible with  switches.

1 +2 +4 +8 +⋯ +N

= ,∑
i=0

n

r
i

−1rn+1

r −1

2N −1 3 ×3
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10.5: Network Latency
We’ll sometimes be choosing routings through a network that optimize some quantity besides delay. For example, in the next
section we’ll be trying to minimize packet congestion. When we’re not minimizing delay, shortest routings are not always the
best, and in general, the delay of a packet will depend on how it is routed. For any routing, the most delayed packet will be the
one that follows the longest path in the routing. The length of the longest path in a routing is called its latency.

The latency of a network depends on what’s being optimized. It is measured by assuming that optimal routings are always
chosen in getting inputs to their specified outputs. That is, for each routing problem, , we choose an optimal routing that
solves . Then network latency is defined to be the largest routing latency among these optimal routings. Network latency will
equal network diameter if routings are always chosen to optimize delay, but it may be significantly larger if routings are
chosen to optimize something else.

For the networks we consider below, paths from input to output are uniquely determined (in the case of the tree) or all paths
are the same length, so network latency will always equal network diameter.

π

π
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10.6: Congestion
The complete binary tree has a fatal drawback: the root switch is a bottleneck. At best, this switch must handle right and vice-
versa. Passing all these packets through a single switch could take a long time. At worst, if this switch fails, the network is
broken into two equal-sized pieces.

It’s true that if the routing problem is given by the identity permutation, , then there is an easy routing, , that
solves the problem: let  be the path from input  up through one switch and back down to output . On the other hand, if the
problem was given by , then in any solution, , for , each path  beginning at input  must eventually
loop all the way up through the root switch and then travel back down to output . These two situations are
illustrated below. We can distinguish between a “good” set of paths and a “bad” set based on congestion. The congestion of a
routing, , is equal to the largest number of paths in  that pass through a single switch. For example, the congestion of the
routing on the left is 1, since at most 1 path passes through each switch. However, the congestion of the routing on the right is
4, since 4 paths pass through the root switch (and the two switches directly below the root). Generally, lower congestion is
better since packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish between “good” and “bad” networks with respect
to bottleneck problems. For each routing problem, , for the network, we assume a routing is chosen that optimizes
congestion, that is, that has the minimum congestion among all routings that solve . Then the largest congestion that will ever
be suffered by a switch will be the maximum congestion among these optimal routings. This “maximin” congestion is called
the congestion of the network.

So for the complete binary tree, the worst permutation would be . Then in every possible solution for ,
every packet would have to follow a path passing through the root switch. Thus, the max congestion of the complete binary
tree is —which is horrible!

Let’s tally the results of our analysis so far:

Id(i) ::= i P

Pi i i

π(i) ::= (N −1) − i Q π Qi i

(N −1) − i

P P

π

π

π(i) ::= (N −1) − i π

N
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10.7: 2-D Array
Let’s look at an another communication network. This one is called a 2-dimensional array or grid.

Here there are four inputs and four outputs, so .

The diameter in this example is 8, which is the number of edges between input 0 and output 3. More generally, the diameter of
an array with  inputs and outputs is , which is much worse than the diameter of  in the complete binary tree.
But we get something in exchange: replacing a complete binary tree with an array almost eliminates congestion.

The congestion of an -input array is 2.

Proof. First, we show that the congestion is at most 2. Let  be any permutation. Define a solution, , for  to be the set of
paths, , where  goes to the right from input  to column  and then goes down to output . Thus, the switch in row 
and column  transmits at most two packets: the packet originating at input  and the packet destined for output .

Next, we show that the congestion is at least 2. This follows because in any routing problem, , where  and 
, two packets must pass through the lower left switch. 

As with the tree, the network latency when minimizing congestion is the same as the diameter. That’s because all the paths
between a given input and output are the same length.

Now we can record the characteristics of the 2-D array.

The crucial entry here is the number of switches, which is . This is a major defect of the 2-D array; a network of size 
 would require a million  switches! Still, for applications where  is small, the simplicity and low congestion

of the array make it an attractive choice.

N = 4

N 2N 2 log N +2

Theorem 10.7.1

N

π P π

Pi Pi i π(i) π(i) i

j i j

π π(0) = 0

π(N −1) = N −1 ■

N 2

N = 1000 2 ×2 N
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10.8: Butterfly
The Holy Grail of switching networks would combine the best properties of the complete binary tree (low diameter, few
switches) and of the array (low congestion). The butterfly is a widely-used compromise between the two.

A good way to understand butterfly networks is as a recursive data type. The recursive definition works better if we define just
the switches and their connections, omitting the terminals. So we recursively define  to be the switches and connections of
the butterfly net with  input and output switches.

The base case is  with 2 input switches and 2 output switches connected as in Figure 10.1.

In the constructor step, we construct  with  inputs and outputs out of two  nets connected to a new set of 
input switches, as shown in as in Figure 10.2. That is, the th and th new input switches are each connected to the same
two switches, the th input switches of each of two  components for . The output switches of  are simply
the output switches of each of the  copies.

Figure 10.1 , the Butterfly Net switches with .

So  is laid out in columns of height  by adding one more column of switches to the columns in . Since the
construction starts with two columns when , the  switches are arrayed in  columns. The total number of
switches is the height of the columns times the number of columns, . Remembering that , we conclude
that the Butterfly Net with  inputs has  switches.

Since every path in  from an input switch to an output is the same length, , the diameter of the Butterfly net with 
 inputs is this length plus two because of the two edges connecting to the terminals (square boxes) —one edge from input

terminal to input switch (circle) and one from output switch to output terminal.

There is an easy recursive procedure to route a packet through the Butterfly Net. In the base case, there is only one way to
route a packet from one of the two inputs to one of the two outputs. Now suppose we want to route a packet from an input
switch to an output switch in . If the output switch is in the “top” copy of , then the first step in the route must be from
the input switch to the unique switch it is connected to in the top copy; the rest of the route is determined by recursively
routing the rest of the way in the top copy of . Likewise, if the output switch is in the “bottom” copy of , then the first
step in the route must be to the switch in the bottom copy, and the rest of the route is determined by recursively routing in the
bottom copy of . In fact, this argument shows that the routing is unique: there is exactly one path in the Butterfly Net from
each input to each output, which implies that the network latency when minimizing congestion is the same the diameter.

The congestion of the butterfly network is about p as . More precisely, the congestion is  if  is an even power of 2
and  if  is an odd power of 2. A simple proof of this appears in Problem 10.8.

Figure 10.2 , the Butterfly Net switches with  inputs and outputs.
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Let’s add the butterfly data to our comparison table:

The butterfly has lower congestion than the complete binary tree. It also uses fewer switches and has lower diameter than the
array. However, the butterfly does not capture the best qualities of each network, but rather is a compromise somewhere
between the two. Our quest for the Holy Grail of routing networks goes on.
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10.9: Beneš Network
In the 1960’s, a researcher at Bell Labs named Václav E. Beneš had a remarkable idea. He obtained a marvelous
communication network with congestion 1 by placing two butterflies back-to-back. This amounts to recursively growing Beneš
nets by adding both inputs and outputs at each stage. Now we recursively define  to be the switches and connections
(without the terminals) of the Beneš net with  input and output switches.

The base case, , with 2 input switches and 2 output switches is exactly the same as  in Figure 10.1.

In the constructor step, we construct  out of two  nets connected to a new set of  input switches and also a new
set of  output switches. This is illustrated in Figure 10.3.

Figure 10.3 , the Beneš Net switches with  inputs and outputs.

The th and th new input switches are each connected to the same two switches: the th input switches of each of two 
components for , exactly as in the Butterfly net. In addition, the th and th new output switches are
connected to the same two switches, namely, to the th output switches of each of two  components.

Now,  is laid out in columns of height  by adding two more columns of switches to the columns in . So, the 
 switches are arrayed in  columns. The total number of switches is the number of columns times the height of

the columns, .

All paths in  from an input switch to an output are length , and the diameter of the Beneš net with 
inputs is this length plus two because of the two edges connecting to the terminals.

So Beneš has doubled the number of switches and the diameter, but by doing so he has completely eliminated congestion
problems! The proof of this fact relies on a clever induction argument that we’ll come to in a moment. Let’s first see how the
Beneš network stacks up:

The Beneš network has small size and diameter, and it completely eliminates congestion. The Holy Grail of routing networks
is in hand!

The congestion of the -input Beneš network is 1.

Proof

By induction on  where . So the induction hypothesis is

Base case :  is shown in Figure 10.1. The unique routings in  have congestion 1.
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Inductive step: We assume that the congestion of an -input Beneš network is 1 and prove that the congestion
of a -input Beneš network is also 1.

Digression. Time out! Let’s work through an example, develop some intuition, and then complete the proof. In the
Beneš network shown in Figure 10.4 with  inputs and outputs, the two 4-input/output subnetworks are in
dashed boxes.

Figure 10.4 Beneš net B3.

By the inductive assumption, the subnetworks can each route an arbitrary permutation with congestion 1. So if we can guide
packets safely through just the first and last levels, then we can rely on induction for the rest! Let’s see how this works in an
example. Consider the following permutation routing problem:

We can route each packet to its destination through either the upper subnetwork or the lower subnetwork. However, the choice
for one packet may constrain the choice for another. For example, we cannot route both packet 0 and packet 4 through the
same network, since that would cause two packets to collide at a single switch, resulting in congestion. Rather, one packet
must go through the upper network and the other through the lower network. Similarly, packets 1 and 5, 2 and 6, and 3 and 7
must be routed through different networks. Let’s record these constraints in a graph. The vertices are the 8 packets. If two
packets must pass through different networks, then there is an edge between them. Thus, our constraint graph looks like this:

Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example, the packet destined for output 0 (which is
packet 6) and the packet destined for output 4 (which is packet 2) cannot both pass through the same network; that would
require both packets to arrive from the same switch. Similarly, the packets destined for outputs 1 and 5, 2 and 6, and 3 and 7
must also pass through different switches. We can record these additional constraints in our graph with gray edges:

N = 2n

2N

N = 8

π(0) = 1 π(4) = 3

π(1) = 5 π(5) = 6

π(2) = 4 π(6) = 0

π(3) = 7 π(7) = 2
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Notice that at most one new edge is incident to each vertex. The two lines drawn between vertices 2 and 6 reflect the two
different reasons why these packets must be routed through different networks. However, we intend this to be a simple graph;
the two lines still signify a single edge.

Now here’s the key insight: suppose that we could color each vertex either red or blue so that adjacent vertices are colored
differently. Then all constraints are satisfied if we send the red packets through the upper network and the blue packets through
the lower network. Such a 2-coloring of the graph corresponds to a solution to the routing problem. The only remaining
question is whether the constraint graph is 2-colorable, which is easy to verify:

Lemma 10.9.2. Prove that if the edges of a graph can be grouped into two sets such that every vertex has at most 1 edge from
each set incident to it, then the graph is 2-colorable.

Proof. It is not hard to show that a graph is 2-colorable iff every cycle in it has even length (see Theorem 11.9.3). We’ll take
this for granted here.

So all we have to do is show that every cycle has even length. Since the two sets of edges may overlap, let’s call an edge that is
in both sets a doubled edge.

There are two cases:

Case 1: [The cycle contains a doubled edge.] No other edge can be incident to either of the endpoints of a doubled edge, since
that endpoint would then be incident to two edges from the same set. So a cycle traversing a doubled edge has nowhere to go
but back and forth along the edge an even number of times.

Case 2: [No edge on the cycle is doubled.] Since each vertex is incident to at most one edge from each set, any path with no
doubled edges must traverse successive edges that alternate from one set to the other. In particular, a cycle must traverse a path
of alternating edges that begins and ends with edges from different sets. This means the cycle has to be of even length. 

For example, here is a 2-coloring of the constraint graph:

The solution to this graph-coloring problem provides a start on the packet routing problem:

We can complete the routing in the two smaller Beneš networks by induction! Back to the proof. End of Digression.

Let  be an arbitrary permutation of . Let  be the graph whose vertices are packet numbers 
 and whose edges come from the union of these two sets:

Now any vertex, , is incident to at most two edges: a unique edge  and a unique edge . So
according to Lemma 10.9.2, there is a 2- coloring for the vertices of . Now route packets of one color through the upper

■
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subnetwork and packets of the other color through the lower subnetwork. Since for each edge in , one vertex goes to the
upper subnetwork and the other to the lower subnetwork, there will not be any conflicts in the first level. Since for each edge
in , one vertex comes from the upper subnetwork and the other from the lower subnetwork, there will not be any conflicts in
the last level. We can complete the routing within each subnetwork by the induction hypothesis 

E1

E2

P (n). ■
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CHAPTER OVERVIEW
11: SIMPLE GRAPHS

Simple graphs model relationships that are symmetric, meaning that the relationship is mutual.
Examples of such mutual relationships are being married, speaking the same language, not speaking
the same language, occurring during overlapping time intervals, or being connected by a conducting
wire. They come up in all sorts of applications, including scheduling, constraint satisfaction,
computer graphics, and communications, but we’ll start with an application designed to get your
attention: we are going to make a professional inquiry into sexual behavior. Specifically, we’ll look
at some data about who, on average, has more opposite-gender partners: men or women.

Sexual demographics have been the subject of many studies. In one of the largest, researchers from
the University of Chicago interviewed a random sample of 2500 people over several years to try to
get an answer to this question. Their study, published in 1994 and entitled The Social Organization
of Sexuality, found that men have on average 74% more opposite-gender partners than women.

Other studies have found that the disparity is even larger. In particular, ABC News claimed that the average man has 20 partners over
his lifetime, and the average woman has 6, for a percentage disparity of 233%. The ABC News study, aired on Primetime Live in 2004,
purported to be one of the most scientific ever done, with only a 2.5% margin of error. It was called “American Sex Survey: A peek
between the sheets”—raising some questions about the seriousness of their reporting.

Yet again in August, 2007, the New York Times reported on a study by the National Center for Health Statistics of the U.S. government
showing that men had seven partners while women had four. So, whose numbers do you think are more accurate: the University of
Chicago, ABC News, or the National Center?

Don’t answer—this is a trick question designed to trip you up. Using a little graph theory, we’ll explain why none of these findings can
be anywhere near the truth.

11.1: VERTEX ADJACENCY AND DEGREES
11.2: SEXUAL DEMOGRAPHICS IN AMERICA
11.3: SOME COMMON GRAPHS
11.4: ISOMORPHISM
11.5: BIPARTITE GRAPHS AND MATCHINGS
11.6: THE STABLE MARRIAGE PROBLEM
11.7: COLORING
11.8: SIMPLE WALKS
11.9: CONNECTIVITY
11.10: FORESTS AND TREES
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11.1: Vertex Adjacency and Degrees
Simple graphs are defined as digraphs in which edges are undirected—they connect two vertices without pointing in either
direction between the vertices. So instead of a directed edge  which starts at vertex  and ends at vertex , a simple
graph only has an undirected edge, , that connects  and .

A simple graph, , consists of a nonempty set, , called the vertices of , and a set  called the edges of . An
element of  is called a vertex. A vertex is also called a node; the words “vertex” and “node” are used
interchangeably. An element of  is an undirected edge or simply an “edge.” An undirected edge has two vertices 

 called its endpoints. Such an edge can be represented by the two element set . The notation  denotes
this edge.

Both  and  define the same undirected edge, whose endpoints are  and .

Figure 11.1 An example of a graph with 9 nodes and 8 edges.

For example, let  be the graph pictured in Figure 11.1. The vertices of  correspond to the nine dots in Figure 11.1, that is,

The edges correspond to the eight lines, that is,

Mathematically, that’s all there is to the graph .

Two vertices in a simple graph are said to be adjacent iff they are the endpoints of the same edge, and an edge is said to
be incident to each of its endpoints. The number of edges incident to a vertex  is called the degree of the vertex and is
denoted by . Equivalently, the degree of a vertex is the number of vertices adjacent to it.

For example, for the graph  of Figure 11.1, vertex  is adjacent to vertex , and  is adjacent to . The edge  is
incident to its endpoints  and . Vertex  has degree 1,  has degree 2, and . It is possible for a vertex to have
degree 0, in which case it is not adjacent to any other vertices. A simple graph, , does not need to have any edges at all. 

 could be zero, implying that the degree of every vertex would also be zero. But a simple graph must have at least one
vertex—  is required to be at least one.

An edge whose endpoints are the same is called a self-loop. Self-loops aren’t allowed in simple graphs.  In a more general
class of graphs called multigraphs, there can be more than one edge with the same two endpoints, but this doesn’t happen in
simple graphs, because every edge is uniquely determined by its two endpoints. Sometimes graphs with no vertices, with self-
loops, or with more than one edge between the same two vertices are convenient to have, but we don’t need them, and sticking
with simple graphs is simpler.

For the rest of this chapter we’ll use “graphs” as an abbreviation for “simple graphs.”

A synonym for “vertices” is “nodes,” and we’ll use these words interchangeably. Simple graphs are sometimes called
networks, edges are sometimes called arcs. We mention this as a “heads up” in case you look at other graph theory literature;
we won’t use these words.

⟨v→ w⟩ v w

⟨v→ w⟩ v w

Definition 11.1.1

G V (G) G E(G) G

V (G)

E(G)

u ≠ v {u, v} ⟨u → v⟩

⟨u → v⟩ ⟨v→ u⟩ u v

H H

V (H) = {a, b, c, d, e, f , g,h, i}.

E(H) = {⟨a → b⟩, ⟨a → c⟩, ⟨b → d⟩, ⟨c → d⟩, ⟨c → e⟩, ⟨e → f⟩, ⟨e → g⟩, ⟨h → i⟩}.

H

Definition: 11.1.2

v

deg(v)

H a b b d ⟨a → c⟩

a c h d deg(e) = 3

G

|E(G)|

|V (G)|
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You might try to represent a self-loop going between a vertex  and itself as , but this equals . It wouldn’t be an
edge, which is defined to be a set of two vertices.

1 v {v, v} {v}
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11.2: Sexual Demographics in America
Let’s model the question of heterosexual partners in graph theoretic terms. To do this, we’ll let  be the graph whose vertices, 

, are all the people in America. Then we split  into two separate subsets: , which contains all the males, and , which
contains all the females.  We’ll put an edge between a male and a female iff they have been sexual partners. This graph is
pictured in Figure 11.2 with males on the left and females on the right.

Figure 11.2 The sex partners graph.

Actually, this is a pretty hard graph to figure out, let alone draw. The graph is enormous: the US population is about 300
million, so . Of these, approximately 50.8% are female and 49.2% are male, so , and 

. And we don’t even have trustworthy estimates of how many edges there are, let alone exactly which couples
are adjacent. But it turns out that we don’t need to know any of this—we just need to figure out the relationship between the
average number of partners per male and partners per female. To do this, we note that every edge has exactly one endpoint at
an  vertex (remember, we’re only considering male-female relationships); so the sum of the degrees of the  vertices
equals the number of edges. For the same reason, the sum of the degrees of the  vertices equals the number of edges. So
these sums are equal:

Now suppose we divide both sides of this equation by the product of the sizes of the two sets, 

The terms above in parentheses are the average degree of an  vertex and the average degree of an  vertex. So we know:

In other words, we’ve proved that the average number of female partners of males in the population compared to the average
number of males per female is determined solely by the relative number of males and females in the population.

Now the Census Bureau reports that there are slightly more females than males in America; in particular  is about
1.035. So we know that males have on average 3.5% more opposite-gender partners than females, and that this tells us nothing
about any sex’s promiscuity or selectivity. Rather, it just has to do with the relative number of males and females. Collectively,
males and females have the same number of opposite gender partners, since it takes one of each set for every partnership, but
there are fewer males, so they have a higher ratio. This means that the University of Chicago, ABC, and the Federal
government studies are way off. After a huge effort, they gave a totally wrong answer.

There’s no definite explanation for why such surveys are consistently wrong. One hypothesis is that males exaggerate their
number of partners—or maybe females downplay theirs—but these explanations are speculative. Interestingly, the principal
author of the National Center for Health Statistics study reported that she knew the results had to be wrong, but that was the
data collected, and her job was to report it.

G

V V M F
2

|V | ≈ 300M |M | ≈ 147.6M

|F | ≈ 152.4M

M M

F

deg(x) = deg(y)∑
x∈M

∑
y∈F

|M | ⋅ |F | :

⋅ = ⋅
deg(x)∑x∈M

|M |

1

|F |

deg(y)∑y∈F

|F |
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|M |

M F
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(11.2.1)
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The same underlying issue has led to serious misinterpretations of other survey data. For example, a couple of years ago, the
Boston Globe ran a story on a survey of the study habits of students on Boston area campuses. Their survey showed that on
average, minority students tended to study with non-minority students more than the other way around. They went on at great
length to explain why this “remarkable phenomenon” might be true. But it’s not remarkable at all. Using our graph theory
formulation, we can see that all it says is that there are fewer minority students than non-minority students, which is, of course,
what “minority” means.

Handshaking Lemma
The previous argument hinged on the connection between a sum of degrees and the number of edges. There is a simple
connection between these in any graph:

Lemma 11.2.1. The sum of the degrees of the vertices in a graph equals twice the number of edges.

Proof. Every edge contributes two to the sum of the degrees, one for each of its endpoints. 

We refer to Lemma 11.2.1 as the Handshaking Lemma: if we total up the number of people each person at a party shakes
hands with, the total will be twice the number of handshakes that occurred.

For simplicity, we’ll ignore the possibility of someone being both a man and a woman, or neither.

■

2
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11.3: Some Common Graphs
Some graphs come up so frequently that they have names. A complete graph  has  vertices and an edge between every
two vertices, for a total of  edges. For example,  is shown in Figure 11.3.

The empty graph has no edges at all. For example, the empty graph with 5 nodes is shown in Figure 11.4.

Figure 11.3 : the complete graph on 5 nodes.

Figure 11.4 An empty graph with 5 nodes.

An -node graph containing  edges in sequence is known as a line graph . More formally,  has

and

For example,  is pictured in Figure 11.5.

There is also a one-way infinite line graph  which can be defined by letting the nonnegative integers  be the vertices with
edges  for all .

If we add the edge  to the line graph , we get a graph called a length-n cycle . Figure 11.6 shows a picture of
length-5 cycle.

Figure 11.5 : a 5-node line graph.

Figure 11.6 : a 5-node cycle graph.
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11.4: Isomorphism
Two graphs that look different might actually be the same in a formal sense. For example, the two graphs in Figure 11.7 are
both 4-vertex, 5-edge graphs and you get graph (b) by a o 90 clockwise rotation of graph (a).

Figure 11.7 Two Isomorphic graphs.

Strictly speaking, these graphs are different mathematical objects, but this difference doesn’t reflect the fact that the two
graphs can be described by the same picture—except for the labels on the vertices. This idea of having the same picture “up to
relabeling” can be captured neatly by adapting Definition 9.7.1 of isomorphism of digraphs to handle simple graphs. An
isomorphism between two graphs is an edge-preserving bijection between their sets of vertices:

An isomorphism between graphs  and  is a bijection  such that

for all . Two graphs are isomorphic when there is an isomorphism between them.

Here is an isomorphism, f , between the two graphs in Figure 11.7:

You can check that there is an edge between two vertices in the graph on the left if and only if there is an edge between the two
corresponding vertices in the graph on the right.

Two isomorphic graphs may be drawn very differently. For example, Figure 11.8 shows two different ways of drawing .

Figure 11.8 Isomorphic  graphs.

Notice that if  is an isomorphism between  and , then  is an isomorphism between  and . Isomorphism is also
transitive because the composition of isomorphisms is an isomorphism. In fact, isomorphism is an equivalence relation.

Isomorphism preserves the connection properties of a graph, abstracting out what the vertices are called, what they are made
out of, or where they appear in a drawing of the graph. More precisely, a property of a graph is said to be preserved under
isomorphism if whenever  has that property, every graph isomorphic to  also has that property. For example, since an
isomorphism is a bijection between sets of vertices, isomorphic graphs must have the same number of vertices. What’s more, if

 is a graph isomorphism that maps a vertex, , of one graph to the vertex, , of an isomorphic graph, then by definition of
isomorphism, every vertex adjacent to  in the first graph will be mapped by  to a vertex adjacent to  in the isomorphic
graph. Thus,  and  will have the same degree. If one graph has a vertex of degree 4 and another does not, then they can’t
be isomorphic. In fact, they can’t be isomorphic if the number of degree 4 vertices in each of the graphs is not the same.

Looking for preserved properties can make it easy to determine that two graphs are not isomorphic, or to guide the search for
an isomorphism when there is one. It’s generally easy in practice to decide whether two graphs are isomorphic. However, no

Definition 11.4.1

G H f : V (G) → V (H)

⟨u−v⟩ ∈ E(G) iff ⟨f(u) −f(v)⟩ ∈ E(H)

u, v∈ V (G)

f(a)

f(c)

::= 2 f(b)

::= 4 f(d)

::= 3

::= 1.

C5

C5

f G H f−1 H G

G G

f v f(v)

v f f(v)

v f(v)
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one has yet found a procedure for determining whether two graphs are isomorphic that is guaranteed to run in polynomial time
on all pairs of graphs.

Having such a procedure would be useful. For example, it would make it easy to search for a particular molecule in a database
given the molecular bonds. On the other hand, knowing there is no such efficient procedure would also be valuable: secure
protocols for encryption and remote authentication can be built on the hypothesis that graph isomorphism is computationally
exhausting.

The definitions of bijection and isomorphism apply to infinite graphs as well as finite graphs, as do most of the results in the
rest of this chapter. But graph theory focuses mostly on finite graphs, and we will too. In the rest of this chapter we’ll assume
graphs are finite.

We’ve actually been taking isomorphism for granted ever since we wrote “  has  vertices. . . ” at the beginning of Section
11.3.

Graph theory is all about properties preserved by isomorphism.

A procedure runs in polynomial time when it needs an amount of time of at most , where  is the total number of vertices
and  is a fixed polynomial.

3

Kn n

3 p(n) n

p()
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11.5: Bipartite Graphs and Matchings
There were two kinds of vertices in the “Sex in America” graph, males and females, and edges only went between the two
kinds. Graphs like this come up so frequently that they have earned a special name: bipartite graphs.

A bipartite graph is a graph whose vertices can be partitioned  into two sets,  and , such that every edge has
one endpoint in  and the other endpoint in .

So every bipartite graph looks something like the graph in Figure 11.2.

The Bipartite Matching Problem
The bipartite matching problem is related to the sex-in-America problem that we just studied; only now, the goal is to get
everyone happily married. As you might imagine, this is not possible for a variety of reasons, not the least of which is the fact
that there are more women in America than men. So, it is simply not possible to marry every woman to a man so that every
man is married at most once.

But what about getting a mate for every man so that every woman is married at most once? Is it possible to do this so that each
man is paired with a woman that he likes? The answer, of course, depends on the bipartite graph that represents who likes who,
but the good news is that it is possible to find natural properties of the who-likes-who graph that completely determine the
answer to this question.

In general, suppose that we have a set of men and an equal-sized or larger set of women, and there is a graph with an edge
between a man and a woman if the man likes the woman. In this scenario, the “likes” relationship need not be symmetric,
since for the time being, we will only worry about finding a mate for each man that he likes.  (Later, we will consider the
“likes” relationship from the female perspective as well.) For example, we might obtain the graph in Figure 11.9.

Figure 11.9 A graph where an edge between a man and woman denotes that the man likes the woman.

A matching is defined to be an assignment of a woman to each man so that different men are assigned to different women, and
a man is always assigned a woman that he likes. For example, one possible matching for the men is shown in Figure 11.10.

Definition 11.5.1

4 L(G) R(G)
L(G) R(G)

5
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Figure 11.10 One possible matching for the men is shown with bold edges. For example, John is matched with Mergatroid.

The Matching Condition

A famous result known as Hall’s Matching Theorem gives necessary and sufficient conditions for the existence of a matching
in a bipartite graph. It turns out to be a remarkably useful mathematical tool.

We’ll state and prove Hall’s Theorem using man-likes-woman terminology. Define the set of women liked by a given set of
men to consist of all women liked by at least one of those men. For example, the set of women liked by Tom and John in
Figure 11.9 consists of Martha, Sara, and Mergatroid. For us to have any chance at all of matching up the men, the following
matching condition must hold:

The Matching Condition: every subset of men likes at least as large a set of women.

For example, we cannot find a matching if some set of 4 men like only 3 women. Hall’s Theorem says that this necessary
condition is actually sufficient; if the matching condition holds, then a matching exists.

A matching for a set  of men with a set  of women can be found if and only if the matching condition holds.

Proof

First, let’s suppose that a matching exists and show that the matching condition holds. For any subset of men, each
man likes at least the woman he is matched with and a woman is matched with at most one man. Therefore, every
subset of men likes at least as large a set of women. Thus, the matching condition holds.
Next, let’s suppose that the matching condition holds and show that a matching exists. We use strong induction on 

, the number of men, on the predicate:

Base case ( ): If , then the matching condition implies that the lone man likes at least one woman,
and so a matching exists.

Inductive Step: Suppose that . To find a matching for , there are two cases.

Case 1: Every nonempty subset of at most  men likes a strictly larger set of women. In this case, we have some
latitude: we pair an arbitrary man with a woman he likes and send them both away. This leaves  men and one fewer
women, and the matching condition will still hold. So the induction hypothesis  implies we can match the
remaining  men.

Case 2: Some nonempty subset, , of at most  men likes an equal-size set, , of women. The matching condition
must hold within , so the strong induction hypothesis implies we can match the men in  with the women in .
This leaves the problem of matching the set  of men to the set  of women.

But the problem of matching  against  also satisfies the Matching condition, because any subset of
men in  who liked fewer women in  would imply there was a set of men who liked fewer women in
the whole set . Namely, if a subset  liked only a strictly smaller subset of women ,

Theorem 11.5.2

M W

|M |

P (m) ::= if the matching condition holds for a set, M ,  of m men, then there is a matching for M .

|M | = 1 |M | = 1

|M | = m+1 ≥ 2 M

m

m

P (m)
m

X m Y

X X Y

M −X W −Y

M −X W −Y

M −X W −Y

W ⊆ M −XM0 ⊆ W −YW0
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then the set  of men would like only women in the strictly smaller set . So again the strong induction
hypothesis implies we can match the men in  with the women in , which completes a matching for .

So in both cases, there is a matching for the men, which completes the proof of the Inductive step. The theorem follows by
induction. 

The proof of Theorem 11.5.2 gives an algorithm for finding a matching in a bipartite graph, albeit not a very efficient one.
However, efficient algorithms for finding a matching in a bipartite graph do exist. Thus, if a problem can be reduced to finding
a matching, the problem is essentially solved from a computational perspective.

A Formal Statement

Let’s restate Theorem 11.5.2 in abstract terms so that you’ll not always be condemned to saying, “Now this group of men likes
at least as many women. . . ”

A matching in a graph  is a set  of edges of  such that no vertex is an endpoint of more than one edge in . A
matching is said to cover a set, , of vertices iff each vertex in  is an endpoint of an edge of the matching. A matching is
said to be perfect if it covers . In any graph, , the set  of neighbors of some set  of vertices is the image of 

 under the edge-relation, that is,

 is called a bottleneck if

(Hall’s Theorem). Let  be a bipartite graph. There is a matching in  that covers  iff no subset of  is a
bottleneck.

An Easy Matching Condition

The bipartite matching condition requires that every subset of men has a certain property. In general, verifying that every
subset has some property, even if it’s easy to check any particular subset for the property, quickly becomes overwhelming
because the number of subsets of even relatively small sets is enormous—over a billion subsets for a set of size 30. However,
there is a simple property of vertex degrees in a bipartite graph that guarantees the existence of a matching. Call a bipartite
graph degree-constrained if vertex degrees on the left are at least as large as those on the right. More precisely,

A bipartite graph  is degree-constrained when  for every  and .

For example, the graph in Figure 11.9 is degree-constrained since every node on the left is adjacent to at least two nodes on the
right while every node on the right is adjacent to at most two nodes on the left.

If  is a degree-constrained bipartite graph, then there is a matching that covers .

Proof

We will show that  satisfies Hall’s condition, namely, if  is an arbitrary subset of , then

∪XM0 ∪YW0

M −X W −Y M

■

Definition 11.5.3

G M G M

S S

V (G) G N(S) S

S

N(S) ::= {r ∣ ⟨s−r⟩ ∈ E(G) for some s ∈ S}.

S

|S| > |N(S)|.

Theorem 11.5.4

G G L(G) L(G)

Definition 11.5.5

G deg(l) ≥ deg(r) l ∈ L(G) r ∈ R(G)

Theorem 11.5.6

G L(G)

G S L(G)

|N(S)| ≥ |S|. (11.5.1)

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48370?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 11.5.4 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48370

Since  is degree-constrained, there is a  such that  for every  and . Since
every edge with an endpoint in  has its other endpoint in  by definition, and every node in  is incident to
at most  edges, we know that

Also, since every node in  is the endpoint of at least  edges,

It follows that . Cancelling  completes the derivation of equation ( ).

Regular graphs are a large class of degree-constrained graphs that often arise in practice. Hence, we can use Theorem 11.5.6 to
prove that every regular bipartite graph has a perfect matching. This turns out to be a surprisingly useful result in computer
science.

A graph is said to be regular if every node has the same degree.

Every regular bipartite graph has a perfect matching.

Proof

Let  be a regular bipartite graph. Since regular graphs are degree-constrained, we know by Theorem 11.5.6 that there
must be a matching in  that covers . Such a matching is only possible when . But  is also
degreeconstrained if the roles of  and  are switched, which implies that  also. That is, 

 and  are the same size, and any matching covering  will also cover . So every node in  is an
endpoint of an edge in the matching, and thus  has a perfect matching. 

Partitioning a set means cutting it up into nonempty pieces. In this case, it means that  and  are nonempty, 
, and .

By the way, we do not mean to imply that marriage should or should not be heterosexual. Nor do we mean to imply that men
should get their choice instead of women. It’s just that there are fewer men than women in America, making it impossible to
match up all the women with different men. So please don’t take offense.

G d > 0 deg(l) ≥ d ≥ deg(r) l ∈ L r ∈ R

S N(S) N(S)
d

d|N(S)| ≥  #edges with an endpoint in S.

S d

 #edges incident to a vertex in S ≥ d|S|.

d|N(S)| ≥ d|S| d 11.5.1

Definition 11.5.7

Theorem 11.5.8

G

G L(G) |L(G)| ≤ |R(G)| G

L(G) R(G) |R(G)| ≤ |L(G)|
L(G) R(G) L(G) R(G) G

G ■

4 L(G) R(G)
L(G) ∪R(G) = V (G) L(G) ∩R(G) = ∅
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11.6: The Stable Marriage Problem
Let’s look at another man/woman matching problem with an equal number of men and women. The set up is that each person
has preferences about who they would like to marry: each man has preference list of all the women, and each woman has a
preference list of all of the men.

The preferences don’t have to be symmetric. That is, Jennifer might like Brad best, but Brad doesn’t necessarily like Jennifer
best. The goal is to marry everyone: every man must marry exactly one woman and vice-versa—no polygamy. Moreover, we
would like to find a matching between men and women that is stable in the sense that there is no pair of people who prefer one
another to their spouses.

For example, suppose Brad likes Angelina best, and Angelina likes Brad best, but Brad and Angelina are married to other
people, say Jennifer and Billy Bob. Now Brad and Angelina prefer each other to their spouses, which puts their marriages at
risk. Pretty soon, they’re likely to start spending late nights together working on problem sets!

This unfortunate situation is illustrated in Figure 11.11, where the digits “1” and “2” near a man shows which of the two
women he ranks first and second, respectively, and similarly for the women.

Figure 11.11 Preferences for four people. Both men like Angelina best and both women like Brad best.

More generally, in any matching, a man and woman who are not married to each other and who like each other better than
their spouses is called a rogue couple. In the situation shown in Figure 11.11, Brad and Angelina would be a rogue couple.

Having a rogue couple is not a good thing, since it threatens the stability of the marriages. On the other hand, if there are no
rogue couples, then for any man and woman who are not married to each other, at least one likes their spouse better than the
other, and so there won’t be any mutual temptation to start an affair.

A stable matching is a matching with no rogue couples.

The question is, given everybody’s preferences, can you find a stable set of marriages? In the example consisting solely of the
four people in Figure 11.11, we could let Brad and Angelina both have their first choices by marrying each other. Now neither
Brad nor Angelina prefers anybody else to their spouse, so neither will be in a rogue couple. This leaves Jen not-so-happily
married to Billy Bob, but neither Jen nor Billy Bob can entice somebody else to marry them, and so this is a stable matching.

It turns out there always is a stable matching among a group of men and women. We don’t know of any immediate way to
recognize this, and it seems surprising. In fact, in the apparently similar “buddy” matching problem where people are supposed
to be paired off as buddies, regardless of gender, a stable matching may not be possible. An example of preferences among
four people where there is no stable buddy match is given in Problem 11.22. But when men are only allowed to marry women,
and vice-versa, then we will be able to describe a simple procedure to produce a stable matching.

The Mating Ritual
The procedure for finding a stable matching can be described in a memorable way as a Mating Ritual that takes place over
several days. The following events happen each day:

Definition 11.6.1

6
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Morning: Each man stands under the balcony of top choice among the women on his list, and he serenades her. He is said to
be her suitor. If a man has no women left on his list, he stays home and does his math homework.

Afternoon: Each woman who has one or more suitors says to her favorite among them, “We might get engaged. Please stay
around.” To the other suitors, she says, “No. I will never marry you! Take a hike!”

Evening: Any man who is told by a woman to take a hike crosses that woman off his preference list.

Termination condition: When a day arrives in which every woman has at most one suitor, the ritual ends with each woman
marrying her suitor, if she has one.

There are a number of facts about this Mating Ritual that we would like to prove:

The Ritual eventually reaches the termination condition.
Everybody ends up married.
The resulting marriages are stable

Mating Ritual at Akamai

The Internet infrastructure company Akamai, cofounded by Tom Leighton, also uses a variation of the Mating Ritual to assign
web traffic to its servers.

In the early days, Akamai used other combinatorial optimization algorithms that got to be too slow as the number of servers
(over 65,000 in 2010) and requests (over 800 billion per day) increased. Akamai switched to a Ritual-like approach, since a
Ritual is fast and can be run in a distributed manner. In this case, web requests correspond to women and web servers
correspond to men. The web requests have preferences based on latency and packet loss, and the web servers have preferences
based on cost of bandwidth and co-location.

There is a Marriage Day
It’s easy to see why the Mating Ritual has a terminal day when people finally get married. Every day on which the ritual hasn’t
terminated, at least one man crosses a woman off his list. (If the ritual hasn’t terminated, there must be some woman serenaded
by at least two men, and at least one of them will have to cross her off his list). If we start with  men and  women, then each
of the  men’s lists initially has  women on it, for a total of  list entries. Since no women ever gets added to a list, the total
number of entries on the lists decreases every day that the Ritual continues, and so the Ritual can continue for at most  days.

They All Live Happily Ever After. . .
We will prove that the Mating Ritual leaves everyone in a stable marriage. To do this, we note one very useful fact about the
Ritual: if on some morning a woman has any suitor, then her favorite suitor will still be serenading her the next morning—his
list won’t have changed. So she is sure to have today’s favorite suitor among her suitors tomorrow. That means she will be able
to choose a favorite suitor tomorrow who is at least as desirable to her as today’s favorite. So day by day, her favorite suitor
can stay the same or get better, never worse. This sounds like an invariant, and it is.

Let  be the predicate: for every woman, , and man, , if w is crossed off ’s list, then  has a suitor whom she
prefers over .

Lemma 11.6.3.  is a preserved invariant for The Mating Ritual.

n n

n n n2

n2

Definition 11.6.2

P w m m w
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Proof. Woman  gets crossed off ’s list only when  has a suitor she prefers to . Thereafter, her favorite suitor doesn’t
change until one she likes better comes along. So if her favorite suitor was preferable to , then any new favorite suitor will
be as well.

Notice that the invariant  holds vacuously at the beginning since no women are crossed off to start. So by the Invariant
Principle,  holds throughout the Ritual. Now we can prove:

Everyone is married at the end of the Mating Ritual.

Proof

Assume to the contrary that on the last day of the Mating Ritual, some man—call him Bob—is not married. This
means Bob can’t be serenading anybody, that is, his list must be empty. So every woman must have been crossed off
his list and, since  is true, every woman has a suitor whom she prefers to Bob. In particular, every woman has some
suitor, and since it is the last day, they have only one suitor, and this is who they marry. But there are an equal number
of men and women, so if all women are married, so are all men, contradicting the assumption that Bob is not married. 

The Mating Ritual produces a stable matching.

Proof

Let Brad and Jen be any man and woman, respectively, that are not married to each other on the last day of the Mating
Ritual. We will prove that Brad and Jen are not a rogue couple, and thus that all marriages on the last day are stable.
There are two cases to consider.
Case 1: Jen is not on Brad’s list by the end. Then by invariant , we know that Jen has a suitor (and hence a husband)
whom she prefers to Brad. So she’s not going to run off with Brad—Brad and Jen cannot be a rogue couple.

Case 2: Jen is on Brad’s list. Since Brad picks women to serenade by working down his list, his wife must be higher
on his preference list than Jen. So he’s not going to run off with Jen—once again, Brad and Jen are not a rogue couple.

. . Especially the Men
Who is favored by the Mating Ritual, the men or the women? The women seem to have all the power: each day they choose
their favorite suitor and reject the rest. What’s more, we know their suitors can only change for the better as the Ritual
progresses. Similarly, a man keeps serenading the woman he most prefers among those on his list until he must cross her off, at
which point he serenades the next most preferred woman on his list. So from the man’s perspective, the woman he is
serenading can only change for the worse. Sounds like a good deal for the women.

But it’s not! We will show that the men are by far the favored gender under the Mating Ritual.

While the Mating Ritual produces one stable matching, stable matchings need not be unique. For example, reversing the roles
of men and women will often yield a different stable matching among them. So a man may have different wives in different
sets of stable marriages. In some cases, a man can stably marry every one of the woman, but in most cases, there are some
woman who cannot be a man’s wife in any stable matching. For example, given the preferences shown in Figure 11.11,
Jennifer cannot be Brad’s wife in any stable matching because if he was married to her, then he and Angelina would be a rogue
couple. It is not feasible for Jennifer to be stably married to Brad.

Given a set of preferences for the men and women, one person is a feasible spouse for another person when there is a
stable matching in which these two people are married.

w m w m

m

P

P

Theorem 11.6.4

P

■

Theorem 11.6.5

P

■

Definition 11.6.6

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48371?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 11.6.4 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48371

Let  be the predicate: for every woman, , and man, , if  is crossed off ’s list, then  is not a feasible spouse for 
.

Lemma 11.6.8.  is a preserved invariant for The Mating Ritual.

Proof. Suppose  holds at some point in the Ritual and some woman, Alice, is about to be crossed off some man’s, Bob’s, list.
We claim that Alice must not be feasible for Bob. Therefore  will still hold after Alice is crossed off, proving that  is
invariant

To verify the claim, notice that when Alice gets crossed of Bob’s list, it’s because Alice has a suitor, Ted, she prefers to Bob.
What’s more since  holds, all Ted’s feasible wives are still on his list, and Alice is at the top. So Ted likes Alice better than
all his other feasible spouses. Now if Alice could be married to Bob in some set of stable marriages, then Ted must be married
to a wife he likes less than Alice, making Alice and Ted a rogue couple and contradicting stability. So Alice can’t be married to
Bob, that is, Alice is not a feasible wife for Bob, as claimed. 

A person’s optimal spouse is their most preferred feasible spouse. A person’s pessimal spouse is their least preferred
feasible spouse.

Everybody has an optimal and a pessimal spouse, since we know there is at least one stable matching, namely, the one
produced by the Mating Ritual. Lemma 11.6.8 implies a key property the Mating Ritual:

The Mating Ritual marries every man to his optimal spouse and every woman to her pessimal spouse.

Proof

If Bob is married to Alice on the final day of the Ritual, then everyone above Alice on Bob’s preference list was
crossed off, and by property , all these crossed off women were infeasible for Bob. So Alice is Bob’s highest ranked
feasible spouse, that is, his optimal spouse.
Further, since Bob likes Alice better than any other feasible wife, Alice and Bob would be a rogue couple if Alice was
married to a husband she liked less than Bob. So Bob must be Alice’s least preferred feasible husband. 

Applications
The Mating Ritual was first announced in a paper by D. Gale and L.S. Shapley in 1962, but ten years before the Gale-Shapley
paper was published, and unknown to them, a similar algorithm was being used to assign residents to hospitals by the National
Resident Matching Program (NRMP). The NRMP has, since the turn of the twentieth century, assigned each year’s pool of
medical school graduates to hospital residencies (formerly called “internships”), with hospitals and graduates playing the roles
of men and women.  Before the Ritual-like algorithm was adopted, there were chronic disruptions and awkward
countermeasures taken to preserve unstable assignments of graduates to residencies. The Ritual resolved these problems so
successfully, that it was used essentially without change at least through 1989.  For this and related work, Shapley was
awarded the 2012 Nobel prize in Economics.

Not surprisingly, the Mating Ritual is also used by at least one large online dating agency. Of course there is no serenading
going on—everything is handled by computer.

Once again, we disclaim any political statement here—it’s just the way that the math works out.

In this case there may be multiple women married to one man, but this is a minor complication, see Problem 11.23.

Definition 11.6.7

Q w m w m w

m

Q

Q

Q Q

Q

■

Definition 11.6.9

Theorem 11.6.10

Q

■

7

8

6

7

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48371?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 11.6.5 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48371

Much more about the Stable Marriage Problem can be found in the very readable mathematical monograph by Dan Gusfield
and Robert W. Irving, [24].

8

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48371?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 11.7.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48372

11.7: Coloring
In Section 11.2, we used edges to indicate an affinity between a pair of nodes. But there are lots of situations in which edges
will correspond to conflicts between nodes. Exam scheduling is a typical example.

Exam Scheduling Problem
Each term, the MIT Schedules Office must assign a time slot for each final exam. This is not easy, because some students are
taking several classes with finals, and (even at MIT) a student can take only one test during a particular time slot. The
Schedules Office wants to avoid all conflicts. Of course, you can make such a schedule by having every exam in a different
slot, but then you would need hundreds of slots for the hundreds of courses, and the exam period would run all year! So, the
Schedules Office would also like to keep exam period short.

The Schedules Office’s problem is easy to describe as a graph. There will be a vertex for each course with a final exam, and
two vertices will be adjacent exactly when some student is taking both courses. For example, suppose we need to schedule
exams for 6.041, 6.042, 6.002, 6.003 and 6.170. The scheduling graph might appear as in Figure 11.12.

Figure 11.12 A scheduling graph for five exams. Exams connected by an edge cannot be given at the same time.

6.002 and 6.042 cannot have an exam at the same time since there are students in both courses, so there is an edge between
their nodes. On the other hand, 6.042 and 6.170 can have an exam at the same time if they’re taught at the same time (which
they sometimes are), since no student can be enrolled in both (that is, no student should be enrolled in both when they have a
timing conflict).

We next identify each time slot with a color. For example, Monday morning is red, Monday afternoon is blue, Tuesday
morning is green, etc. Assigning an exam to a time slot is then equivalent to coloring the corresponding vertex. The main
constraint is that adjacent vertices must get different colors—otherwise, some student has two exams at the same time.
Furthermore, in order to keep the exam period short, we should try to color all the vertices using as few different colors as
possible. As shown in Figure 11.13, three colors suffice for our example.

Figure 11.13 A 3-coloring of the exam graph from Figure 11.12.

The coloring in Figure 11.13 corresponds to giving one final on Monday morning (red), two Monday afternoon (blue), and two
Tuesday morning (green). Can we use fewer than three colors? No! We can’t use only two colors since there is a triangle in the
graph, and three vertices in a triangle must all have different colors.

This is an example of a graph coloring problem: given a graph , assign colors to each node such that adjacent nodes have
different colors. A color assignment with this property is called a valid coloring of the graph—a “coloring,” for short. A graph 

 is -colorable if it has a coloring that uses at most  colors.

G

G k k

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48372?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/02%3A_Structures/11%3A_Simple_Graphs/11.07%3A_Coloring
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/02%3A_Structures/11%3A_Simple_Graphs/11.02%3A_Sexual_Demographics_in_America


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 11.7.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48372

The minimum value of  for which a graph, , has a valid coloring is called its chromatic number, .

So  is -colorable iff .

In general, trying to figure out if you can color a graph with a fixed number of colors can take a long time. It’s a classic
example of a problem for which no fast algorithms are known. In fact, it is easy to check if a coloring works, but it seems
really hard to find it. (If you figure out how, then you can get a $1 million Clay prize.)

Some Coloring Bounds
There are some simple properties of graphs that give useful bounds on colorability. The simplest property is being a cycle: an
even-length closed cycle is 2-colorable. Cycles in simple graphs by convention have positive length and so are not 1-
colorable. So

On the other hand, an odd-length cycle requires 3 colors, that is,

You should take a moment to think about why this equality holds.

Another simple example is a complete graph :

since no two vertices can have the same color.

Being bipartite is another property closely related to colorability. If a graph is bipartite, then you can color it with 2 colors
using one color for the nodes on the “left” and a second color for the nodes on the “right.” Conversely, graphs with chromatic
number 2 are all bipartite with all the vertices of one color on the “left” and those with the other color on the right. Since only
graphs with no edges—the empty graphs—have chromatic number 1, we have:

Lemma 11.7.2. A graph, , with at least one edge is bipartite iff .

The chromatic number of a graph can also be shown to be small if the vertex degrees of the graph are small. In particular, if we
have an upper bound on the degrees of all the vertices in a graph, then we can easily find a coloring with only one more color
than the degree bound.

A graph with maximum degree at most  is -colorable.

Since  is the only nonnegative integer valued variable mentioned in the theorem, you might be tempted to try to prove
this theorem using induction on . Unfortunately, this approach leads to disaster—we don’t know of any reasonable way
to do this and expect it would ruin your week if you tried it on a problem set. When you encounter such a disaster using
induction on graphs, it is usually best to change what you are inducting on. In graphs, typical good choices for the
induction parameter are , the number of nodes, or , the number of edges.

Proof

We use induction on the number of vertices in the graph, which we denote by . Let  be the proposition that an 
-vertex graph with maximum degree at most  is -colorable.

Base case ( ): A 1-vertex graph has maximum degree 0 and is 1-colorable, so  is true.

Inductive step: Now assume that  is true, and let  be an -vertex graph with maximum degree at most 
. Remove a vertex  (and all edges incident to it), leaving an -vertex subgraph, . The maximum degree of  is at

most , and so  is -colorable by our assumption . Now add back vertex . We can assign  a color
(from the set of  colors) that is different from all its adjacent vertices, since there are at most  vertices

Definition 11.7.1
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adjacent to  and so at least one of the  colors is still available. Therefore,  is -colorable. This
completes the inductive step, and the theorem follows by induction. 

Sometimes  colors is the best you can do. For example, and every node in  has degree  and so
this is an example where Theorem 11.7.3 gives the best possible bound. By a similar argument, we can show that Theorem
11.7.3 gives the best possible bound for any graph with degree bounded by  that has  as a subgraph.

But sometimes  colors is far from the best that you can do. For example, the -node star graph shown in Figure 11.14
has maximum degree  but can be colored using just 2 colors.

Figure 11.14 A 7-node star graph.

Why coloring?
One reason coloring problems frequently arise in practice is because scheduling conflicts are so common. For example, at
Akamai, a new version of software is deployed over each of 65,000 servers every few days. The updates cannot be done at the
same time since the servers need to be taken down in order to deploy the software. Also, the servers cannot be handled one at a
time, since it would take forever to update them all (each one takes about an hour). Moreover, certain pairs of servers cannot
be taken down at the same time since they have common critical functions. This problem was eventually solved by making a
65,000-node conflict graph and coloring it with 8 colors—so only 8 waves of install are needed!

Another example comes from the need to assign frequencies to radio stations. If two stations have an overlap in their broadcast
area, they can’t be given the same frequency. Frequencies are precious and expensive, so you want to minimize the number
handed out. This amounts to finding the minimum coloring for a graph whose vertices are the stations and whose edges
connect stations with overlapping areas.

Coloring also comes up in allocating registers for program variables. While a variable is in use, its value needs to be saved in a
register. Registers can be reused for different variables but two variables need different registers if they are referenced during
overlapping intervals of program execution. So register allocation is the coloring problem for a graph whose vertices are the
variables: vertices are adjacent if their intervals overlap, and the colors are registers. Once again, the goal is to minimize the
number of colors needed to color the graph.

Finally, there’s the famous map coloring problem stated in Proposition 1.1.6. The question is how many colors are needed to
color a map so that adjacent territories get different colors? This is the same as the number of colors needed to color a graph
that can be drawn in the plane without edges crossing. A proof that four colors are enough for planar graphs was acclaimed
when it was discovered about thirty years ago. Implicit in that proof was a 4-coloring procedure that takes time proportional to
the number of vertices in the graph (countries in the map).

Surprisingly, it’s another of those million dollar prize questions to find an efficient procedure to tell if a planar graph really
needs four colors, or if three will actually do the job. A proof that testing 3-colorability of graphs is as hard as the million
dollar SAT problem is given in Problem 11.39; this turns out to be true even for planar graphs. (It is easy to tell if a graph is 2-
colorable, as explained in Section 11.9.2.) In Chapter 12, we’ll develop enough planar graph theory to present an easy proof
that all planar graphs are 5-colorable.
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11.8: Simple Walks

Walks, Paths, Cycles in Simple Graphs
Walks and paths in simple graphs are esentially the same as in digraphs. We just modify the digraph definitions using
undirected edges instead of directed ones. For example, the formal definition of a walk in a simple graph is a virtually the
same as the Definition 9.2.1 of a walk in a digraph:

A walk in a simple graph, , is an alternating sequence of vertices and edges that begins with a vertex, ends with a
vertex, and such that for every edge  in the walk, one of the endpoints  is the element just before the edge, and
the other endpoint is the next element after the edge. The length of a walk is the total number of occurrences of edges in
it.

So a walk, , is a sequence of the form

where  for . The walk is said to start at , to end at , and the length, , of the walk is . The
walk is a path iff all the 's are different, that is, if , then .

A closed walk is a walk that begins and ends at the same vertex. A single vertex counts as a length zero closed walk as well as
a length zero path.

A cycle is a closed walk of length three or more whose vertices are distinct except for the beginning and end vertices

Note that in contrast to digraphs, we don’t count length two closed walks as cycles in simple graphs. That’s because a walk
going back and forth on the same edge is always possible in a simple graph, and it has no importance. Also, there are no closed
walks of length one, since simple graphs don’t have self loops.

As in digraphs, the length of a walk is one less than the number of occurrences of vertices in it. For example, the graph in
Figure 11.15 has a length 6 path through the seven successive vertices \(abcdefg\). This is the longest path in the graph. The
graph in Figure 11.15 also has three cycles through successive vertices , , and .

Figure 11.15 A graph with 3 cycles: .

Cycles as Subgraphs
A cycle does not really have a beginning or an end, so it can be described by any of the paths that go around it. For example, in
the graph in Figure 11.15, the cycle starting at  and going through vertices  can also be described as starting at  and
going through . Furthermore, cycles in simple graphs don’t have a direction:  describes the same cycle as
though it started and ended at  but went in the opposite direction.

A precise way to explain which closed walks describe the same cycle is to define cycle as a subgraph instead of as a closed
walk. Specifically, we could define a cycle in  to be a subgraph of  that looks like a length-  cycle for .

A graph  is said to be a subgraph of a graph  if  and 

For example, the one-edge graph  where
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is a subgraph of the graph  in Figure 11.1. On the other hand, any graph containing an edge  will not be a subgraph
of  because this edge is not in . Another example is an empty graph on  nodes, which will be a subgraph of an 
with the same set of nodes; similarly,  is a subgraph of , and is a subgraph of .

For , let  be the graph with vertices  and edges

A cycle of a graph, , is a subgraph of  that is isomorphic to  for some .

This definition formally captures the idea that cycles don’t have direction or beginnings or ends.

V (G) = {g,h, i} and E(G) = {⟨h− i⟩}

H ⟨g−h⟩

H E(H) n Ln

Ln Cn Cn Kn

Definition 11.8.3
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11.9: Connectivity

Two vertices are connected in a graph when there is a path that begins at one and ends at the other. By convention, every
vertex is connected to itself by a path of length zero. A graph is connected when every pair of vertices are connected.

Connected Components
Being connected is usually a good property for a graph to have. For example, it could mean that it is possible to get from any
node to any other node, or that it is possible to communicate between any pair of nodes, depending on the application.

But not all graphs are connected. For example, the graph where nodes represent cities and edges represent highways might be
connected for North American cities, but would surely not be connected if you also included cities in Australia. The same is
true for communication networks like the internet—in order to be protected from viruses that spread on the internet, some
government networks are completely isolated from the internet.

Figure 11.16 One graph with 3 connected components.

Another example is shown in Figure 11.16, which looks like a picture of three graphs, but is intended to be a picture of one
graph. This graph consists of three pieces (subgraphs). Each piece by itself is connected, but there are no paths between
vertices in different pieces. These connected pieces of a graph are called its connected components.

A connected component of a graph is a subgraph consisting of some vertex and every node and edge that is connected to
that vertex.

So, a graph is connected iff it has exactly one connected component. At the other extreme, the empty graph on  vertices has 
 connected components.

Odd Cycles and 2-Colorability
We have already seen that determining the chromatic number of a graph is a challenging problem. There is one special case
where this problem is very easy, namely, when the graph is 2-colorable

The following graph properties are equivalent:

1. The graph contains an odd length cycle.
2. The graph is not 2-colorable.
3. The graph contains an odd length closed walk.

In other words, if a graph has any one of the three properties above, then it has all of the properties.

We will show the following implications among these properties:

1. IMPLIES 2. IMPLIES 3. IMPLIES 1:

So each of these properties implies the other two, which means they all are equivalent.

Definition 11.9.1

Definition 11.9.2

n

n

Theorem 11.9.3

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48374?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/02%3A_Structures/11%3A_Simple_Graphs/11.09%3A_Connectivity


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 11.9.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48374

1 IMPLIES 2 Proof. This follows from equation 11.7.1. 

2 IMPLIES 3 If we prove this implication for connected graphs, then it will hold for an arbitrary graph because it will
hold for each connected component. So we can assume that  is connected.

Proof. Pick an arbitrary vertex  of . Since  is connected, for every node , there will be a walk 
starting at  and ending at . Assign colors to vertices of  as follows:

Now since  is not colorable, this can’t be a valid coloring. So there must be an edge between two nodes  and 
with the same color. But in that case

is a closed walk starting and ending at , and its length is

which is odd. 

3 IMPLIES 1 Proof. Since there is an odd length closed walk, the WOP implies there is an odd length closed walk  of
minimum length. We claim  must be a cycle. To show this, assume to the contrary that  is not a cycle, so there is a
repeat vertex occurrence besides the start and end. There are then two cases to consider depending on whether the
additional repeat is different from, or the same as, the start vertex.

In the first case, the start vertex has an extra occurrence. That is,

for some positive length walks  and  that begin and end at . Since

is odd, exactly one of  and  must have odd length, and that one will be an odd length closed walk shorter than ,
a contradiction.

In the second case,

where  is a walk from  to  for some , and  is a walk from  to , and . Now  cannot have odd
length or it would be an odd-length closed walk shorter than . So  has even length. That implies that  must
be an odd-length closed walk shorter than , again a contradiction.

This completes the proof of Theorem 11.9.3. 

Theorem 11.9.3 turns out to be useful, since bipartite graphs come up fairly often in practice. We’ll see examples when we talk
about planar graphs in Chapter 12.

k-connected Graphs
If we think of a graph as modeling cables in a telephone network, or oil pipelines, or electrical power lines, then we not only
want connectivity, but we want connectivity that survives component failure. So more generally, we want to define how
strongly two vertices are connected. One measure of connection strength is how many links must fail before connectedness
fails. In particular, two vertices are -edge connected when it takes at least  “edge-failures” to disconnect them. More
precisely:
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Two vertices in a graph are -edge connected when they remain connected in every subgraph obtained by deleting up to 
 edges. A graph is -edge connected when it has more than one vertex, and pair of distinct vertices in the graph are 

-connected.

Notice that according to Definition 11.9.4, if a graph is -connected, it is also -connected for . This convenient
convention implies that two vertices are connected according to definition 11.9.1 iff they are 1-edge connected according to
Definition 11.9.4. From now on we’ll drop the “edge” modifier and just say “ -connected.”

For example, in the graph in figure 11.15, vertices  and  are 3-connected,  and  are 2-connected,  and  are 1 connected,
and no vertices are 4-connected. The graph as a whole is only 1-connected. A complete graph, , is - connected. Every
cycle is 2-connected.

The idea of a cut edge is a useful way to explain 2-connectivity.

If two vertices are connected in a graph , but not connected when an edge  is removed, then  is called a cut edge of 
.

So a graph with more than one vertex is 2-connected iff it is connected and has no cut edges. The following Lemma is another
immediate consequence of the definition:

Lemma 11.9.6. An edge is a cut edge iff it is not on a cycle.

More generally, if two vertices are connected by  edge-disjoint paths—that is, no edge occurs in two paths—then they must
be -connected, since at least one edge will have to be removed from each of the paths before they could disconnect. A
fundamental fact, whose ingenious proof we omit, is Menger’s theorem which confirms that the converse is also true: if two
vertices are -connected, then there are  edge-disjoint paths connecting them. It takes some ingenuity to prove this just for
the case .

The Minimum Number of Edges in a Connected Graph
The following theorem says that a graph with few edges must have many connected components.

Every graph, , has at least  connected components.

Of course for Theorem 11.9.7 to be of any use, there must be fewer edges than vertices.

Proof

We use induction on the number, , of edges. Let  be the proposition that
every graph, , with  edges has at least  connected components.

Base case ( ): In a graph with 0 edges, each vertex is itself a connected component, and so there are exactly 
 connected components. So  holds.

Inductive step: Let  be the graph that results from removing an edge, . So  has  edges, and by the
induction hypothesis , we may assume that  has at least -connected components. Now add back
the edge  to obtain the original graph . If the endpoints of  were in the same connected component of , then 
has the same sets of connected vertices as , so  has at least  components.
Alternatively, if the endpoints of  were in different connected components of , then these two components are
merged into one component in , while all other components remain unchanged, so that  has one fewer connected
component than . That is,  has at least  connected components. So in
either case,  has at least  components, as claimed.

This completes the inductive step and hence the entire proof by induction. 
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Corollary 11.9.8. Every connected graph with  vertices has at least  edges.

A couple of points about the proof of Theorem 11.9.7 are worth noticing. First, we used induction on the number of edges in
the graph. This is very common in proofs involving graphs, as is induction on the number of vertices. When you’re presented
with a graph problem, these two approaches should be among the first you consider.

The second point is more subtle. Notice that in the inductive step, we took an arbitrary -edge graph, threw out an edge
so that we could apply the induction assumption, and then put the edge back. You’ll see this shrink-down, grow-back process
very often in the inductive steps of proofs related to graphs. This might seem like needless effort: why not start with an -edge
graph and add one more to get an -edge graph? That would work fine in this case, but opens the door to a nasty logical
error called buildup error, illustrated in Problem 11.48.

There is a corresponding definition of -vertex connectedness based on deleting vertices rather than edges. Graph theory texts
usually use “ -connected” as shorthand for “ -vertex connected.” But edge-connectedness will be enough for us.
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11.10: Forests and Trees
We’ve already made good use of digraphs without cycles, but simple graphs without cycles are arguably the most important
graphs in computer science.

Leaves, Parents & Children

An acyclic graph is called a forest. A connected acyclic graph is called a tree.

The graph shown in Figure 11.17 is a forest. Each of its connected components is by definition a tree.

One of the first things you will notice about trees is that they tend to have a lot of nodes with degree one. Such nodes are
called leaves.

A degree 1 node in a forest is called a leaf.

The forest in Figure 11.17 has 4 leaves. The tree in Figure 11.18 has 5 leaves.

Trees are a fundamental data structure in computer science. For example, information is often stored in tree-like data
structures, and the execution of many recursive programs can be modeled as the traversal of a tree. In such cases, it is often
useful to arrange the nodes in levels, where the node at the top level is identified as the root and where every edge joins a
parent to a child one level below. Figure 11.19 shows the tree of Figure 11.18 redrawn in this way. Node  is a child of node 
and the parent of nodes  and .

Figure 11.17 A 6-node forest consisting of 2 component trees.

Figure 11.18 A 9-node tree with 5 leaves.

Figure 11.19 The tree from Figure 11.18 redrawn with node e as the root and the other nodes arranged in levels.

Definition: 11.10.1

Definition: 11.10.2
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Properties
Trees have many unique properties. We have listed some of them in the following theorem.

Every tree has the following properties:

1. Every connected subgraph is a tree.
2. There is a unique path between every pair of vertices.
3. Adding an edge between nonadjacent nodes in a tree creates a graph with a cycle.
4. Removing any edge disconnects the graph. That is, every edge is a cut edge.
5. If the tree has at least two vertices, then it has at least two leaves.
6. The number of vertices in a tree is one larger than the number of edges.

Proof
1. A cycle in a subgraph is also a cycle in the whole graph, so any subgraph of an acyclic graph must

also be acyclic. If the subgraph is also connected, then by definition, it is a tree.
2. Since a tree is connected, there is at least one path between every pair of vertices. Suppose for the

purposes of contradiction, that there are two different paths between some pair of vertices. Then there
are two distinct paths  between the same two vertices with minimum total length . If
these paths shared a vertex, , other than at the start and end of the paths, then the parts of  and 
from start to , or the parts of  and  from  to the end, must be distinct paths between the same
vertices with total length less than , contradicting the minimality of this sum. Therefore, 
and  have no vertices in common besides their endpoints, and so  is a cycle.

3. An additional edge b  together with the unique path between  and  forms a cycle.
4. Suppose that we remove edge . Since the tree contained a unique path between  and , that

path must have been . Therefore, when that edge is removed, no path remains, and so the
graph is not connected.

5. Since the tree has at least two vertices, the longest path in the tree will have different endpoints  and 
. We claim  is a leaf. This follows because, since by definition of endpoint,  is incident to at most

one edge on the path. Also, if  was incident to an edge not on the path, then the path could be
lengthened by adding that edge, contradicting the fact that the path was as long as possible. It follows
that  is incident only to a single edge, that is  is a leaf. The same hold for .

6. We use induction on the proposition

Base case ( ):  is true since a tree with 1 node has 0 edges and .

Inductive step: Now suppose that  is true and consider an -vertex tree, . Let  be a leaf of
the tree. You can verify that deleting a vertex of degree 1 (and its incident edge) from any connected
graph leaves a connected subgraph. So by Theorem 11.10.3.1, deleting  and its incident edge gives a
smaller tree, and this smaller tree has  edges by induction. If we reattach the vertex, , and its
incident edge, we find that  has  edges. Hence,  is true, and the induction
proof is complete. 

Various subsets of properties in Theorem 11.10.3 provide alternative characterizations of trees. For example,

Lemma 11.10.4. A graph  is a tree iff  is a forest and 

The proof is an easy consequence of Theorem 11.9.7.6 (Problem 11.55).

Spanning Trees
Trees are everywhere. In fact, every connected graph contains a subgraph that is a tree with the same vertices as the graph.
This is called a spanning tree for the graph. For example, Figure 11.20 is a connected graph with a spanning tree highlighted.

Theorem 11.10.3
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Figure 11.20 A graph where the edges of a spanning tree have been thickened.

Define a spanning subgraph of a graph, , to be a subgraph containing all the vertices of .

Every connected graph contains a spanning tree.

Proof

Suppose  is a connected graph, so the graph  itself is a connected, spanning subgraph. So by WOP,  must have a
minimum-edge connected, spanning subgraph, . We claim  is a spanning tree. Since  is a connected, spanning
subgraph by definition, all we have to show is that  is acyclic.
But suppose to the contrary that  contained a cycle . By Lemma 11.9.6, an edge  of  will not be a cut edge, so
removing it would leave a connected, spanning subgraph that was smaller than , contradicting the minimality to . 

Minimum Weight Spanning Trees
Spanning trees are interesting because they connect all the nodes of a graph using the smallest possible number of edges. For
example the spanning tree for the 6- node graph shown in Figure 11.20 has 5 edges.

In many applications, there are numerical costs or weights associated with the edges of the graph. For example, suppose the
nodes of a graph represent buildings and edges represent connections between them. The cost of a connection may vary a lot
from one pair of buildings or towns to another. Another example is where the nodes represent cities and the weight of an edge
is the distance between them: the weight of the Los Angeles/New York City edge is much higher than the weight of the
NYC/Boston edge. The weight of a graph is simply defined to be the sum of the weights of its edges. For example, the weight
of the spanning tree shown in Figure 11.21 is 19.

A minimum weight spanning tree (MST) of an edge-weighted graph  is a spanning tree of  with the smallest possible
sum of edge weights.

Is the spanning tree shown in Figure 11.21(a) an MST of the weighted graph shown in Figure 11.21(b)? It actually isn’t, since
the tree shown in Figure 11.22 is also a spanning tree of the graph shown in Figure 11.21(b), and this spanning tree has weight
17.
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Figure 11.21 A spanning tree (a) with weight 19 for a graph (b).

Figure 11.22 An MST with weight 17 for the graph in Figure 11.21(b).

What about the tree shown in Figure 11.22? It seems to be an MST, but how do we prove it? In general, how do we find an
MST for a connected graph ? We could try enumerating all subtrees of , but that approach would be hopeless for large
graphs.

There actually are many good ways to find MST’s based on a property of some subgraphs of  called pre-MST’s.

A pre-MST for a graph  is a spanning subgraph of  that is also a subgraph of some MST of .

So a pre-MST will necessarily be a forest.

For example, the empty graph with the same vertices as  is guaranteed to be a pre-MST of , and so is any actual MST of 
.

If  is an edge of  and  is a spanning subgraph, we’ll write  for the spanning subgraph with edges .

If  is a pre-MST and  is a new edge, that is , then  extends  when  is also a pre-MST.

So being a pre-MST is contrived to be an invariant under addition of extending edges, by the definition of extension.

The standard methods for finding MST’s all start with the empty spanning forest and build up to an MST by adding one
extending edge after another. Since the empty spanning forest is a pre-MST, and being a pre-MST is, by definition, invariant
under extensions, every forest built in this way will be a pre-MST. But no spanning tree can be a subgraph of a different
spanning tree. So when the pre-MST finally grows enough to become a tree, it will be an MST. By Lemma 11.10.4, this
happens after exactly  edge extensions.

So the problem of finding MST’s reduces to the question of how to tell if an edge is an extending edge. Here’s how:

Let  be a pre-MST, and color the vertices in each connected component of  either all black or all white. At least one
component of each color is required. Call this a solid coloring of . A gray edge of a solid coloring is an edge of  with
different colored endpoints.
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Any path in  from a white vertex to a black vertex obviously must include a gray edge, so for any solid coloring, there is
guaranteed to be at least one gray edge. In fact, there will have to be at least as many gray edges as there are components with
the same color. Here’s the punchline:

Lemma 11.10.11. An edge extends a pre-MST  if it is a minimum weight gray edge in some solid coloring of .

So to extend a pre-MST, choose any solid coloring, find the gray edges, and among them choose one with minimum weight.
Each of these steps is easy to do, so it is easy to keep extending and arrive at an MST. For example, here are three known
algorithms that are explained by Lemma 11.10.11:

Algorithm 1. [Prim] Grow a tree one edge at a time by adding a minimum weight edge among the edges that have exactly one
endpoint in the tree.

This is the algorithm that comes from coloring the growing tree white and all the vertices not in the tree black. Then the gray
edges are the ones with exactly one endpoint in the tree.

Algorithm 2. [Kruskal] Grow a forest one edge at a time by adding a minimum weight edge among the edges with endpoints
in different connected components.

An edge does not create a cycle iff it connects different components. The edge chosen by Kruskal’s algorithm will be the
minimum weight gray edge when the components it connects are assigned different colors.

For example, in the weighted graph we have been considering, we might run Algorithm 1 as follows. Start by choosing one of
the weight 1 edges, since this is the smallest weight in the graph. Suppose we chose the weight 1 edge on the bottom of the
triangle of weight 1 edges in our graph. This edge is incident to the same vertex as two weight 1 edges, a weight 4 edge, a
weight 7 edge, and a weight 3 edge. We would then choose the incident edge of minimum weight. In this case, one of the two
weight 1 edges. At this point, we cannot choose the third weight 1 edge: it won’t be gray because its endpoints are both in the
tree, and so are both colored white. But we can continue by choosing a weight 2 edge. We might end up with the spanning tree
shown in Figure 11.23, which has weight 17, the smallest we’ve seen so far.

Figure 11.23 A spanning tree found by Algorithm 1.

Now suppose we instead ran Algorithm 2 on our graph. We might again choose the weight 1 edge on the bottom of the triangle
of weight 1 edges in our graph. Now, instead of choosing one of the weight 1 edges it touches, we might choose the weight 1
edge on the top of the graph. This edge still has minimum weight, and will be gray if we simply color its endpoints differently,
so Algorithm 2 can choose it. We would then choose one of the remaining weight 1 edges. Note that neither causes us to form
a cycle. Continuing the algorithm, we could end up with the same spanning tree in Figure 11.23, though this will depend on
the tie breaking rules used to choose among gray edges with the same minimum weight. For example, if the weight of every
edge in  is one, then all spanning trees are MST’s with weight , and both of these algorithms can arrive at each of
these spanning trees by suitable tie-breaking.

The coloring that explains Algorithm 1 also justifies a more flexible algorithm which has Algorithm 1 as a special case:

Algorithm 3. Grow a forest one edge at a time by picking any component and adding a minimum weight edge among the
edges leaving that component.

This algorithm allows components that are not too close to grow in parallel and independently, which is great for “distributed”
computation where separate processors share the work with limited communication between processors.

These are examples of greedy approaches to optimization. Sometimes greediness works and sometimes it doesn’t. The good
news is that it does work to find the MST. Therefore, we can be sure that the MST for our example graph has weight 17, since
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it was produced by Algorithm 2. Furthermore we have a fast algorithm for finding a minimum weight spanning tree for any
graph.

Ok, to wrap up this story, all that’s left is the proof that minimal gray edges are extending edges. This might sound like a
chore, but it just uses the same reasoning we used to be sure there would be a gray edge when you need it.

Proof. (of Lemma 11.10.11)

Let  be a pre-MST that is a subgraph of some MST  of , and suppose  is a minimum weight gray edge under some
solid coloring of . We want to show that  is also a pre-MST.

If  happens to be an edge of , then  remains a subgraph of , and so is a pre-MST.

The other case is when  is not an edge of . In that case,  will be a connected, spanning subgraph. Also  has a path 
 between the different colored endpoints of , so  has a cycle consisting of  together with . Now  has both a black

endpoint and a white one, so it must contain some gray edge . The trick is to remove  from  to obtain a subgraph
. Since gray edges by definition are not edges of , the graph  contains . We claim that 
 is an MST, which proves the claim that  extends .

To prove this claim, note that  is a connected, spanning subgraph, and  is on a cycle of , so by Lemma 11.9.6,
removing  won’t disconnect anything. Therefore,  is still a connected, spanning subgraph. Moreover, 
has the same number of edges as , so Lemma 11.10.4 implies that it must be a spanning tree. Finally, since  is minimum
weight among gray edges,

This means that  is a spanning tree whose weight is at most that of an MST, which implies that  is also
an MST. 

Another interesting fact falls out of the proof of Lemma 11.10.11:

Corollary 11.10.12. If all edges in a weighted graph have distinct weights, then the graph has a unique MST.

The proof of Corollary 11.10.12 is left to Problem 11.70.
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12.1: Drawing Graphs in the Plane
Suppose there are three dog houses and three human houses, as shown in Figure 12.1. Can you find a route from each dog
house to each human house such that no route crosses any other route?

A similar question comes up about a little-known animal called a quadrapus that looks like an octopus with four stretchy arms
instead of eight. If five quadrapi are resting on the sea floor, as shown in Figure 12.2, can each quadrapus simultaneously
shake hands with every other in such a way that no arms cross?

Both these puzzles can be understood as asking about drawing graphs in the plane. Replacing dogs and houses by nodes, the
dog house puzzle can be rephrased as asking whether there is a planar drawing of the graph with six nodes and edges between
each of the first three nodes and each of the second three nodes. This graph is called the complete bipartite graph  and is
shown in Figure 12.3.(a). The quadrapi puzzle asks whether there is a planar drawing of the complete graph  shown in
Figure 12.3.(b).

In each case, the answer is, “No —but almost!” In fact, if you remove an edge from either of these graphs, then the resulting
graph can be redrawn in the plane so that no edges cross, as shown in Figure 12.4.

Planar drawings have applications in circuit layout and are helpful in displaying graphical data such as program flow charts,
organizational charts, and scheduling conflicts. For these applications, the goal is to draw the graph in the plane with as few
edge crossings as possible. (See the box on the following page for one such example.)

Steve Wozniak and a Planar Circuit Design

When wires are arranged on a surface, like a circuit board or microchip, crossings require troublesome three-dimensional
structures. When Steve Wozniak designed the disk drive for the early Apple II computer, he struggled mightily to achieve a
nearly planar design according to the following excerpt from apple2history.org which in turn quotes Fire in the Valley by
Freiberger and Swaine:

For two weeks, he worked late each night to make a satisfactory design. When he was finished, he found that if he moved a
connector he could cut down on feedthroughs, making the board more reliable. To make that move, however, he had to start
over in his design. This time it only took twenty hours. He then saw another feedthrough that could be eliminated, and again
started over on his design. “The final design was generally recognized by computer engineers as brilliant and was by
engineering aesthetics beautiful. Woz later said, ’It’s something you can only do if you’re the engineer and the PC board layout
person yourself. That was an artistic layout. The board has virtually no feedthroughs.’

Figure 12.1 Three dog houses and and three human houses. Is there a route from each dog house to each human house so that
no pair of routes cross each other?

K3,3

K5
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Figure 12.2 Five quadrapi (4-armed creatures).

Figure 12.3  (a) and K5 (b). Can you redraw these graphs so that no pairs of edges cross?

Figure 12.4 Planar drawings of (a)  without , and (b)  without .

K3,3

K3,3 ⟨u − v⟩ K5 ⟨u − v⟩
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12.2: Definitions of Planar Graphs
We took the idea of a planar drawing for granted in the previous section, but if we’re going to prove things about planar
graphs, we better have precise definitions.

A drawing of a graph assigns to each node a distinct point in the plane and assigns to each edge a smooth curve in the
plane whose endpoints correspond to the nodes incident to the edge. The drawing is planar if none of the curves cross
themselves or other curves, namely, the only points that appear more than once on any of the curves are the node points.
A graph is planar when it has a planar drawing.

Definition 12.2.1 is precise but depends on further concepts: “smooth planar curves” and “points appearing more than once”
on them. We haven’t defined these concepts —we just showed the simple picture in Figure 12.4 and hoped you would get the
idea.

Pictures can be a great way to get a new idea across, but it is generally not a good idea to use a picture to replace precise
mathematics. Relying solely on pictures can sometimes lead to disaster —or to bogus proofs, anyway. There is a long history
of bogus proofs about planar graphs based on misleading pictures.

The bad news is that to prove things about planar graphs using the planar drawings of Definition 12.2.1, we’d have to take a
chapter-long excursion into continuous mathematics just to develop the needed concepts from plane geometry and point-set
topology. The good news is that there is another way to define planar graphs that uses only discrete mathematics. In particular,
we can define planar graphs as a recursive data type. In order to understand how it works, we first need to understand the
concept of a face in a planar drawing.

Faces
The curves in a planar drawing divide up the plane into connected regions called the continuous faces  of the drawing. For
example, the drawing in Figure 12.5 has four continuous faces. Face IV, which extends off to infinity in all directions, is called
the outside face.

The vertices along the boundary of each continuous face in Figure 12.5 form a cycle. For example, labeling the vertices as in
Figure 12.6, the cycles for each of the face boundaries can be described by the vertex sequences

These four cycles correspond nicely to the four continuous faces in Figure 12.6 — so nicely, in fact, that we can identify each
of the faces in Figure 12.6 by its cycle. For example, the cycle  identifies face III. The cycles in list  are called the
discrete faces of the graph in Figure 12.6. We use the term “discrete” since cycles in a graph are a discrete data type —as
opposed to a region in the plane, which is a continuous data type.

Figure 12.5 A planar drawing with four continuous faces.

Definition 12.2.1

1

abca abda bcdb acda. (12.2.1)

abca 12.2.1
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Figure 12.6 The drawing with labeled vertices.

Unfortunately, continuous faces in planar drawings are not always bounded by cycles in the graph —things can get a little
more complicated. For example, the planar drawing in Figure 12.7 has what we will call a bridge, namely, a cut edge .
The sequence of vertices along the boundary of the outer region of the drawing is

This sequence defines a closed walk, but does not define a cycle since the walk has two occurrences of the bridge  and
each of its endpoints.

The planar drawing in Figure 12.8 illustrates another complication. This drawing has what we will call a dongle, namely, the
nodes  and , and the edges incident to them. The sequence of vertices along the boundary of the inner region is

This sequence defines a closed walk, but once again does not define a cycle because it has two occurrences of every edge of
the dongle —once “coming” and once “going.”

It turns out that bridges and dongles are the only complications, at least for connected graphs. In particular, every continuous
face in a planar drawing corresponds to a closed walk in the graph. These closed walks will be called the discrete faces of the
drawing, and we’ll define them next.

Figure 12.7 A planar drawing with a bridge.

Figure 12.8 A planar drawing with a dongle.

Recursive Definition for Planar Embeddings
The association between the continuous faces of a planar drawing and closed walks provides the discrete data type we can use
instead of continuous drawings. We’ll define a planar embedding of connected graph to be the set of closed walks that are its

⟨c−e⟩

abcefgecda.

⟨c−e⟩

v, x, y, w

rstvxyxvwvtur.
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face boundaries. Since all we care about in a graph are the connections between vertices —not what a drawing of the graph
actually looks like —planar embeddings are exactly what we need.

The question is how to define planar embeddings without appealing to continuous drawings. There is a simple way to do this
based on the idea that any continuous drawing can drawn step by step:

either draw a new point somewhere in the plane to represent a vertex,
or draw a curve between two vertex points that have already been laid down, making sure the new curve doesn’t cross any
of the previously drawn curves.

A new curve won’t cross any other curves precisely when it stays within one of the continuous faces. Alternatively, a new
curve won’t have to cross any other curves if it can go between the outer faces of two different drawings. So to be sure it’s ok
to draw a new curve, we just need to check that its endpoints are on the boundary of the same face, or that its endpoints are on
the outer faces of different drawings. Of course drawing the new curve changes the faces slightly, so the face boundaries will
have to be updated once the new curve is drawn. This is the idea behind the following recursive definition.

A planar embedding of a connected graph consists of a nonempty set of closed walks of the graph called the discrete
faces of the embedding. Planar embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex, , then a planar embedding of  has one discrete face, namely,
the length zero closed walk, .

Constructor case (split a face): Suppose  is a connected graph with a planar embedding, and suppose  and  are
distinct, nonadjacent vertices of  that occur in some discrete face, , of the planar embedding. That is,  is a closed walk
of the form

where  is a walk from  to  and  is a walk from  to . Then the graph obtained by adding the edge  to the
edges of  has a planar embedding with the same discrete faces as , except that face  is replaced by the two discrete
faces

as illustrated in Figure 12.9.

Constructor case (add a bridge): Suppose  and  are connected graphs with planar embeddings and disjoint sets of
vertices. Let  be a discrete face of the embedding of  and suppose that  begins and ends at vertex .

Similarly, let  be a discrete face of the embedding of  that begins and ends at vertex .

Then the graph obtained by connecting  and  with a new edge, , has a planar embedding whose discrete faces
are the union of the discrete faces of  and , except that faces  and  are replaced by one new face

This is illustrated in Figure 12.10, where the vertex sequences of the faces of  and  are:

and after adding the bridge , there is a single connected graph whose faces have the vertex sequences

A bridge is simply a cut edge, but in the context of planar embeddings, the bridges are precisely the edges that occur twice on
the same discrete face —as opposed to once on each of two faces. Dongles are trees made of bridges; we only use dongles in
illustrations, so there’s no need to define them more precisely.

Definition 12.2.2

v G

v

G a b

G γ γ

γ = α β^

α a b β b a ⟨a−b⟩

G G γ
2

α ⟨b − a⟩ and ⟨a − b⟩ β^ ^ (12.2.2)

3

G H

γ G γ a

δ H b

G H ⟨a−b⟩

G H γ δ

γ ⟨a−b⟩ δ ⟨b−a⟩.^ ^ ^

G H

G : {axyza, axya, ayza} H : {btuvwb, btvwb, tuvt},

⟨a−b⟩

axyzabtuvwba, axya, ayza, btvwb, tuvt.
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Figure 12.9 The “split a face” case:  splits into  and .

Figure 12.10 The “add a bridge” case.

Does It Work?
Yes! In general, a graph is planar because it has a planar drawing according to Definition 12.2.1 if and only if each of its
connected components has a planar embedding as specified in Definition 12.2.2. Of course we can’t prove this without an
excursion into exactly the kind of continuous math that we’re trying to avoid. But now that the recursive definition of planar
graphs is in place, we won’t ever need to fall back on the continuous stuff. That’s the good news.

The bad news is that Definition 12.2.2 is a lot more technical than the intuitively simple notion of a drawing whose edges
don’t cross. In many cases it’s easier to stick to the idea of planar drawings and give proofs in those terms. For example,
erasing edges from a planar drawing will surely leave a planar drawing. On the other hand, it’s not so obvious, though of
course it is true, that you can delete an edge from a planar embedding and still get a planar embedding (see Problem 12.9).

In the hands of experts, and perhaps in your hands too with a little more experience, proofs about planar graphs by appeal to
drawings can be convincing and reliable. But given the long history of mistakes in such proofs, it’s safer to work from the
precise definition of planar embedding. More generally, it’s also important to see how the abstract properties of curved
drawings in the plane can be modelled successfully using a discrete data type.

Where Did the Outer Face Go?
Every planar drawing has an immediately-recognizable outer face —it’s the one that goes to infinity in all directions. But
where is the outer face in a planar embedding?

There isn’t one! That’s because there really isn’t any need to distinguish one face from another. In fact, a planar embedding
could be drawn with any given face on the outside. An intuitive explanation of this is to think of drawing the embedding on a
sphere instead of the plane. Then any face can be made the outside face by “puncturing” that face of the sphere, stretching the
puncture hole to a circle around the rest of the faces, and flattening the circular drawing onto the plane.

So pictures that show different “outside” boundaries may actually be illustrations of the same planar embedding. For example,
the two embeddings shown in Figure 12.11 are really the same —check it: they have the same boundary cycles.

This is what justifies the “add bridge” case in Definition 12.2.2: whatever face is chosen in the embeddings of each of the
disjoint planar graphs, we can draw a bridge between them without needing to cross any other edges in the drawing, because
we can assume the bridge connects two “outer” faces.

awxbyza awxba abyza
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Figure 12.11 Two illustrations of the same embedding.

Most texts drop the adjective continuous from the definition of a face as a connected region. We need the adjective to
distinguish continuous faces from the discrete faces we’re about to define.

There is a minor exception to this definition of embedding in the special case when  is a line graph beginning with  and
ending with . In this case the cycles into which  splits are actually the same. That’s because adding edge  creates a
cycle that divides the plane into “inner” and “outer” continuous faces that are both bordered by this cycle. In order to maintain
the correspondence between continuous faces and discrete faces in this case, we define the two discrete faces of the embedding
to be two “copies” of this same cycle.

Formally, merge is an operation on walks, not a walk and an edge, so in ( ), we should have used a walk 
instead of an edge  and written

1

2 G a

b γ ⟨a−b⟩

3 12.2.2 ⟨a⟨a−b⟩b⟩

⟨a−b⟩

α (b⟨b − a⟩a) and (a⟨a − b⟩b) β^ ^
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12.3: Euler’s Formula
The value of the recursive definition is that it provides a powerful technique for proving properties of planar graphs, namely,
structural induction. For example, we will now use Definition 12.2.2 and structural induction to establish one of the most basic
properties of a connected planar graph, namely, that the number of vertices and edges completely determines the number of
faces in every possible planar embedding of the graph.

(Euler’s Formula). If a connected graph has a planar embedding, then

where  is the number of vertices,  is the number of edges, and  is the number of faces.

For example, in Figure 12.5,  and . Sure enough, , as Euler’s Formula claims.

Proof

The proof is by structural induction on the definition of planar embeddings. Let  be the proposition that 
 for an embedding, .

Base case (  is the one-vertex planar embedding): By definition,  and , and , so 
 indeed holds.

Constructor case (split a face): Suppose  is a connected graph with a planar embedding, and suppose  and  are
distinct, nonadjacent vertices of  that appear on some discrete face, , of the planar embedding.

Then the graph obtained by adding the edge  to the edges of  has a planar embedding with one more face
and one more edge than . So the quantity  will remain the same for both graphs, and since by structural
induction this quantity is 2 for ’s embedding, it’s also 2 for the embedding of  with the added edge. So  holds for
the constructed embedding.

Constructor case (add bridge): Suppose  and  are connected graphs with planar embeddings and disjoint sets of
vertices. Then connecting these two graphs with a bridge merges the two bridged faces into a single face, and leaves
all other faces unchanged. So the bridge operation yields a planar embedding of a connected graph with 
vertices,  edges, and  faces. Since

 remains equal to 2 for the constructed embedding. That is,  also holds in this case. This completes the
proof of the constructor cases, and the theorem follows by structural induction. 

Theorem 12.3.1

v−e +f = 2

v e f

v = 4, e = 6, f = 4 4 −6 +4 = 2

P (ϵ)

v−e +f = 2 ϵ

ϵ v = 1, e = 0, f = 1 1 −0 +1 = 2

P (ϵ)

G a b

G γ = a … b ⋯ a

⟨a −b⟩ G

G v−e +f

G G P

G H

+vG vH

+ +1eG eH + −1fG fH

(vG + ) −( + +1) +( + −1)vH eG eH fG fH

= ( − + ) +( − + ) −2vG eG fG vH eH fH

= (2) +(2) −2

= 2,

(by structural induction hypothesis)
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12.4: Bounding the Number of Edges in a Planar Graph
Like Euler’s formula, the following lemmas follow by structural induction directly from Definition 12.2.2.

Lemma 12.4.1. In a planar embedding of a connected graph, each edge occurs once in each of two different faces, or occurs
exactly twice in one face.

Lemma 12.4.2. In a planar embedding of a connected graph with at least three vertices, each face is of length at least three.

Combining Lemmas 12.4.1 and 12.4.2 with Euler’s Formula, we can now prove that planar graphs have a limited number of
edges:

Suppose a connected planar graph has  vertices and e edges. Then

Proof

By definition, a connected graph is planar iff it has a planar embedding. So suppose a connected graph with  vertices
and  edges has a planar embedding with  faces. By Lemma 12.4.1, every edge has exactly two occurrences in the
face boundaries. So the sum of the lengths of the face boundaries is exactly . Also by Lemma 12.4.2, when ,
each face boundary is of length at least three, so this sum is at least . This implies that

But  by Euler’s formula, and substituting into ( ) gives

Theorem 12.4.3

v ≥ 3

e ≤ 3v−6. (12.4.1)

v

e f

2e v ≥ 3

3f

3f ≤ 2e. (12.4.2)

f = e −v+2 12.4.2

3(e −v+2)

e −3v+6

e

≤ 2e

≤ 0

≤ 3v−6 ■
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12.5: Returning to K5 and K3,3
Finally we have a simple way to answer the quadrapi question at the beginning of this chapter: the five quadrapi can’t all shake
hands without crossing. The reason is that we know the quadrupi question is the same as asking whether a complete graph 
is planar, and Theorem 12.4.3 has the immediate:

Corollary 12.5.1.  is not planar.

Proof.  is connected and has 5 vertices and 10 edges. But since ,  does not satisfy the inequality (12.4.1.)
that holds in all planar graphs.

We can also use Euler’s Formula to show that  is not planar. The proof is similar to that of Theorem 12.4.1. except that we
use the additional fact that  is a bipartite graph.

Lemma 12.5.2. In a planar embedding of a connected bipartite graph with at least 3 vertices, each face has length at least 4.

Proof. By Lemma 12.4.2, every face of a planar embedding of the graph has length at least 3. But by Lemma 11.7.2 and
Theorem 11.9.3.3, a bipartite graph can’t have odd length closed walks. Since the faces of a planar embedding are closed
walks, there can’t be any faces of length 3 in a bipartite embedding. So every face must have length at least 4. 

Theorem 12.5.3. Suppose a connected bipartite graph with  vertices and  edges is planar. Then

Proof. Lemma 12.5.2. implies that all the faces of an embedding of the graph have length at least 4. Now arguing as in the
proof of Theorem 12.4.3, we find that the sum of the lengths of the face boundaries is exactly  and at least . Hence,

for any embedding of a planar bipartite graph. By Euler’s theorem, . Substituting  for  in ( ),
we have

which simplies to ( ). 

Corollary 12.5.4.  is not planar.

Proof.  is connected, bipartite and has 6 vertices and 9 edges. But since ,  does not satisfy the inequality
(12.4.1.) that holds in all bipartite planar graphs. 

K5

K5

K5 10 > 3 ⋅ 5 −6 K5

■

K3,3

K3,3

■

v ≥ 3 e

e ≤ 2v−4. (12.5.1)

2e 4f

4f ≤ 2e (12.5.2)

f = 2 −v+e 2 −v+e f 12.5.2

4(2 −v+e) ≤ 2e,

12.5.1 ■

K3,3
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12.6: Coloring Planar Graphs
We’ve covered a lot of ground with planar graphs, but not nearly enough to prove the famous 4-color theorem. But we can get
awfully close. Indeed, we have done almost enough work to prove that every planar graph can be colored using only 5 colors.

There are two familiar facts about planarity that we will need.

Lemma 12.6.1. Any subgraph of a planar graph is planar.

Lemma 12.6.2. Merging two adjacent vertices of a planar graph leaves another planar graph.

Merging two adjacent vertices,  and  of a graph means deleting the two vertices and then replacing them by a new
“merged” vertex, , adjacent to all the vertices that were adjacent to either of  or , as illustrated in Figure 12.12.

Figure 12.12 Merging adjacent vertices  and  into new vertex, .

Many authors take Lemmas 12.6.1 and 12.6.2 for granted for continuous drawings of planar graphs described by Definition
12.2.1. With the recursive Definition 12.2.2 both Lemmas can actually be proved using structural induction (see Problem
12.9).

We need only one more lemma:

Lemma 12.6.3. Every planar graph has a vertex of degree at most five.

Proof. Assuming to the contrary that every vertex of some planar graph had degree at least 6, then the sum of the vertex
degrees is at least . But the sum of the vertex degrees equals  by the Handshake Lemma 11.2.1, so we have 
contradicting the fact that  by Theorem 12.4.3. 

Every planar graph is five-colorable.

Proof

The proof will be by strong induction on the number, , of vertices, with induction hypothesis:
Every planar graph with  vertices is five-colorable.

Base cases ( ): immediate.

Inductive case: Suppose  is a planar graph with  vertices. We will describe a five-coloring of .

First, choose a vertex, , of  with degree at most 5; Lemma 12.6.3 guarantees there will be such a vertex.

Case 1: ( ): Deleting  from  leaves a graph, , that is planar by Lemma 12.6.1, and, since  has 
vertices, it is five-colorable by induction hypothesis. Now define a five coloring of  as follows: use the five-coloring
of  for all the vertices besides , and assign one of the five colors to  that is not the same as the color assigned to
any of its neighbors. Since there are fewer than 5 neighbors, there will always be such a color available for .

Case 2: ( ): If the five neighbors of  in  were all adjacent to each other, then these five vertices would
form a nonplanar subgraph isomorphic to , contradicting Lemma 12.6.1 (since  is not planar). So there must be
two neighbors,  and , of  that are not adjacent. Now merge  and  into a new vertex, . In this new graph, 
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is adjacent to , and the graph is planar by Lemma 12.6.2. So we can then merge  and  into a another new
vertex, , resulting in a new graph, , which by Lemma 12.6.2 is also planar. Since  has  1 vertices, it is five-
colorable by the induction hypothesis.

Now define a five coloring of  as follows: use the five-coloring of  for all the vertices besides  and . Next
assign the color of  in  to be the color of the neighbors  and . Since  and  are not adjacent in , this
defines a proper five-coloring of  except for vertex . But since these two neighbors of  have the same color, the
neighbors of  have been colored using fewer than five colors altogether. So complete the five-coloring of  by
assigning one of the five colors to  that is not the same as any of the colors assigned to its neighbors. 
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12.7: Classifying Polyhedra
The Pythagoreans had two great mathematical secrets, the irrationality of  and a geometric construct that we’re about to
rediscover!

A polyhedron is a convex, three-dimensional region bounded by a finite number of polygonal faces. If the faces are identical
regular polygons and an equal number of polygons meet at each corner, then the polyhedron is regular. Three examples of
regular polyhedra are shown in Figure 12.13: the tetrahedron, the cube, and the octahedron.

We can determine how many more regular polyhedra there are by thinking about planarity. Suppose we took any polyhedron
and placed a sphere inside it. Then we could project the polyhedron face boundaries onto the sphere, which would give an
image that was a planar graph embedded on the sphere, with the images of the corners of the polyhedron corresponding to
vertices of the graph. We’ve already observed that embeddings on a sphere are the same as embeddings on the plane, so
Euler’s formula for planar graphs can help guide our search for regular polyhedra.

For example, planar embeddings of the three polyhedra in Figure 12.1 are shown in Figure 12.14.

Figure 12.13 The tetrahedron (a), cube (b), and octahedron (c).

Figure 12.14 Planar embeddings of the tetrahedron (a), cube (b), and octahedron (c).

Let  be the number of faces that meet at each corner of a polyhedron, and let  be the number of edges on each face. In the
corresponding planar graph, there are  edges incident to each of the  vertices. By the Handshake Lemma 11.2.1, we know:

Also, each face is bounded by  edges. Since each edge is on the boundary of two faces, we have:

Solving for  and  in these equations and then substituting into Euler’s formula gives:

which simplifies to

Equation  places strong restrictions on the structure of a polyhedron. Every nondegenerate polygon has at least 3 sides,
so . And at least 3 polygons must meet to form a corner, so . On the other hand, if either  or  were 6 or more,
then the left side of the equation could be at most , which is less than the right side. Checking the finitely-many
cases that remain turns up only five solutions, as shown in Figure 12.15. For each valid combination of  and , we can
compute the associated number of vertices , edges , and faces . And polyhedra with these properties do actually exist. The
largest polyhedron, the dodecahedron, was the other great mathematical secret of the Pythagorean sect.
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Figure 12.15 The only possible regular polyhedra.

The 5 polyhedra in Figure 12.15 are the only possible regular polyhedra. So if you want to put more than 20 geocentric
satellites in orbit so that they uniformly blanket the globe—tough luck!
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12.8: Another Characterization for Planar Graphs
We did not pick  and  as examples because of their application to dog houses or quadrapi shaking hands. We really
picked them because they provide another, famous, discrete characterizarion of planar graphs:

(Kuratowski). A graph is not planar if and only if it contains  or  as a minor.

A minor of a graph  is a graph that can be obtained by repeatedly  deleting vertices, deleting edges, and merging
adjacent vertices of .

For example, Figure 12.16 illustrates why C3 is a minor of the graph in Figure 12.16(a). In fact C3 is a minor of a connected
graph G if and only if G is not a tree. The known proofs of Kuratowski’s Theorem 12.8.1 are a little too long to include in an
introductory text, so we won’t give one.

Figure 12.16 One method by which the graph in (a) can be reduced to  (f), thereby showing that  is a minor of the graph.
The steps are: merging the nodes incident to  (b), deleting  and all edges incident to it (c), deleting  (d), deleting , and
deleting  (f).

The three operations can each be performed any number of times in any order.
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CHAPTER OVERVIEW
13: SUMS AND ASYMPTOTICS

Sums and products arise regularly in the analysis of algorithms, financial applications, physical
problems, and probabilistic systems. For example, according to Theorem 2.2.1,

Of course, the lefthand sum could be expressed concisely as a subscripted summation

but the right hand expression  is not only concise but also easier to evaluate. Furthermore, it more clearly reveals properties
such as the growth rate of the sum. Expressions like  that do not make use of subscripted summations or products—or those
handy but sometimes troublesome sequences of three dots—are called closed forms.

Another example is the closed form for a geometric sum

given in Problem 5.4. The sum as described on the left hand side of (13.2) involves n additions and 
 multiplications, but its closed form on the right hand side can be evaluated using fast

exponentiation with at most  multiplications, a division, and a couple of subtractions. Also, the closed form makes the growth and
limiting behavior of the sum much more apparent.

Equations ( ) and ( ) were easy to verify by induction, but, as is often the case, the proofs by induction gave no hint about how
these formulas were found in the first place. Finding them is part math and part art, which we’ll start examining in this chapter.

Our first motivating example will be the value of a financial instrument known as an annuity. This value will be a large and nasty-
looking sum. We will then describe several methods for finding closed forms for several sorts of sums, including those for annuities. In
some cases, a closed form for a sum may not exist, and so we will provide a general method for finding closed forms for good upper and
lower bounds on the sum.

The methods we develop for sums will also work for products, since any product can be converted into a sum by taking its logarithm.
For instance, later in the chapter we will use this approach to find a good closed-form approximation to the factorial function

We conclude the chapter with a discussion of asymptotic notation, especially “Big Oh” notation. Asymptotic notation is often used to
bound the error terms when there is no exact closed form expression for a sum or product. It also provides a convenient way to express
the growth rate or order of magnitude of a sum or product.

13.1: THE VALUE OF AN ANNUITY
13.2: SUMS OF POWERS
13.3: APPROXIMATING SUMS
13.4: HANGING OUT OVER THE EDGE
13.5: PRODUCTS
13.6: DOUBLE TROUBLE
13.7: ASYMPTOTIC NOTATION
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13.1: The Value of an Annuity
Would you prefer a million dollars today or $50,000 a year for the rest of your life? On the one hand, instant gratification is
nice. On the other hand, the total dollars received at $50K per year is much larger if you live long enough.

Formally, this is a question about the value of an annuity. An annuity is a financial instrument that pays out a fixed amount of
money at the beginning of every year for some specified number of years. In particular, an -year, -payment annuity pays 
dollars at the start of each year for  years. In some cases,  is finite, but not always. Examples include lottery payouts,
student loans, and home mortgages. There are even firms on Wall Street that specialize in trading annuities.

A key question is, “What is an annuity worth?” For example, lotteries often pay out jackpots over many years. Intuitively,
$50,000 a year for 20 years ought to be worth less than a million dollars right now. If you had all the cash right away, you
could invest it and begin collecting interest. But what if the choice were between $50,000 a year for 20 years and a half million
dollars today? Suddenly, it’s not clear which option is better.

The Future Value of Money
In order to answer such questions, we need to know what a dollar paid out in the future is worth today. To model this, let’s
assume that money can be invested at a fixed annual interest rate . We’ll assume an 8% rate  for the rest of the discussion, so 

.

Here is why the interest rate  matters. Ten dollars invested today at interest rate  will become  dollars
in a year,  dollars in two years, and so forth. Looked at another way, ten dollars paid out a year from
now is only really worth  dollars today, because if we had the $9.26 today, we could invest it and would
have $10.00 in a year anyway. Therefore,  determines the value of money paid out in the future.

So for an -year, -payment annuity, the first payment of  dollars is truly worth  dollars. But the second payment a year
later is worth only  dollars. Similarly, the third payment is worth , and the -th payment is worth only 

. The total value, , of the annuity is equal to the sum of the payment values. This gives:

The goal of the preceding substitutions was to get the summation into the form of a simple geometric sum. This leads us to an
explanation of a way you could have discovered the closed form (13.2) in the first place using the Perturbation Method.

The Perturbation Method
Given a sum that has a nice structure, it is often useful to “perturb” the sum so that we can somehow combine the sum with the
perturbation to get something much simpler. For example, suppose

An example of a perturbation would be

The difference between  and  is not so great, and so if we were to subtract  from , there would be massive
cancellation:

n m m

n n
1

p 2

p = 0.08

p p (1 +p) ⋅ 10 = 10.80

(1 +p ⋅ 10 ≈ 11.66)2

1/(1 +p) ⋅ 10 ≈ 9.26

p

n m m m

m/(1 +p) m/(1 +p)2 n

m/(1 +p)n−1 V

V =∑
i=1

n m

(1 +p)i−1

= m ⋅ (∑
j=0

n−1 1

1 +p
)j

= m ⋅∑
j=0

n−1

xj

(substitute j= i−1)

(substitute x = 1/(1 +p)). (13.1.1)

S = 1 +x+ +⋯ + .x2 xn

xS = x+ +⋯ + .x2 xn+1

S xS xS S

S

−xS

= 1 +x+ + +⋯ +x2 x3 xn

= −x− − −⋯ − − .x2 x3 xn xn+1
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The result of the subtraction is

Solving for  gives the desired closed-form expression in equation 13.2, namely,

We’ll see more examples of this method when we introduce generating functions in Chapter 15.

13.1.3 A Closed Form for the Annuity Value

Using equation 13.2, we can derive a simple formula for , the value of an annuity that pays  dollars at the start of each year
for  years.

Equation  is much easier to use than a summation with dozens of terms. For example, what is the real value of a winning
lottery ticket that pays $50,000 per year for 20 years? Plugging in  and  gives 

. So because payments are deferred, the million dollar lottery is really only worth about a half million dollars!
This is a good trick for the lottery advertisers.

Infinite Geometric Series
We began this chapter by asking whether you would prefer a million dollars today or $50,000 a year for the rest of your life.
Of course, this depends on how long you live, so optimistically assume that the second option is to receive $50,000 a year
forever. This sounds like infinite money! But we can compute the value of an annuity with an infinite number of payments by
taking the limit of our geometric sum in equation 13.2 as  tends to infinity

If , then

Proof

The final line follows from the fact that  when 

In our annuity problem, , so Theorem 13.1.1 applies, and we get

S−xS = 1 − .xn+1

S

S = .
1 −xn+1

1 −x

V m

n

V = m( )
1 −xn

1 −x

= m( )
1 +p−(1/(1 +p))n−1

p

(by equations 13.1.1 and 13.2)

(substituting x = 1/(1 +p)).

(13.1.2)

(13.1.3)

13.1.3

m = $50, 000,n = 20, p = 0.08

V ≈ $530, 180

n

Theorem 13.1.1

|x| < 1

= .∑
i=0

∞

xi
1

1 −x

∑
i=0

∞

xi ::= lim
n→∞

xi

= lim
n→∞

1 −xn+1

1 −x

= .
1

1 −x

(by equation 13.2)

= 0limn→∞ xn+1 |x| < 1. ■

x = 1/(1 +p) < 1

V = m ⋅∑
j=0

∞

xj

= m ⋅
1

1 −x

= m ⋅
1 +p

p

(by equation 13.1.1.)

(by Theorem 13.1.1.)

(x = 1/(1 +p)).
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Plugging in  and , we see that the value  is only . It seems amazing that a million dollars
today is worth much more than $50,000 paid every year for eternity! But on closer inspection, if we had a million dollars today
in the bank earning 8% interest, we could take out and spend $80,000 a year, forever. So as it turns out, this answer really isn’t
so amazing after all.

Examples
Equation 13.2 and Theorem 13.1.1 are incredibly useful in computer science.

Here are some other common sums that can be put into closed form using equation 13.2 and Theorem 13.1.1:

If the terms in a geometric sum grow smaller, as in equation , then the sum is said to be geometrically decreasing. If the
terms in a geometric sum grow progressively larger, as in equations  and , then the sum is said to be geometrically
increasing. In either case, the sum is usually approximately equal to the term in the sum with the greatest absolute value. For
example, in equations  and , the largest term is equal to 1 and the sums are 2 and 2/3, both relatively close to 1. In
equation , the sum is about twice the largest term. In equation , the largest term is  and the sum is 

, which is only about a factor of 1:5 greater. You can see why this rule of thumb works by looking carefully at
equation 13.2 and Theorem 13.1.1.

Variations of Geometric Sums
We now know all about geometric sums—if you have one, life is easy. But in practice one often encounters sums that cannot
be transformed by simple variable substitutions to the form .

A non-obvious but useful P way to obtain new summation formulas from old ones is by differentiating or integrating with
respect to . As an example, consider the following sum:

This is not a geometric sum. The ratio between successive terms is not fixed, and so our formula for the sum of a geometric
sum cannot be directly applied. But differentiating equation 13.2 leads to:

The left-hand side of equation  is simply

The right-hand side of equation  is

m = $50, 000 p = 0 : 08 V $675, 000

1 +1/2 +1/4 +⋯ = = = 2∑
i=0

∞

( )
1

2

i 1

1 −(1/2)

0.99999 ⋯ = 0.9 = 0.9( ) = 0.9( ) = 1∑
i=0

∞

( )
1

10

i 1

1 −1/10

10

9

1 −1/2 +1/4 −⋯ = = =∑
i=0

∞

( )
−1

2

i
1

1 −(−1/2)

2

3

1 +2 +4 +⋯ + = = = −12n−1 ∑
i=0

n−1

2i
1 −2n

1 −2
2n

1 +3 +9 +⋯ + = = =3n−1 ∑
i=0

n−1

3i
1 −3n

1 −3

−13n

2

(13.1.4)

(13.1.5)

(13.1.6)

(13.1.7)

(13.1.8)

13.1.4

13.1.7 13.1.8

13.1.4 13.1.6

13.1.7 13.1.8 3n−1

( −1)/23n

∑xi

x

n−1i = x+2 +3 +⋯ +(n−1)∑
i=1

xi x2 x3 xn−1

( n−1 ) = ( ) .
d

dx
∑
i=0

xi
d

dx

1 −xn

1 −x
(13.1.9)

13.1.9

( ) = i( )∑
i=0

n−1 d

dx
xi ∑

i=0

n−1

xi−1

13.1.9
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Hence, equation  means that

Incidentally, Problem 13.2 shows how the perturbation method could also be applied to derive this formula.

Often, differentiating or integrating messes up the exponent of  in every term. In this case, we now have a formula for a sum
of the form , but we want a formula for the series . The solution is simple: multiply by . This gives:

and we have the desired closed-form expression for our sum. It seems a little complicated, but it’s easier to work with than the
sum.

Notice that if , then this series converges to a finite value even if there are infinitely many terms. Taking the limit of
equation  as  tends to infinity gives the following theorem:

If , then

As a consequence, suppose that there is an annuity that pays  dollars at the end of each year , forever. For example, if 
, then the payouts are $50,000 and then $100,000 and then $150,000 and so on. It is hard to believe that the

value of this annuity is finite! But we can use Theorem 13.1.2 to compute the value:

The second line follows by an application of Theorem 13.1.2. The third line is obtained by multiplying the numerator and
denominator by .

For example, if , and  as usual, then the value of the annuity is . Even though the
payments increase every year, the increase is only additive with time; by contrast, dollars paid out in the future decrease in
value exponentially with time. The geometric decrease swamps out the additive increase. Payments in the distant future are
almost worthless, so the value of the annuity is finite.

The important thing to remember is the trick of taking the derivative (or integral) of a summation formula. Of course, this
technique requires one to compute nasty derivatives correctly, but this is at least theoretically possible!

Such trading ultimately led to the subprime mortgage disaster in 2008–2009. We’ll talk more about that in a later chapter.

U.S. interest rates have dropped steadily for several years, and ordinary bank deposits now earn around 1.0%. But just a few
years ago the rate was 8%; this rate makes some of our examples a little more dramatic. The rate has been as high as 17% in

−n (1 −x) −(−1)(1 − )xn−1 xn

(1 −x)2
=

−n +n +1 − )xn−1 xn xn

(1 −x)2

= .
1 −n +(n−1)xn−1 xn

(1 −x)2

13.1.9

i = .∑
i=0

n−1

xi−1 1 −n +(n−1)xn−1 xn

(1 −x)2

x

∑ ixi−1 ∑ ixi−1 x

i =∑
i=0

n−1

xi
x−n +(n−1)xn xn+1

(1 −x)2
(13.1.10)

|x| < 1

13.1.10 n

Theorem 13.1.2

|x| < 1

i = .∑
i=0

∞

xi
x

(1 −x)2
(13.1.11)

im i

m = $50, 000

V =∑
i=1

∞ im

(1 +p)i

= m ⋅
1/(1 +p)

(1 − 1
1+p

)2

= m ⋅ .
1 +p

p2

(1 +p)2

m = $50, 000 p = 0.08 V = $8, 437, 500

1

2
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the past thirty years.
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13.2: Sums of Powers
In Chapter 5, we verified the formula (13.1), but the source of this formula is still a mystery. Sure, we can prove that it’s true
by using well ordering or induction, but where did the expression on the right come from in the first place? Even more
inexplicable is the closed form expression for the sum of consecutive squares:

It turns out that there is a way to derive these expressions, but before we explain it, we thought it would be fun—OK, our
definition of “fun” may be different than yours—to show you how Gauss is supposed to have proved equation 13.1 when he
was a young boy

Gauss’s idea is related to the perturbation method we used in Section 13.1.2. Let

Then we can write the sum in two orders:

Adding these two equations gives

Hence,

Not bad for a young child—Gauss showed some potential....

Unfortunately, the same trick does not work for summing consecutive squares. However, we can observe that the result might
be a third-degree polynomial in , since the sum contains  terms that average out to a value that grows quadratically in . So
we might guess that

If our guess is correct, then we can determine the parameters  and  by plugging in a few values for . Each such value
gives a linear equation in  and . If we plug in enough values, we may get a linear system with a unique solution.
Applying this method to our example gives:

Solving this system gives the solution . Therefore, if our initial guess at the form of the
solution was correct, then the summation is equal to , which matches equation .

The point is that if the desired formula turns out to be a polynomial, then once you get an estimate of the degree of the
polynomial, all the coefficients of the polynomial can be found automatically.

Be careful! This method lets you discover formulas, but it doesn’t guarantee they are right! After obtaining a formula by this
method, it’s important to go back and prove it by induction or some other method. If the initial guess at the solution was not of

= .∑
i=1

n

i
2 (2n+1)(n+1)n

6
(13.2.1)

S = i.∑
i=1

n

S = 1 +2+. . . +(n−1) +n,

S = n+(n−1)+. . . +2 +1.

2S = (n+1) +(n+1) +⋯ +(n+1) +(n+1)

= n(n+1).

S = .
n(n+1)

2

n n n

= a +b +cn+d.∑
i=1

n

i
2

n
3

n
2

a, b, c, d n

a, b, c, d

n

n

n

n

= 0 implies 0 = d

= 1 implies 1 = a+b+c+d

= 2 implies 5 = 8a+4b+2c+d

= 3 implies 14 = 27a+9b+3c+d.

a = 1/3, b = 1/2, c = 1/6, d = 0

/3 + /2 +n/6n
3

n
2 13.2.1
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the right form, then the resulting formula will be completely wrong! A later chapter will describe a method based on
generating functions that does not require any guessing at all.
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13.3: Approximating Sums
Unfortunately, it is not always possible to find a closed-form expression for a sum. For example, no closed form is known for

In such cases, we need to resort to approximations for  if we want to have a closed form. The good news is that there is a
general method to find closed-form upper and lower bounds that works well for many sums. Even better, the method is simple
and easy to remember. It works by replacing the sum by an integral and then adding either the first or last term in the sum.

A function  is strictly increasing when

and it is weakly increasing  when

Similarly,  is strictly increasing when

and it is weakly decreasing  when

For example,  and  are strictly increasing functions, while  and  are weakly increasing functions. The
functions  and  are strictly decreasing, while  and  are weakly decreasing.

Let  be a weakly increasing function. Define

and

Then

Similarly, if  is a weakly decreasing, then

Proof

S = .∑
i=1

n

i√

S

Definition 13.3.1

f : →R
+

R
+

x < y IMPLIES f(x) < f(y),

3

x < y IMPLIES f(x) ≤ f(y).

f

x < y IMPLIES f(x) > f(y),

4

x < y IMPLIES f(x) ≥ f(y).

2x x−−√ max{x, 2} ⌈x⌉
1/x 2−x min{1/x, 1/2} ⌊1/x⌋

Theorem 13.3.1

f : →R
+

R
+

S ::= f(i)∑
i=1

n

(13.3.1)

I ::= f(x)dx.∫
n

1

I + f(1) ≤ S ≤ I + f(n). (13.3.2)

f

I +f(n) ≤ S ≤ I +f(1).
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Suppose  is weakly increasing. The value of the sum  in  is the sum of the areas of  unit-
width rectangles of heights . This area of these rectangles is shown shaded in Figure 13.1.
The value of

is the shaded area under the curve of  from 1 to  shown in Figure 13.2.

Comparing the shaded regions in Figures 13.1 and 13.2 shows that  is at least  plus the area of the leftmost
rectangle. Hence,

This is the lower bound for S given in .

To derive the upper bound for  given in , we shift the curve of  from 1 to  one unit to the left as shown
in Figure 13.3.

Comparing the shaded regions in Figures 13.1 and 13.3 shows that  is at most  plus the area of the rightmost
rectangle. That is,

which is the upper bound for S given in .

The very similar argument for the weakly decreasing case is left to Problem 13.10. 

Figure 13.1 The area of the th rectangle is . The shaded region has area .

Figure 13.2 The shaded area under the curve of  from 1 to  (shown in bold) is .

f : →R
+

R
+ S 13.3.1 n

f(1), f(2), … , f(n)

I = f(x)dx∫
n

1

f(x) n

S I

S ≥ I +f(1) (13.3.3)

13.3.2

S 13.3.2 f(x) n

S I

S ≤ I +f(n)

13.3.2
■

i f(i) f(i)∑n
i=1

f(x) n I = f(x)dx∫ n

1
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Figure 13.3 This curve is the same as the curve in Figure 13.2 shifted left by 1.

Theorem 13.3.2 provides good bounds for most sums. At worst, the bounds will be off by the largest term in the sum. For
example, we can use Theorem 13.3.2 to bound the sum

as follows.

We begin by computing

We then apply Theorem 13.3.2 to conclude that

and thus that

In other words, the sum is very close to . We’ll define several ways that one thing can be “very close to” something else

at the end of this chapter.

As a first application of Theorem 13.3.2, we explain in the next section how it helps in resolving a classic paradox in structural
engineering.

Weakly increasing functions are usually called nondecreasing functions. We will avoid this terminology to prevent confusion
between being a nondecreasing function and the much weaker property of not being a decreasing function.

Weakly decreasing functions are usually called nonincreasing.

S =∑
i=1

n

i√

I = dx∫
n

1
x−−√

=
x3/2

3/2
∣
∣
∣
n

1

= ( −1).
2

3
n3/2

( −1) +1 ≤ S ≤ ( −1) +
2

3
n3/2 2

3
n3/2 n−−√

+ ≤ S ≤ + − .
2

3
n3/2 1

3

2

3
n3/2 n−−√

2

3

2

3
n3/2

3

4
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13.4: Hanging Out Over the Edge
Suppose you have a bunch of books and you want to stack them up, one on top of another in some off-center way, so the top
book sticks out past books below it without falling over. If you moved the stack to the edge of a table, how far past the edge of
the table do you think you could get the top book to go? Could the top book stick out completely beyond the edge of table?
You’re not supposed to use glue or any other support to hold the stack in place.

Most people’s first response to the Book Stacking Problem—sometimes also their second and third responses—is “No, the top
book will never get completely past the edge of the table.” But in fact, you can get the top book to stick out as far as you want:
one booklength, two booklengths, any number of booklengths!

Formalizing the Problem
We’ll approach this problem recursively. How far past the end of the table can we get one book to stick out? It won’t tip as
long as its center of mass is over the table, so we can get it to stick out half its length, as shown in Figure 13.4.

Figure 13.4 One book can overhang half a book length.

Now suppose we have a stack of books that will not tip over if the bottom book rests on the table—call that a stable stack.
Let’s define the overhang of a stable stack to be the horizontal distance from the center of mass of the stack to the furthest edge
of the top book. So the overhang is purely a property of the stack, regardless of its placement on the table. If we place the
center of mass of the stable stack at the edge of the table as in Figure 13.5, the overhang is how far we can get the top book in
the stack to stick out past the edge.

Figure 13.5 Overhanging the edge of the table.

In general, a stack of n books will be stable if and only if the center of mass of the top  books sits over the st book for 

So we want a formula for the maximum possible overhang, , achievable with a stable stack of  books.

We’ve already observed that the overhang of one book is 1/2 a book length. That is,

i (i+1)
i = 1, 2, … ,n−1.

Bn n

= .B1
1
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Now suppose we have a stable stack of  books with maximum overhang. If the overhang of the  books on top of the
bottom book was not maximum, we could get a book to stick out further by replacing the top stack with a stack of  books
with larger overhang. So the maximum overhang, , of a stack of  books is obtained by placing a maximum
overhang stable stack of  books on top of the bottom book. And we get the biggest overhang for the stack of  books by
placing the center of mass of the  books right over the edge of the bottom book as in Figure 13.6.

Figure 13.6 Additional overhang with  books.

So we know where to place the st book to get maximum overhang. In fact, the reasoning above actually shows that this
way of stacking  books is the unique way to build a stable stack where the top book extends as far as possible. All we
have to do is calculate what this extension is.

The simplest way to do that is to let the center of mass of the top  books be the origin. That way the horizontal coordinate of
the center of mass of the whole stack of  books will equal the increase in the overhang. But now the center of mass of the
bottom book has horizontal coordinate , so the horizontal coordinate of center of mass of the whole stack of  books is

In other words,

as shown in Figure 13.6.

Expanding equation( ), we have

So our next task is to examine the behavior of  as  grows.

Harmonic Numbers

The th harmonic number, , is

So ( ) means that

n+1 n

n

Bn+1 n+1
n n+1

n

n+ 1

n+1
n+1

n

n+1
1/2 n+1

= .
0 ⋅n+(1/2) ⋅ 1

n+1

1

2(n+1)

= + ,Bn+1 Bn

1

2(n+1)
(13.4.1)
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Bn+1 = + +Bn−1
1

2n

1

2(n+1)

= + +⋯ + +B1
1

2 ⋅ 2

1

2n

1

2(n+1)

= .
1

2
∑
i=1

n+1 1

i
(13.4.2)

Bn n

Definition 13.4.1

n Hn

::= n .Hn ∑
i=1

1

i
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The first few harmonic numbers are easy to compute. For example,  The fact that  is
greater than 2 has special significance: it implies that the total extension of a 4-book stack is greater than one full book! This is
the situation shown in Figure 13.7.

Figure 13.7 Stack of four books with maximum overhang.

There is good news and bad news about harmonic numbers. The bad news is that there is no known closed-form expression for
the harmonic numbers. The good news is that we can use Theorem 13.3.2 to get close upper and lower bounds on . In
particular, since

Theorem 13.3.2 means that

In other words, the th harmonic number is very close to .

Because the harmonic numbers frequently arise in practice, mathematicians have worked hard to get even better
approximations for them. In fact, it is now known that

Here  is a value 0.577215664... called Euler’s constant, and  is between 0 and 1 for all . We will not prove this formula.

We are now finally done with our analysis of the book stacking problem. Plugging the value of  into ( ), we find that
the maximum overhang for  books is very close to . Since  grows to infinity as  increases, this means that if
we are given enough books we can get a book to hang out arbitrarily far over the edge of the table. Of course, the number of
books we need will grow as an exponential function of the overhang; it will take 227 books just to achieve an overhang of 3,
never mind an overhang of 100.

Extending Further Past the End of the Table

The overhang we analyzed above was the furthest out the top book could extend past the table. This leaves open the question
of if there is some better way to build a stable stack where some book other than the top stuck out furthest. For example,
Figure 13.8 shows a stable stack of two books where the bottom book extends further out than the top book. Moreover, the
bottom book extends 3/4 of a book length past the end of the table, which is the same as the maximum overhang for the top
book in a two book stack.

Since the two book arrangement in Figure 13.8(a) ties the maximum overhang stack in Figure 13.8(b), we could take the
unique stable stack of  books where the top book extends furthest, and switch the top two books to look like Figure 13.8(a).
This would give a stable stack of  books where the second from the top book extends the same maximum overhang distance.
So for , there are at least two ways of building a stable stack of  books which both extend the maximum overhang
distance—one way where the top book is furthest out, and another way where the second from the top book is furthest out.

= 1 + + + = > 2.H4
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1
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1
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25
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H4

Hn

dx = ln(x) = ln(n),∫
n
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1

x

∣
∣
∣
n

1
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Hn (13.4.3)

n ln(n)

= ln(n) +γ+ + +Hn

1
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1
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ϵ(n)

120n4
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Figure 13.8 Figure (a) shows a stable stack of two books where the bottom book extends the same amount past the end of the
table as the maximum overhang twobook stack shown in Figure (b).

It turns out that there is no way to beat these two ways of making stable stacks. In fact, it’s not too hard to show that these are
the only two ways to get a stable stack of books that achieves maximum overhang.

But there is more to the story. All our reasoning above was about stacks in which one book rests on another. It turns out that by
building structures in which more than one book rests on top of another book—think of an inverted pyramid—it is possible to
get a stack of  books to extend proportional to —much more than —book lengths without falling over. See [13],
Maximum Overhang.

Asymptotic Equality
For cases like Equation  where we understand the growth of a function like  up to some (unimportant) error terms,
we use a special notation, ~, to denote the leading term of the function. For example, we say that  to indicate that the
leading term of  is . More precisely:

For functions , we say  is asymptotically equal to , in symbols,

\iff

Although it is tempting to write  to indicate the two leading terms, this is not really right. According to
Definition 13.4.2,  where  is any constant. The correct way to indicate that  is the second-largest term is 

.

The reason that the ~ notation is useful is that often we do not care about lower order terms. For example, if , then we
can compute  to great precision using only the two leading terms:

We will spend a lot more time talking about asymptotic notation at the end of the chapter. But for now, let’s get back to using
sums.

n n−−√3 lnn

13.4.4 Hn
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13.5: Products
We’ve covered several techniques for finding closed forms for sums but no methods for dealing with products. Fortunately, we
do not need to develop an entirely new set of tools when we encounter a product such as

That’s because we can convert any product into a sum by taking a logarithm. For example, if

then

We can then apply our summing tools to find a closed form (or approximate closed form) for  and then exponentiate at
the end to undo the logarithm.

For example, let’s see how this works for the factorial function . We start by taking the logarithm:

Unfortunately, no closed form for this sum is known. However, we can apply Theorem 13.3.2 to find good closed-form bounds
on the sum. To do this, we first compute

Plugging into Theorem 13.3.2, this means that

Exponentiating then gives

This means that  is within a factor of  of .

Stirling’s Formula
The most commonly used product in discrete mathematics is probably , and mathematicians have workedto find tight
closed-form bounds on its value. The most useful bounds are given in Theorem 13.5.1.

(Stirling’s Formula). For all ,

where
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(13.5.1)
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Theorem 13.5.1 can be proved by induction (with some pain), and there are lots of proofs using elementary calculus, but we
won’t go into them.

There are several important things to notice about Stirling’s Formula. First,  is always positive. This means that

for all .

Second,  tends to zero as  gets large. This means that

which is impressive. After all, who would expect both  and  to show up in a closed-form expression that is asymptotically
equal to ?

Third, is small even for small values of . This means that Stirling’s Formula provides good approximations for  for
most all values of . For example, if we use

as the approximation for , as many people do, we are guaranteed to be within a factor of

of the correct value. For , this means we will be within 1% of the correct value. For , the error will be less than
0.1%.

If we need an even closer approximation for , then we could use either

or

depending on whether we want an upper, or a lower, bound. By Theorem 13.5.1, we know that both bounds will be within a
factor of

of the correct value. For , this means that either bound will be within 0.01% of the correct value. For , the
error will be less than 0.0001%.

For quick future reference, these facts are summarized in Corollary 13.5.2 and Table 13.1.

Table 13.1 Error bounds on common approximations for  from Theorem 13.5.1. For example, if , then 

approximates  to within 0.1%.

Corollary 13.5.2.
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13.6: Double Trouble
Sometimes we have to evaluate sums of sums, otherwise known as double summations. This sounds hairy, and sometimes it is.
But usually, it is straightforward— you just evaluate the inner sum, replace it with a closed form, and then evaluate the outer
sum (which no longer has a summation inside it). For example,

When there’s no obvious closed form for the inner sum, a special trick that is often useful is to try exchanging the order of
summation. For example, suppose we want to compute the sum of the first  harmonic numbers

For intuition about this sum, we can apply Theorem 13.3.2 to equation 13.4.3 to conclude that the sum is close to

Now let’s look for an exact answer. If we think about the pairs  over which we are summing, they form a triangle:

The summation in Equation  is summing each row and then adding the row sums. Instead, we can sum the columns and
then add the column sums. Inspecting the table we see that this double sum can be written as

5
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OK, so maybe this one is a little hairy, but it is also fairly straightforward. Wait till you see the next one!
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13.7: Asymptotic Notation
Asymptotic notation is a shorthand used to give a quick measure of the behavior of a function  as  grows large. For
example, the asymptotic notation ~ of Definition 13.4.2 is a binary relation indicating that two functions grow at the same rate.
There is also a binary relation “little oh” indicating that one function grows at a significantly slower rate than another and “Big
Oh” indicating that one function grows not much more rapidly than another.

Little O

For functions , with  nonnegative, we say  is asymptotically smaller than , in symbols,

iff

For example, , because  and since  goes to infinity with  and 1000 is
constant, we have . This argument generalizes directly to yield

Lemma 13.7.2.  for all nonnegative constants .

Using the familiar fact that  for all , we can prove

Lemma 13.7.3.  for all .

Proof. Choose  and let  in the equality . This implies

Corollary 13.7.4.  for any  with .

Lemma 13.7.3 and Corollary 13.7.4 can also be proved using l’Hôpital s Rule or the Maclaurin Series for  and . Proofs
can be found in most calculus texts.

Big O
Big O is the most frequently used asymptotic notation. It is used to give an upper bound on the growth of a function, such as
the running time of an algorithm. There is a standard definition of Big Oh given below in 13.7.9, but we’ll begin with an
alternative definition that makes apparent several basic properties of Big Oh.

Given functions  with  nonnegative, we say that

iff

Here we’re using the technical notion of limit superior  instead of just limit. But because limits and lim sup’s are the same
when limits exist, this formulation makes it easy to check basic properties of Big Oh. We’ll take the following Lemma for
granted.

Lemma 13.7.6. If a function  has a finite or infinite limit as its argument approaches infinity, then its limit and limit
superior are the same.

f(n) n

Definition 13.7.1

f , g : R → R g f g

f(x) = o(g(x)),

f(x)/g(x) = 0.lim
x→∞

1000 = o( )x1.9 x2 1000 /( ) = 1000/x1.9 x2 x0.1 x0.1 x

1000 / = 0limx→∞ x1.9 x2

= o( )xa xb a < b

log x < x x > 1

log x = o( )xϵ ϵ > 0

ϵ > δ > 0 x = zδ log x < x

log z < /δ = o( )  by Lemma 13.7.2.zδ zϵ (13.7.1)

= o( )xb ax a, b ∈ R a > 1

log x ex

Definition 13.7.5

f , g : R → R g

f = O(g)

|f(x)|/g(x) < ∞.lim sup
x→∞
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Now Definition 13.7.5 immediately implies:

Lemma 13.7.7. If f = o(g) or , then .

Proof.  or  implies , so by Lemma 13.7.6, .

Note that the converse of Lemma 13.7.7 is not true. For example, , but  and .

We also have:

Lemma 13.7.8. If , then it is not true that .

Proof.

so by lemma 13.7.6, 

We need lim sup’s in Definition 13.7.5 to cover cases when limits don’t exist. For example, if  oscillates between 3
and 5 as x grows, then  does not exist, but  because .

An equivalent, more usual formulation of big O does not mention .

Given functions  with  nonnegative, we say

iff there exists a constant  and an  such that for all , .

This definition is rather complicated, but the idea is simple:  means  is less than or equal to , except
that we’re willing to ignore a constant factor, namely, , and to allow exceptions for small , namely, . So in the case
that  oscillates between 3 and 5,  according to Definition 13.7.9 because .

Proposition 13.7.10. 

Proof. Choose  and . Then the proposition holds, since for all , 

Proposition 13.7.11. 

Proof.  and so its limit as  approaches infinity is . So in fact, 
, and therefore  Indeed, it’s conversely true that 

Proposition 13.7.11 generalizes to an arbitrary polynomial:

Proposition 13.7.12. 

We’ll omit the routine proof.

Big O notation is especially useful when describing the running time of an algorithm. For example, the usual algorithm for
multiplying  matrices uses a number of operations proportional to  in the worst case. This fact can be expressed
concisely by saying that the running time is . So this asymptotic notation allows the speed of the algorithm to be
discussed without reference to constant factors or lower-order terms that might be machine specific. It turns out that there is
another matrix multiplication procedure that uses  operations. The fact that this procedure is asymptotically faster
indicates that it involves new ideas that go beyond a simply more efficient implementation of the  method.

Of course the asymptotically faster procedure will also definitely be much more efficient on large enough matrices, but being
asymptotically faster does not mean that it is a better choice. The -operation multiplication procedure is almost never
used in practice because it only becomes more efficient than the usual  procedure on matrices of impractical size.

Theta

f ∼ g f = O(g)

limf/g = 0 limf/g = 1 limf/g < ∞ lim supf/g < ∞

2x = O(x) 2x ≁ x 2x ≠ o(x)

f = o(g) g = O(f)

= = = ∞.lim
x→∞

g(x)

f(x)

1

f(x)/g(x)limx→∞

1

0

g ≠ O(f). ■

f(x)/g(x)
f(x)/g(x)limx→∞ f = O(g) f(x)/g(x) = 5lim supx→∞

slim sup′

Definition 13.7.9

f , g : R → R g

f = O(g)

c ≥ 0 x0 x ≥ x0 |f(x) ≤ cg(x)

f(x) = O(g(x)) f(x) g(x)
c x x < x0

f(x)/g(x) f = O(g) f ≤ 5g

100 = O( ).x2 x2

c = 100 = 1x0 x ≥ 1 100 ≤ 100 . ■x2 x2

+100x+10 = O( ).x2 x2

+100x+10)/ = 1 +100/x+10/x2 x2 x2 x 1 +0 +0 = 1
+100x+10 ∼x2 x2 +100x+10 = O( ).x2 x2

= O( +100x+10). ■x2 x2

+ +⋯ + x+ = O( ).akx
k ak−1x

k−1 a1 a0 xk

n×n n3

O( )n3

O( )n2.55

O( )n3

O( )n2.55

O( )n3 7
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Sometimes we want to specify that a running time  is precisely quadratic up to constant factors (both upper bound and
lower bound). We could do this by saying that  and , but rather than say both, mathematicians
have devised yet another symbol, , to do the job.

The statement  can be paraphrased intuitively as “  and  are equal to within a constant factor.”

The Theta notation allows us to highlight growth rates and suppress distracting factors and low-order terms. For example, if
the running time of an algorithm is

then we can more simply write

In this case, we would say that  is of order  or that  grows cubically, which is often the main thing we really want to
know. Another such example is

Just knowing that the running time of an algorithm is , for example, is useful, because if  doubles we can predict that
the running time will by and large  increase by a factor of at most 8 for large . In this way, Theta notation preserves
information about the scalability of an algorithm or system. Scalability is, of course, a big issue in the design of algorithms and
systems.

Pitfalls with Asymptotic Notation
There is a long list of ways to make mistakes with asymptotic notation. This section presents some of the ways that big O
notation can lead to trouble. With minimal effort, you can cause just as much chaos with the other symbols.

The Exponential Fiasco

Sometimes relationships involving big O are not so obvious. For example, one might guess that  since 4 is only a
constant factor larger than 2. This reasoning is incorrect, however;  actually grows as the square of .

Constant Confusion

Every constant is . For example, . This is true because if we let  and , then there exists a 
 and an  such that . In particular, we could choose  and , since  for all 
. We can construct a false theorem that exploits this fact.

False Theorem 13.7.14.

Bogus proof. Define . Since we have shown that every constant  is , 

Of course in reality 

The error stems from confusion over what is meant in the statement . For any constant  it is true that .
More precisely, if  is any constant function, then . But in this False Theorem,  is not constant—it ranges over a set
of values  that depends on .

And anyway, we should not be adding ’s as though they were numbers. We never even defined what  means by
itself; it should only be used in the context “ ” to describe a relation between functions  and .

T (n)
T (n) = O( )n2 = O(T (n))n2

Θ

Definition 13.7.13

f = Θ(g) iff f = O(g) and g = O(f).

f = Θ(g) f g

T (n) = 10 −20 +1,n3 n2

T (n) = Θ( ).n3

T n3 T (n)

+ − = Θ( ).π23x−7 (2.7 + −86x113 x9 )4

x−−√
1.083x 3x

Θ( )3x n
8 n

= O( )4x 2x

4x 2x

O(1) 17 = O(1) f(x) = 17 g(x) = 1
c > 0 x0 |f(x)| ≤ cg(x) c = 17 = 1x0 |17| ≤ 17 ⋅ 1
x ≥ 1

i = O(n)∑
i=1

n

f(n) = i = 1 +2 +3 +⋯ +n∑
n
i=1 i O(1)

f(n) = O(1) +O(1) +⋯ +O(1) = O(n). ■

i = n(n+1)/2 ≠ O(n).∑n
i=1

i = O(1) i ∈ N i = O(1)
f f = O(1) i

0, 1, … ,n n

O(1) O(g)
f = O(g) f g
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Equality Blunder

The notation  is too firmly entrenched to avoid, but the use of “=” is regrettable. For example, if , it seems
quite reasonable to write . But doing so might tempt us to the following blunder: because , we can say 

. But , so we conclude that , and therefore . To avoid such nonsense, we will
never write “ .”

Similarly, you will often see statements like

or

In such cases, the true meaning is

for some  where , and

where . These last transgressions are OK as long as you (and your reader) know what you mean.

Operator Application Blunder

It’s tempting to assume that familiar operations preserve asymptotic relations, but it ain’t necessarily so. For example,  in
general does not even imply that . On the other hand, some operations preserve and even strengthen asymptotic
relations, for example,

See Problem 13.24.

Omega (Optional)
Sometimes people incorrectly use Big Oh in the context of a lower bound. For example, they might say, “The running time, 

, is at least .” This is another blunder! Big Oh can only be used for upper bounds. The proper way to express the
lower bound would be

The lower bound can also be described with another special notation “big Omega.”

Given functions  with  nonnegative, define

to mean

For example, , , and .

So if the running time of your algorithm on inputs of size  is , and you want to say it is at least quadratic, say

There is a similar “little omega” notation for lower bounds corresponding to little o:

f = O(g) f = O(g)
O(g) = f 2n = O(n)

O(n) = 2n n = O(n) n = O(n) = 2n n = 2n
O(f) = g

= ln(n) +γ+O( )Hn

1

n

n! = (1 +o(1)) 2πn
− −−

√ ( )
n

e

n

= ln(n) +γ+f(n)Hn

f(n) f(n) = O(1/n)

n! = (1 +g(n)) 2πn
− −−

√ ( )
n

e

n

g(n) = o(1)

f ∼ g

= Θ( )3f 3g

f = Θ(g) IMPLIES  lnf ∼ lng.

T (n) O( )n2

= O(T (n)).n2

Definition 13.7.15

f , g : R → R f

f = Ω(g)

g = O(f).

=� Ω(x)x2 =� Ω( )2x x2 x/100 = Ω(100x+ x−−√

n T (n)

T (n) = Ω( ).n2
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Given functions  with  nonnegative, define

to mean

For example,  and .

The little omega symbol is not as widely used as the other asymptotic symbols we defined.

The precise definition of lim sup is

where “lub” abbreviates “least upper bound.”

It is even conceivable that there is an  matrix multiplication procedure, but none is known.

Since  only implies that the running time, , is between  and  for constants , the time 
could regularly exceed  by a factor as large as . The factor is sure to be close to 8 for all large  only if .

Definition 13.7.16

f , g : R → R f

f = ω(g)

g = o(f).

= ω(x)x1.5 = ω( (x))x−−√ ln2

6

h(x) ::= h(y),lim sup
x→∞

lim
x→∞

luby≥x

7 O( )n2

8 Θ( )n3 T (n) cn3 dn3 0 < c < d T (2n)
T (n) 8d/c n T (n) ∼ n3

https://libretexts.org/
https://eng.libretexts.org/
https://eng.libretexts.org/@go/page/53956?pdf


1 6/29/2021

CHAPTER OVERVIEW
14: CARDINALITY RULES

14.1: COUNTING ONE THING BY COUNTING ANOTHER
14.2: COUNTING SEQUENCES
14.3: THE GENERALIZED PRODUCT RULE
14.4: THE DIVISION RULE
14.5: COUNTING SUBSETS
14.6: SEQUENCES WITH REPETITIONS
14.7: COUNTING PRACTICE - POKER HANDS
14.8: THE PIGEONHOLE PRINCIPLE
14.9: INCLUSION-EXCLUSION
14.10: COMBINATORIAL PROOFS

https://libretexts.org/
https://eng.libretexts.org/
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.01%3A_Counting_One_Thing_by_Counting_Another
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.02%3A_Counting_Sequences
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.03%3A_The_Generalized_Product_Rule
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.04%3A_The_Division_Rule
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.05%3A_Counting_Subsets
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.06%3A_Sequences_with_Repetitions
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.07%3A__Counting_Practice_-_Poker_Hands
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.08%3A_The_Pigeonhole_Principle
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.09%3A_Inclusion-Exclusion
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/14%3A_Cardinality_Rules/14.10%3A_Combinatorial_Proofs


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 14.1.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48273

14.1: Counting One Thing by Counting Another
How do you count the number of people in a crowded room? You could count heads, since for each person there is exactly one
head. Alternatively, you could count ears and divide by two. Of course, you might have to adjust the calculation if someone
lost an ear in a pirate raid or someone was born with three ears. The point here is that you can often count one thing by
counting another, though some fudging may be required. This is a central theme of counting, from the easiest problems to the
hardest. In fact, we’ve already seen this technique used in Theorem 4.5.5, where the number of subsets of an -element set
was proved to be the same as the number of length-  bit-strings, by describing a bijection between the subsets and the bit-
strings.

The most direct way to count one thing by counting another is to find a bijection between them, since if there is a bijection
between two sets, then the sets have the same size. This important fact is commonly known as the Bijection Rule. We’ve
already seen it as the Mapping Rules bijective case (4.5.3).

The Bijection Rule
The Bijection Rule acts as a magnifier of counting ability; if you figure out the size of one set, then you can immediately
determine the sizes of many other sets via bijections. For example, let’s look at the two sets mentioned at the beginning of Part
III:

An example of an element of set  is:

Here, we’ve depicted each donut with a 0 and left a gap between the different varieties. Thus, the selection above contains two
chocolate donuts, no lemon-filled, six sugar, two glazed, and two plain. Now let’s put a 1 into each of the four gaps:

and close up the gaps:

0011000000100100.

We’ve just formed a 16-bit number with exactly 4 ones—an element of !

This example suggests a bijection from set  to set : map a dozen donuts consisting of:

 chocolate,  lemon-filled,  sugar,  glazed, and  plain

to the sequence:

The resulting sequence always has 16 bits and exactly 4 ones, and thus is an element of . Moreover, the mapping is a
bijection: every such bit sequence comes from exactly one order of a dozen donuts. Therefore,  by the Bijection
Rule. More generally,

Lemma 14.1.1. The number of ways to select  donuts when  flavors are available is the same as the number of binary
sequences with exactly  zeroes and  ones.

This example demonstrates the power of the bijection rule. We managed to prove that two very different sets are actually the
same size—even though we don’t know exactly how big either one is. But as soon as we figure out the size of one set, we’ll
immediately know the size of the other.

n

n

A

B

= all ways to select a dozen donuts when five varieties are available

= all 16-bit sequences with exactly 4 ones

A

00
 

chocolate 
 

lemon-filled 

000000
  

sugar 

00
 

glazed 

00
 
plain 

1 1 1 100
 

chocolate 

 
lemon-filled 

000000
  

sugar 

00
 

glazed 

00
 
plain 

B

A B

c l s g p

1 1 1 10 ⋯ 0
  

c

0 ⋯ 0
  

l

0 ⋯ 0
  

s

0 ⋯ 0
  

g

0 ⋯ 0
  

p

B

|A| = |B|

n k

n k −1
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This particular bijection might seem frighteningly ingenious if you’ve not seen it before. But you’ll use essentially this same
argument over and over, and soon you’ll consider it routine.
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14.2: Counting Sequences
The Bijection Rule lets us count one thing by counting another. This suggests a general strategy: get really good at counting
just a few things, then use bijections to count everything else! This is the strategy we’ll follow. In particular, we’ll get really
good at counting sequences. When we want to determine the size of some other set , we’ll find a bijection from  to a set of
sequences . Then we’ll use our super-ninja sequence-counting skills to determine , which immediately gives us . We’ll
need to hone this idea somewhat as we go along, but that’s pretty much it!

The Product Rule
The Product Rule gives the size of a product of sets. Recall that if  are sets, then

is the set of all sequences whose first term is drawn from , second term is drawn from  and so forth.

Rule 14.2.1 (Product Rule). If  are finite sets, then:

For example, suppose a daily diet consists of a breakfast selected from set , a lunch from set , and a dinner from set 
where:

Then  is the set of all possible daily diets. Here are some sample elements:

The Product Rule tells us how many different daily diets are possible:

Subsets of an n-element Set
The fact that there are  subsets of an n-element set was proved in Theorem 4.5.5 by setting up a bijection between the
subsets and the length-  bit-strings. So the original problem about subsets was tranformed into a question about sequences—
exactly according to plan! Now we can fill in the missing explanation of why there are  length-  bit-strings: we can write
the set of all -bit sequences as a product of sets:

Then Product Rule gives the answer:

The Sum Rule
Bart allocates his little sister Lisa a quota of 20 crabby days, 40 irritable days, and 60 generally surly days. On how many days
can Lisa be out-of-sorts one way or another? Let set  be her crabby days,  be her irritable days, and  be the generally surly.
In these terms, the answer to the question is . Now assuming that she is permitted at most one bad quality each
day, the size of this union of sets is given by the Sum Rule:

T T

S |S| |T |

, , …P1 P2 Pn

× ×⋯ ×P1 P2 Pn

P1 P2

, , …P1 P2 Pn

| × ×⋯ × | = | | ⋅ | | ⋯ | |P1 P2 Pn P1 P2 Pn

B L D

B

L

D

= {pancakes, bacon and eggs, bagel, Doritos}

= {burger and fries, garden salad, Doritos}

= {macaroni, pizza, frozen burrito, pasta, Doritos}

B ×L ×D

(pancakes, burger and fries, pizza)

(bacon and eggs, garden salad, pasta)

(Doritos, Doritos, frozen burrito)

|B ×L ×D| = |B| ⋅ |L| ⋅ |D|

= 4 ⋅ 3 ⋅ 5

= 60.

2n

n

2n
n

n

{0, 1 ::= .}n {0, 1} ×{0, 1} ×⋯ ×{0, 1}
  

n terms

|{0, 1 | = |{0, 1} = .}n |n 2n

C I S

|C ∪ I ∪ S|
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Rule 14.2.2 (Sum Rule). If  are disjoint sets, then:

Notice that the Sum Rule holds only for a union of disjoint sets. Finding the size of a union of overlapping sets is a more
complicated problem that we’ll take up in Section 14.9.

Counting Passwords
Few counting problems can be solved with a single rule. More often, a solution is a flurry of sums, products, bijections, and
other methods.

For solving problems involving passwords, telephone numbers, and license plates, the sum and product rules are useful
together. For example, on a certain computer system, a valid password is a sequence of between six and eight symbols. The
first symbol must be a letter (which can be lowercase or uppercase), and the remaining symbols must be either letters or digits.
How many different passwords are possible?

Let’s define two sets, corresponding to valid symbols in the first and subsequent positions in the password.

In these terms, the set of all possible passwords is:

Thus, the length-six passwords are in the set , the length-seven passwords are in , and the length-eight
passwords are in . Since these sets are disjoint, we can apply the Sum Rule and count the total number of possible
passwords as follows:

The notation  means .

, , … ,A1 A2 An

| ∪ ∪ … | = | | +| | +⋯ +| |A1 A2 An A1 A2 An

|C ∪ I ∪ S| = |C| + |I| + |S|

= 20 +40 +60

= 120 days.

F

S

= {a, b, … , z, A, B, … , Z}

= {a, b, … , z, A, B, … , Z, 0, 1, … , 9}

1

(F × ) ∪ (F × ) ∪ (F × )S
5

S
6

S
7

F ×S
5

F ×S
6

F ×S
7

|(F × )S
5 ∪ (F × ) ∪ (F × )|S

6
S

7

= |F × | +|F × | +|F × |S
5

S
6

S
7

= |F | × |S +|F | × |S +|F | × |S|
5

|
6

|
7

= 52 ⋅ +52 ⋅ +52 ⋅625 626 627

≈ 1.8 ⋅  different passwords.1014

Sum Rule

Product Rule

1
S

5
S ×S ×S ×S ×S
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14.3: The Generalized Product Rule
In how many ways can, say, a Nobel prize, a Japan prize, and a Pulitzer prize be awarded to  people? This is easy to answer
using our strategy of translating the problem about awards into a problem about sequences. Let  be the set of  people taking
the course. Then there is a bijection from ways of awarding the three prizes to the set . In particular, the
assignment:

maps to the sequence (Barak, George, Bill). By the Product Rule, we have , so there are  ways to award
the prizes to a class of  people. Notice that  includes triples like (Barak, Bill, George) where one person wins more than
one prize.

But what if the three prizes must be awarded to different students? As before, we could map the assignment to the triple (Bill,
George, Barak) . But this function is no longer a bijection. For example, no valid assignment maps to the triple (Barak,
Bill, Barak) because now we’re not allowing Barak to receive two prizes. However, there is a bijection from prize assignments
to the set:

This reduces the original problem to a problem of counting sequences. Unfortunately, the Product Rule does not apply directly
to counting sequences of this type because the entries depend on one another; in particular, they must all be different.
However, a slightly sharper tool does the trick.

Prizes for truly exceptional Coursework

Given everyone’s hard work on this material, the instructors considered awarding some prizes for truly exceptional
coursework. Here are three possible prize categories:

Best Administrative Critique We asserted that the quiz was closed-book. On the cover page, one strong candidate for this
award wrote, “There is no book.”

Awkward Question Award “Okay, the left sock, right sock, and pants are in an antichain, but how—even with assistance—
could I put on all three at once?”

Best Collaboration Statement Inspired by a student who wrote “I worked alone” on Quiz 1.

Rule 14.3.1 (Generalized Product Rule). Let  be a set of length-  sequences. If there are:

 possible first entries,
 possible second entries for each first entry,

 possible th entries for each sequence of first  entries,

then

In the awards example,  consists of sequences . There are  ways to choose , the recipient of prize #1. For each of
these, there are  ways to choose , the recipient of prize #2, since everyone except for person  is eligible. For each
combination of  and , there are  ways to choose , the recipient of prize #3, because everyone except for  and  is
eligible. Thus, according to the Generalized Product Rule, there are

ways to award the 3 prizes to different people.

Defective Dollar Bills

n

P n

::= P ×P ×PP 3

“Barak wins a Nobel, George wins a Japan, and Bill wins a Pulitzer prize”

| | = |P =P 3 |3 n3 n3

n P 3

∈ P 3
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S k

n1

n2

⋮

nk k k −1

|S| = ⋅ ⋅ ⋯n1 n2 n3 nk

S (x, y, z) n x

n −1 y x
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A dollar bill is defective if some digit appears more than once in the 8-digit serial number. If you check your wallet, you’ll be
sad to discover that defective bills are all-too-common. In fact, how common are nondefective bills? Assuming that the digit
portions of serial numbers all occur equally often, we could answer this question by computing

Let’s first consider the denominator. Here there are no restrictions; there are 10 possible first digits, 10 possible second digits,
10 third digits, and so on. Thus, the total number of 8-digit serial numbers is 10  by the Product Rule.

Next, let’s turn to the numerator. Now we’re not permitted to use any digit twice. So there are still 10 possible first digits, but
only 9 possible second digits, 8 possible third digits, and so forth. Thus, by the Generalized Product Rule, there are

serial numbers with all digits different. Plugging these results into Equation , we find:

Chess Problem
In how many different ways can we place a pawn ( ), a knight ( ), and a bishop ( ) on a chessboard so that no two pieces
share a row or a column? A valid configuration is shown in Figure 14.1(a), and an invalid configuration is shown in Figure
14.1(b).

Figure 14.1 Two ways of placing a pawn, a knight, and a bishop on a chessboard. The configuration shown in (b) is invalid
because the bishop and the knight are in the same row.

First, we map this problem about chess pieces to a question about sequences. There is a bijection from configurations to
sequences

where , and  are distinct rows and , and  are distinct columns. In particular,  is the pawn’s row,  is the
pawn’s column,  is the knight’s row, etc. Now we can count the number of such sequences using the Generalized Product
Rule:

 is one of 8 rows
 is one of 8 columns
 is one of 7 rows (any one but )
 is one of 7 columns (any one but )
 is one of 6 rows (any one but  or )
 is one of 6 columns (any one but  or )

Thus, the total number of configurations is .

Permutations

fraction of nondefective bills = .
{serial #’s with all digits different}

{serial numbers}
(14.3.1)

8

10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 = = 1,814,400
10!
2

14.3.1

fraction of nondefective bills = = 1.8144
1,814,400

100,000,000
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A permutation of a set  is a sequence that contains every element of  exactly once. For example, here are all the
permutations of the set :

How many permutations of an -element set are there? Well, there are  choices for the first element. For each of these, there
are  remaining choices for the second element. For every combination of the first two elements, there are  ways to
choose the third element, and so forth. Thus, there are a total of

permutations of an -element set. In particular, this formula says that there are  permutations of the 3-element set 
, which is the number we found above.

Permutations will come up again in this course approximately 1.6 bazillion times. In fact, permutations are the reason why
factorial comes up so often and why we taught you Stirling’s approximation:

S S

{a, b, c}

(a, b, c) (a, c, b) (b, a, c)
(b, c, a) (c, a, b) (c, b, a)

n n

n −1 n −2

n ⋅ (n −1) ⋅ (n −2) ⋯ 3 ⋅ 2 ⋅ 1 = n!

n 3! = 6
{a, b, c}

n! ∼ 2πn
− −−√ ( )

n

e

n

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48395?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 14.4.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48396

14.4: The Division Rule
Counting ears and dividing by two is a silly way to count the number of people in a room, but this approach is representative
of a powerful counting principle.

A -to-1 function maps exactly  elements of the domain to every element of the codomain. For example, the function
mapping each ear to its owner is 2-to-1. Similarly, the function mapping each finger to its owner is 10-to-1, and the function
mapping each finger and toe to its owner is 20-to-1. The general rule is:

Rule 14.4.1 (Division Rule). If  is -to-1, then .

For example, suppose  is the set of ears in the room and  is the set of people. There is a 2-to-1 mapping from ears to
people, so by the Division Rule, . Equivalently, , expressing what we knew all along: the number of
people is half the number of ears. Unlikely as it may seem, many counting problems are made much easier by initially
counting every item multiple times and then correcting the answer using the Division Rule. Let’s look at some examples.

Another Chess Problem
In how many different ways can you place two identical rooks on a chessboard so that they do not share a row or column? A
valid configuration is shown in Figure 14.2(a), and an invalid configuration is shown in Figure 14.2(b).

Figure 14.2 Two ways to place 2 rooks on a chessboard. The configuration in (b) is invalid because the rooks are in the same
column.

Let A be the set of all sequences

where  and  are distinct rows and  and  are distinct columns. Let  be the set of all valid rook configurations. There is
a natural function  from set  to set ; in particular,  maps the sequence  to a configuration with one rook in
row , column  and the other rook in row , column .

But now there’s a snag. Consider the sequences:

The first sequence maps to a configuration with a rook in the lower-left corner and a rook in the upper-right corner. The second
sequence maps to a configuration with a rook in the upper-right corner and a rook in the lower-left corner. The problem is that
those are two different ways of describing the same configuration! In fact, this arrangement is shown in Figure 14.2(a).

More generally, the function  maps exactly two sequences to every board configuration;  is a 2-to-1 function. Thus, by the
quotient rule, . Rearranging terms gives:

On the second line, we’ve computed the size of  using the General Product Rule just as in the earlier chess problem.

Knights of the Round Table

k k

f : A → B k |A| = k ⋅ |B|

A B

|A| = 2 ⋅ |B| |B| = |A|/2

( , , , )r1 c1 r2 c2

r1 r2 c1 c2 B

f A B f ( , , , )r1 c1 r2 c2

r1 c1 r2 c2

(1, a, 8, h) and (8, h, 1, a)

f f

|A| = 2 ⋅ |B|

|B| = = .
|A|

2

(8 ⋅ 7)2
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In how many ways can King Arthur arrange to seat his  different knights at his round table? A seating defines who sits
where. Two seatings are considered to be the same arrangement if each knight sits between the same two knights in both
seatings. An equivalent way to say this is that two seatings yield the same arrangement when they yield the same sequence of
knights starting at knight number 1 and going clockwise around the table. For example, the following two seatings determine
the same arrangement:

A seating is determined by the sequence of knights going clockwise around the table starting at the top seat. So seatings
correspond to permutations of the knights, and there are  of them. For example,

Two seatings determine the same arrangement if they are the same when the table is rotated so knight 1 is at the top seat. For
example with , there are 4 different sequences that correspond to the seating arrangement:

This mapping from seating to arrangments is actually an -to-1 function, since all  cyclic shifts of the sequence of knights in
the seating map to the same arrangement. Therefore, by the division rule, the number of circular seating arrangements is:

n

n!

n = 4

n n

= = (n −1)!.
# seatings

n

n!

n
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14.5: Counting Subsets
How many -element subsets of an -element set are there? This question arises all the time in various guises:

In how many ways can I select 5 books from my collection of 100 to bring on vacation?
How many different 13-card bridge hands can be dealt from a 52-card deck?
In how many ways can I select 5 toppings for my pizza if there are 14 available toppings?

This number comes up so often that there is a special notation for it:

The expression  is read "  choose ." Now we can immediately express the answers to all three questions above:

I can select 5 books from 100 in  ways.

There are  different bridge hands.

There are  different 5-topping pizzas, if 14 toppings are available.

The Subset Rule
We can derive a simple formula for the  choose  number using the Division Rule. We do this by mapping any permutation
of an -element set  into a -element subset simply by taking the first k elements of the permutation. That is, the
permutation  will map to the set .

Notice that any other permutation with the same first  elements  in any order and the same remaining elements 
 elements in any order will also map to this set. What’s more, a permutation can only map to  if its first 

 elements are the elements  in some order. Since there are  possible permutations of the first  elements and 
 permutations of the remaining elements, we conclude from the Product Rule that exactly  permutations of

the -element set map to the particular subset, . In other words, the mapping from permutations to -element subsets is 
-to-1.

But we know there are  permutations of an -element set, so by the Division Rule, we conclude that

which proves:

Rule 14.5.1 (Subset Rule). The number of -element subsets of an -element set is

Notice that this works even for 0-element subsets: . Here we use the fact that  is a product of 0 terms, which by
convention  equals 1.

Bit Sequences
How many -bit sequences contain exactly  ones? We’ve already seen the straightforward bijection between subsets of an n-
element set and -bit sequences. For example, here is a 3-element subset of  and the associated 8-bit
sequence:

Notice that this sequence has exactly 3 ones, each corresponding to an element of the 3-element subset. More generally, the -
bit sequences corresponding to a -element subset will have exactly  ones. So by the Bijection Rule,

Corollary 14.5.2. The number of -bit sequences with exactly  ones is .

k n
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Also, the bijection between selections of flavored donuts and bit sequences of Lemma 14.1.1 now implies,

Corollary 14.5.3. The number of ways to select  donuts when  flavors are available is

We don’t use it here, but a sum of zero terms equals 0.

n k

( ).
n +(k −1)

n

2
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14.6: Sequences with Repetitions

Sequences of Subsets
Choosing a -element subset of an -element set is the same as splitting the set into a pair of subsets: the first subset of size 
and the second subset consisting of the remaining  elements. So, the Subset Rule can be understood as a rule for
counting the number of such splits into pairs of subsets.

We can generalize this to a way to count splits into more than two subsets. Let  be an n-element set and  be
nonnegative integers whose sum is . -split of  is a sequence

where the  are disjoint subsets of  and  for .

To count the number of splits we take the same approach as for the Subset Rule. Namely, we map any permutation 
of an -element set  into a -split by letting the 1st subset in the split be the first  elements of the
permutation, the 2nd subset of the split be the next  elements, . . . , and the th subset of the split be the final  elements
of the permutation. This map is a -to-1 function from the  permutations to the - splits of , so
from the Division Rule we conclude the Subset Split Rule:

For , such that , define the multinomial coefficient

Rule 14.6.2 (Subset Split Rule). The number of -splits of an nelement set is

The Bookkeeper Rule
We can also generalize our count of -bit sequences with  ones to counting sequences of  letters over an alphabet with more
than two letters. For example, how many sequences can be formed by permuting the letters in the 10-letter word
BOOKKEEPER?

Notice that there are 1 B, 2 O’s, 2 K’s, 3 E’s, 1 P, and 1 R in BOOKKEEPER. This leads to a straightforward bijection between
permutations of BOOKKEEPER and (1,2,2,3,1,1)-splits of . Namely, map a permutation to the sequence of sets
of positions where each of the different letters occur.

For example, in the permutation BOOKKEEPER itself, the B is in the 1st position, the O’s occur in the 2nd and 3rd positions,
K’s in 4th and 5th, the E’s in the 6th, 7th and 9th, P in the 8th, and R is in the 10th position. So BOOKKEEPER maps to

From this bijection and the Subset Split Rule, we conclude that the number of ways to rearrange the letters in the word
BOOKKEEPER is:

This example generalizes directly to an exceptionally useful counting principle which we will call the
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Rule 14.6.3 (Bookkeeper Rule). Let  be distinct elements. The number of sequences with  occurrences of , and 
 occurrences of , ..., and  occurrences of  is

For example, suppose you are planning a 20-mile walk, which should include 5 northward miles, 5 eastward miles, 5
southward miles, and 5 westward miles. How many different walks are possible?

There is a bijection between such walks and sequences with 5 N’s, 5 E’s, 5 S’s, and 5 W’s. By the Bookkeeper Rule, the
number of such sequences is:

A Word about Words

Someday you might refer to the Subset Split Rule or the Bookkeeper Rule in front of a roomful of colleagues and discover that
they’re all staring back at you blankly. This is not because they’re dumb, but rather because we made up the name
“Bookkeeper Rule.” However, the rule is excellent and the name is apt, so we suggest that you play through: “You know? The
Bookkeeper Rule? Don’t you guys know anything?”

The Bookkeeper Rule is sometimes called the “formula for permutations with indistinguishable objects.” The size  subsets of
an -element set are sometimes called -combinations. Other similar-sounding descriptions are “combinations with repetition,
permutations with repetition, -permutations, permutations with indistinguishable objects,” and so on. However, the counting
rules we’ve taught you are sufficient to solve all these sorts of problems without knowing this jargon, so we won’t burden you
with it.

The Binomial Theorem
Counting gives insight into one of the basic theorems of algebra. A binomial is a sum of two terms, such as . Now
consider its 4th power, .

By repeatedly using distributivity of products over sums to multiply out this 4th power expression completely, we get

Notice that there is one term for every sequence of ’s and ’s. So there are  terms, and the number of terms with  copies
of  and  copies of  is:

by the Bookkeeper Rule. Hence, the coefficient of  is . So for , this means:

In general, this reasoning gives the Binomial Theorem:
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The Binomial Theorem explains why the  choose  number is called a binomial coefficient.

This reasoning about binomials extends nicely to multinomials, which are sums of two or more terms. For example, suppose
we wanted the coefficient of

in the expansion of . Each term in this expansion is a product of 10 variables where each variable is
one of  or . Now, the coefficient of  is the number of those terms with exactly 1 , 2 ’s, 2 ’s, 3 ’s, 1 

, and 1 . And the number of such terms is precisely the number of rearrangements of the word BOOKKEEPER:

This reasoning extends to a general theorem:
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14.7: Counting Practice - Poker Hands
Five-Card Draw is a card game in which each player is initially dealt a hand consisting of 5 cards from a deck of 52 cards.
The number of different hands in Five-Card Draw is the number of 5-element subsets of a 52-element set, which is

Let’s get some counting practice by working out the number of hands with various special properties.

Hands with a Four-of-a-Kind
A Four-of-a-Kind is a set of four cards with the same rank. How many different hands contain a Four-of-a-Kind? Here are a
couple examples:

As usual, the first step is to map this question to a sequence-counting problem. A hand with a Four-of-a-Kind is completely
described by a sequence specifying:

1. The rank of the four cards.
2. The rank of the extra card.
3. The suit of the extra card.

Thus, there is a bijection between hands with a Four-of-a-Kind and sequences consisting of two distinct ranks followed by a
suit. For example, the three hands above are associated with the following sequences:

Now we need only count the sequences. There are 13 ways to choose the first rank, 12 ways to choose the second rank, and 4
ways to choose the suit. Thus, by the Generalized Product Rule, there are  hands with a Four-of-a-Kind. This
means that only 1 hand in about 4165 has a Four-of-a-Kind. Not surprisingly, Four-of-a-Kind is considered to be a very good
poker hand!

Hands with a Full House
A Full House is a hand with three cards of one rank and two cards of another rank. Here are some examples:

Again, we shift to a problem about sequences. There is a bijection between Full Houses and sequences specifying:

1. The rank of the triple, which can be chosen in 13 ways.
2. The suits of the triple, which can be selected in  ways.
3. The rank of the pair, which can be chosen in 12 ways.
4. The suits of the pair, which can be selected in  ways.

The example hands correspond to sequences as shown below:

By the Generalized Product Rule, the number of Full Houses is:

We’re on a roll—but we’re about to hit a speed bump.

3

( ) = 2,598,960.
52

5

{8♠, 8♢, Q♡, 8♡, 8♣}

{A♣, 2♣, 2♡, 2♢, 2♠}

(8, Q,♡) ↔ {8♠, 8♢, 8♡, 8♣, Q♡}

(2, A,♣) ↔ {2♣, 2♡, 2♢, 2♠, A♣}

13 ⋅ 12 ⋅ 4 = 624

{2♠, 2♣, 2♢, J♣, J♢}

{5♢, 5♣, 5♡, 7♡, 7♣}

( )4
3

( )4
2

(2, {♠,♣,♢}, J, {♣,♢})

(5, {♢,♣,♡}, 7, {♡,♣})

↔ {2♠, 2♣, 2♢, J♣, J♢}

↔ {5♢, 5♣, 5♡, 7♡, 7♣}

13 ⋅( ) ⋅ 12 ⋅( )
4

3

4

2
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Hands with Two Pairs
How many hands have Two Pairs; that is, two cards of one rank, two cards of another rank, and one card of a third rank? Here
are examples:

Each hand with Two Pairs is described by a sequence consisting of:

1. The rank of the first pair, which can be chosen in 13 ways.
2. The suits of the first pair, which can be selected  ways.
3. The rank of the second pair, which can be chosen in 12 ways.
4. The suits of the second pair, which can be selected in  ways.
5. The rank of the extra card, which can be chosen in 11 ways.
6. The suit of the extra card, which can be selected in  ways.

Thus, it might appear that the number of hands with Two Pairs is:

Wrong answer! The problem is that there is not a bijection from such sequences to hands with Two Pairs. This is actually a 2-
to-1 mapping. For example, here are the pairs of sequences that map to the hands given above:

The problem is that nothing distinguishes the first pair from the second. A pair of 5’s and a pair of 9’s is the same as a pair of
9’s and a pair of 5’s. We avoided this difficulty in counting Full Houses because, for example, a pair of 6’s and a triple of kings
is different from a pair of kings and a triple of 6’s.

We ran into precisely this difficulty last time, when we went from counting arrangements of different pieces on a chessboard to
counting arrangements of two identical rooks. The solution then was to apply the Division Rule, and we can do the same here.
In this case, the Division rule says there are twice as many sequences as hands, so the number of hands with Two Pairs is
actually:

Another Approach

The preceding example was disturbing! One could easily overlook the fact that the mapping was 2-to-1 on an exam, fail the
course, and turn to a life of crime. You can make the world a safer place in two ways:

1. Whenever you use a mapping  to translate one counting problem to another, check that the same number of
elements in  are mapped to each element in . If  elements of  map to each of element of , then apply the Division
Rule using the constant .

2. As an extra check, try solving the same problem in a different way. Multiple approaches are often available—and all had
better give the same answer! (Sometimes different approaches give answers that look different, but turn out to be the same
after some algebra.)

We already used the first method; let’s try the second. There is a bijection between hands with two pairs and sequences that
specify:

1. The ranks of the two pairs, which can be chosen in  ways.
2. The suits of the lower-rank pair, which can be selected in  ways.

{3♢, 3♠, Q♢, Q♡, A♣}

{9♡, 9♢, 5♡, 5♣, K♠}

( )4
2

( )4
2

( ) = 44
1

13 ⋅( ) ⋅ 12 ⋅( ) ⋅ 11 ⋅ 4.
4

2

4

2

.
13 ⋅ ( ) ⋅ 12 ⋅ ( ) ⋅ 11 ⋅ 44

2
4
2

2

f : A → B

A B k A B

k

( )13
2

( )4
2
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3. The suits of the higher-rank pair, which can be selected in  ways.
4. The rank of the extra card, which can be chosen in 11 ways.
5. The suit of the extra card, which can be selected in  ways.

For example, the following sequences and hands correspond:

Thus, the number of hands with two pairs is:

This is the same answer we got before, though in a slightly different form.

Hands with Every Suit
How many hands contain at least one card from every suit? Here is an example of such a hand:

Each such hand is described by a sequence that specifies:

1. The ranks of the diamond, the club, the heart, and the spade, which can be selected in  ways.
2. The suit of the extra card, which can be selected in 4 ways.
3. The rank of the extra card, which can be selected in 12 ways.

For example, the hand above is described by the sequence:

Are there other sequences that correspond to the same hand? There is one more! We could equally well regard either the  or
the  as the extra card, so this is actually a 2-to-1 mapping. Here are the two sequences corresponding to the example hand:

Therefore, the number of hands with every suit is:

There are 52 cards in a standard deck. Each card has a suit and a rank. There are four suits: �

 (spades)  (hearts)  (clubs)  (diamonds)

And there are 13 ranks, listed here from lowest to highest:

Thus, for example,  is the 8 of hearts and � is the ace of spades.

( )4
2

( ) = 44
1

({3, Q}, {♢,♠}, {♢,♡}, A,♣)

({9, 5}, {♡,♣}, {♡,♢}, K,♠)

↔ {3♢, 3♠, Q♢, Q♡, A♣}

↔ {9♡, 9♢, 5♡, 5♣, K♠}

( ) ⋅( ) ⋅( ) ⋅ 11 ⋅ 4.
13

2

4

2

4

2

{7♢, K♣, 3♢, A♡, 2♠}

13 ⋅ 13 ⋅ 13 ⋅ 13 = 134

(7, K, A, 2,♢, 3) ↔ {7♢, K♣, A♡, 2♠, 3♢}.

3♢

7♢

.
⋅ 4 ⋅ 12134

2
3

♠ ♡ ♣ ♢

, 2, 3, 4, 5, 6, 7, 8, 9, , , .A
Ace

J
Jack

Q
Queen

K
King

8♡ A♠

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48399?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 14.8.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48400

14.8: The Pigeonhole Principle
Here is an old puzzle:

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be
sure that you have a matching pair?

For example, picking out three socks is not enough; you might end up with one red, one green, and one blue. The solution
relies on the

Pigeonhole Principle

If there are more pigeons than holes they occupy, then at least two pigeons must be in the same hole.

Figure 14.3 One possible mapping of four socks to three colors.

What pigeons have to do with selecting footwear under poor lighting conditions may not be immediately obvious, but if we let
socks be pigeons and the colors be three pigeonholes, then as soon as you pick four socks, there are bound to be two in the
same hole, that is, with the same color. So four socks are enough to ensure a matched pair. For example, one possible mapping
of four socks to three colors is shown in Figure 14.3.

A rigorous statement of the Principle goes this way:

Rule 14.8.1 (Pigeonhole Principle). If , then for every total function , there exist two different elements of
 that are mapped by  to the same element of .

Stating the Principle this way may be less intuitive, but it should now sound familiar: it is simply the contrapositive of the
Mapping Rules injective case (4.5.2). Here, the pigeons form set , the pigeonholes are the set , and  describes which hole
each pigeon occupies.

Mathematicians have come up with many ingenious applications for the pigeonhole principle. If there were a cookbook
procedure for generating such arguments, we’d give it to you. Unfortunately, there isn’t one. One helpful tip, though: when
you try to solve a problem with the pigeonhole principle, the key is to clearly identify three things:

1. The set  (the pigeons).
2. The set  (the pigeonholes).
3. The function  (the rule for assigning pigeons to pigeonholes).

Hairs on Heads
There are a number of generalizations of the pigeonhole principle. For example:

Rule 14.8.2 (Generalized Pigeonhole Principle). If , then every total function  maps at least 
different elements of  to the same element of .

For example, if you pick two people at random, surely they are extremely unlikely to have exactly the same number of hairs on
their heads. However, in the remarkable city of Boston, Massachusetts, there is a group of three people who have exactly the
same number of hairs! Of course, there are many completely bald people in Boston, and they all have zero hairs. But we’re
talking about non-bald people; say a person is non-bald if they have at least ten thousand hairs on their head.

|A| > |B| f : A → B

A f B

A B f

A

B

f

|A| > k ⋅ |B| f : A → B k +1

A B
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Boston has about 500,000 non-bald people, and the number of hairs on a person’s head is at most 200,000. Let  be the set of
non-bald people in Boston, let , and let  map a person to the number of hairs on his or
her head. Since , the Generalized Pigeonhole Principle implies that at least three people have exactly the same
number of hairs. We don’t know who they are, but we know they exist!

Subsets with the Same Sum
For your reading pleasure, we have displayed ninety 25-digit numbers in Figure 14.4. Are there two different subsets of these
25-digit numbers that have the same sum? For example, maybe the sum of the last ten numbers in the first column is equal to
the sum of the first eleven numbers in the second column?

Figure 14.4 Ninety 25-digit numbers. Can you find two different subsets of these numbers that have the same sum?

Finding two subsets with the same sum may seem like a silly puzzle, but solving these sorts of problems turns out to be useful
in diverse applications such as finding good ways to fit packages into shipping containers and decoding secret messages.

It turns out that it is hard to find different subsets with the same sum, which is why this problem arises in cryptography. But it
is easy to prove that two such subsets exist. That’s where the Pigeonhole Principle comes in.

Let  be the collection of all subsets of the 90 numbers in the list. Now the sum of any subset of numbers is at most ,
since there are only 90 numbers and every 25-digit number is less than . So let  be the set of integers 

, and let  map each subset of numbers (in ) to its sum (in ).

We proved that an -element set has  different subsets in Section 14.2. Therefore:

On the other hand:

A

B = {10, 000, 10, 001, … , 200, 000} f

|A| > 2|B|

A 90 ⋅ 1025

1025 B

{0, 1, … , 90 ⋅ }1025 f A B

n 2n

|A| = ≥ 1.237 ×290 1027

|B| = 90 ⋅ +1 ≤ 0.901 × .1025 1027
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Both quantities are enormous, but  is a bit greater than . This means that  maps at least two elements of  to the same
element of . In other words, by the Pigeonhole Principle, two different subsets must have the same sum!

Notice that this proof gives no indication which two sets of numbers have the same sum. This frustrating variety of argument is
called a nonconstructive proof.

The $100 prize for two same-sum subsets

To see if it was possible to actually find two different subsets of the ninety 25-digit numbers with the same sum, we offered a
$100 prize to the first student who did it. We didn’t expect to have to pay off this bet, but we underestimated the ingenuity and
initiative of the students. One computer science major wrote a program that cleverly searched only among a reasonably small
set of “plausible” sets, sorted them by their sums, and actually found a couple with the same sum. He won the prize. A few
days later, a math major figured out how to reformulate the sum problem as a “lattice basis reduction” problem; then he found
a software package implementing an efficient basis reduction procedure, and using it, he very quickly found lots of pairs of
subsets with the same sum. He didn’t win the prize, but he got a standing ovation from the class—staff included.

The $500 Prize for Sets with Distinct Subset Sums

How can we construct a set of  positive integers such that all its subsets have distinct sums? One way is to use powers of
two:

This approach is so natural that one suspects all other such sets must involve larger numbers. (For example, we could safely
replace 16 by 17, but not by 15.) Remarkably, there are examples involving smaller numbers. Here is one:

One of the top mathematicians of the Twentieth Century, Paul Erdős, conjectured in 1931 that there are no such sets involving
significantly smaller numbers. More precisely, he conjectured that the largest number in such a set must be greater than  for
some constant . He offered $500 to anyone who could prove or disprove his conjecture, but the problem remains
unsolved.

Magic Trick
A Magician sends an Assistant into the audience with a deck of 52 cards while the Magician looks away.

Five audience members each select one card from the deck. The Assistant then gathers up the five cards and holds up four of
them so the Magician can see them. The Magician concentrates for a short time and then correctly names the secret, fifth card!

Since we don’t really believe the Magician can read minds, we know the Assistant has somehow communicated the secret card
to the Magician. Real Magicians and Assistants are not to be trusted, so we expect that the Assistant would secretly signal the
Magician with coded phrases or body language, but for this trick they don’t have to cheat. In fact, the Magician and Assistant
could be kept out of sight of each other while some audience member holds up the 4 cards designated by the Assistant for the
Magician to see.

Of course, without cheating, there is still an obvious way the Assistant can communicate to the Magician: he can choose any
of the  permutations of the 4 cards as the order in which to hold up the cards. However, this alone won’t quite work:
there are 48 cards remaining in the deck, so the Assistant doesn’t have enough choices of orders to indicate exactly what the
secret card is (though he could narrow it down to two cards).

The Secret
The method the Assistant can use to communicate the fifth card exactly is a nice application of what we know about counting
and matching.

The Assistant has a second legitimate way to communicate: he can choose which of the five cards to keep hidden. Of course,
it’s not clear how the Magician could determine which of these five possibilities the Assistant selected by looking at the four
visible cards, but there is a way, as we’ll now explain.

The problem facing the Magician and Assistant is actually a bipartite matching problem. Each vertex on the left will
correspond to the information available to the Assistant, namely, a set of 5 cards. So the set  of left hand vertices will have 

|A| |B| f A

B

n

{1, 2, 4, 8, 16}

{6, 9, 11, 12, 13}

c2n

c > 0

4! = 24

X
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 elements.

Each vertex on the right will correspond to the information available to the Magician, namely, a sequence of 4 distinct cards.
So the set  of right hand vertices will have  elements. When the audience selects a set of 5 cards, then the
Assistant must reveal a sequence of 4 cards from that hand. This constraint is represented by having an edge between a set of 5
cards on the left and a sequence of 4 cards on the right precisely when every card in the sequence is also in the set. This
specifies the bipartite graph. Some edges are shown in the diagram in Figure 14.5.

Figure 14.5 The bipartite graph where the nodes on the left correspond to sets of 5 cards and the nodes on the right correspond
to sequences of 4 cards. There is an edge between a set and a sequence whenever all the cards in the sequence are contained in
the set.

For example,

is an element of  on the left. If the audience selects this set of 5 cards, then there are many different 4-card sequences on the
right in set  that the Assistant could choose to reveal, including  and 

.

What the Magician and his Assistant need to perform the trick is a matching for the  vertices. If they agree in advance on
some matching, then when the audience selects a set of 5 cards, the Assistant reveals the matching sequence of 4 cards. The
Magician uses the matching to find the audience’s chosen set of 5 cards, and so he can name the one not already revealed.

For example, suppose the Assistant and Magician agree on a matching containing the two bold edges in Figure 14.5. If the
audience selects the set

then the Assistant reveals the corresponding sequence

Using the matching, the Magician sees that the hand ( ) is matched to the sequence ( ), so he can name the one card
in the corresponding set not already revealed, namely, the . Notice that the fact that the sets are matched, that is, that
different sets are paired with distinct sequences, is essential. For example, if the audience picked the previous hand ( ), it
would be possible for the Assistant to reveal the same sequence ( ), but he better not do that; if he did, then the Magician
would have no way to tell if the remaining card was the  or the .

So how can we be sure the needed matching can be found? The answer is that each vertex on the left has degree ,
since there are five ways to select the card kept secret and there are  permutations of the remaining 4 cards. In addition, each
vertex on the right has degree 48, since there are 48 possibilities for the fifth card. So this graph is degree-constrained
according to Definition 11.5.5, and so has a matching by Theorem 11.5.6.

In fact, this reasoning shows that the Magician could still pull off the trick if 120 cards were left instead of 48, that is, the trick
would work with a deck as large as 124 different cards—without any magic!

The Real Secret

( )52
5

Y 52 ⋅ 51 ⋅ 50 ⋅ 49

{8♡, K♠, Q♠, 2♢, 6♢} (14.8.1)

X

Y (8♡, K♠, Q♠, 2♢), (K♠, 8♡, Q♠, 2♢),

(K♠, 8♡, 6♢, Q♠)

X

{8♡, K♠, Q♠, 9♣, 6♢}, (14.8.2)

(K♠, 8♡, 6♢, Q♠). (14.8.3)

14.8.2 14.8.3

9♣

14.8.1

14.8.3

9♣ 2♢

5 ⋅ 4! = 120

4!
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But wait a minute! It’s all very well in principle to have the Magician and his Assistant agree on a matching, but how are they
supposed to remember a matching with  edges? For the trick to work in practice, there has to be a way to
match hands and card sequences mentally and on the fly.

We’ll describe one approach. As a running example, suppose that the audience selects:

The Assistant picks out two cards of the same suit. In the example, the assistant might choose the  and . This is
always possible because of the Pigeonhole Principle—there are five cards and 4 suits so two cards must be in the same suit.
The Assistant locates the ranks of these two cards on the cycle shown in Figure 14.6. For any two distinct ranks on this
cycle, one is always between 1 and 6 hops clockwise from the other. For example, the  is 6 hops clockwise from the 

.

Figure 14.6 The 13 card ranks arranged in cyclic order.
The more counterclockwise of these two cards is revealed first, and the other becomes the secret card. Thus, in our
example, the  would be revealed, and the  would be the secret card. Therefore:

The suit of the secret card is the same as the suit of the first card revealed.
The rank of the secret card is between 1 and 6 hops clockwise from the rank of the first card revealed.

All that remains is to communicate a number between 1 and 6. The Magician and Assistant agree beforehand on an
ordering of all the cards in the deck from smallest to largest such as:

The order in which the last three cards are revealed communicates the number according to the following scheme:

In the example, the Assistant wants to send 6 and so reveals the remaining three cards in large, medium, small order.
Here is the complete sequence that the Magician sees:

The Magician starts with the first card, , and hops 6 ranks clockwise to reach , which is the secret card!

So that’s how the trick can work with a standard deck of 52 cards. On the other hand, Hall’s Theorem implies that the
Magician and Assistant can in principle perform the trick with a deck of up to 124 cards. It turns out that there is a method
which they could actually learn to use with a reasonable amount of practice for a 124-card deck, but we won’t explain it here.

The Same Trick with Four Cards?

( ) = 2, 598, 96052
5

10♡ 9♢ 3♡ Q♠ J♢.

3♡ 10♡

3♡

10♡

10♡ 3♡

A♣A♢A♡A♠2♣2♢2♡2♠… K♡K♠

(small, medium, large)

(small, large, medium)

(medium, small, large)

(medium, large, small)

(large, small, medium)

(large, medium, small)

= 1

= 2

= 3

= 4

= 5

= 6

10♡ Q♠ J♢ 9♢

10♡ 3♡
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Suppose that the audience selects only four cards and the Assistant reveals a sequence of three to the Magician. Can the
Magician determine the fourth card?

Let  be all the sets of four cards that the audience might select, and let  be all the sequences of three cards that the
Assistant might reveal. Now, on one hand, we have

by the Subset Rule. On the other hand, we have

by the Generalized Product Rule. Thus, by the Pigeonhole Principle, the Assistant must reveal the same sequence of three
cards for at least

different four-card hands. This is bad news for the Magician: if he sees that sequence of three, then there are at least three
possibilities for the fourth card which he cannot distinguish. So there is no legitimate way for the Assistant to communicate
exactly what the fourth card is!

X Y

|X| =( ) = 270, 725
52

4

|Y | = 52 ⋅ 51 ⋅ 50 = 132, 600

⌈ ⌉ = 3
270, 725

132, 600
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14.9: Inclusion-Exclusion
How big is a union of sets? For example, suppose there are 60 math majors, 200 EECS majors, and 40 physics majors. How
many students are there in these three departments? Let  be the set of math majors,  be the set of EECS majors, and  be
the set of physics majors. In these terms, we’re asking for .

The Sum Rule says that if  and  are disjoint, then the sum of their sizes is

However, the sets  and  might not be disjoint. For example, there might be a student majoring in both math and
physics. Such a student would be counted twice on the right side of this equation, once as an element of  and once as an
element of . Worse, there might be a triple-major  counted three times on the right side!

Our most-complicated counting rule determines the size of a union of sets that are not necessarily disjoint. Before we state the
rule, let’s build some intuition by considering some easier special cases: unions of just two or three sets.

Union of Two Sets
For two sets,  and , the Inclusion-Exclusion Rule is that the size of their union is:

Intuitively, each element of  accounted for in the first term, and each element of  is accounted for in the second term.
Elements in both  and  are counted twice—once in the first term and once in the second. This double-counting is
corrected by the final term.

Union of Three Sets
So how many students are there in the math, EECS, and physics departments? In other words, what is  if:

The size of a union of three sets is given by a more complicated Inclusion-Exclusion formula:

Remarkably, the expression on the right accounts for each element in the union of  and  exactly once. For example,
suppose that  is an element of all three sets. Then  is counted three times (by the  and  terms), subtracted off
three times (by the  and  terms), and then counted once more (by the  term). The
net effect is that  is counted just once.

If  is in two sets (say,  and ), then  is counted twice (by the  and  terms) and subtracted once (by the 
term). In this case,  does not contribute to any of the other terms, since .

So we can’t answer the original question without knowing the sizes of the various intersections. Let’s suppose that there are:

Then  and . Plugging all this into the formula
gives:

M E P

|M ∪ E ∪ P |

M , E, P

|M ∪ E ∪ P | = |M | + |E| + |P |.

M , E, P

M

P 5

S1 S2

S1 S2

S1 S2

|M ∪ E ∪ P |

|M |

|E|

|P |

= 60

= 200

= 40.

| ∪ ∪ |S1 S2 S3 = | | +| | +| |S1 S2 S3

−| ∩ | −| ∩ | −| ∩ |S1 S2 S1 S3 S2 S3

+| ∩ ∩ |S1 S2 S3

, ,S1 S2 S3

x x | |, | |,S1 S2 | |S3

| ∩ |, | ∩ |,S1 S2 S1 S3 | ∩ |S2 S3 | ∩ ∩ |S1 S2 S3

x

x S1 S2 x | |S1 | |S2 | ∩ |S1 S2

x x ∉ S3

4

3
11

2

math - EECS double majors

math - physics double majors
EECS - physics double majors
triple majors

|M ∩ E| = 4 +2, |M ∩ P | = 3 +2, |E ∩ P | = 11 +2, |M ∩ E ∩ P | = 2
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Sequences with 42, 04, or 60
In how many permutations of the set  do either 4 and 2, 0 and 4, or 6 and 0 appear consecutively? For example,
none of these pairs appears in:

The 06 at the end doesn’t count; we need 60. On the other hand, both 04 and 60 appear consecutively in this permutation:

Let  be the set of all permutations in which 42 appears. Define  and  similarly. Thus, for example, the permutation
above is contained in both  and , but not . In these terms, we’re looking for the size of the set .

First, we must determine the sizes of the individual sets, such as . We can use a trick: group the 6 and 0 together as a single
symbol. Then there is an immediate bijection between permutations of  containing 6 and 0 consecutively and
permutations of:

For example, the following two sequences correspond:

There are  permutations of the set containing 60, so  by the Bijection Rule. Similarly,  as well.

Next, we must determine the sizes of the two-way intersections, such as . Using the grouping trick again, there is a
bijection with permutations of the set:

Thus, . Similarly,  by a bijection with the set:

And  as well by a similar argument. Finally, note that  by a bijection with the set:

Plugging all this into the formula gives:

Union of n Sets
The size of a union of  sets is given by the following rule.

Rule 14.9.1 (Inclusion-Exclusion).

The formulas for unions of two and three sets are special cases of this general rule.

|M ∪ E ∪ P | = |M | + |E| + |P | − |M ∩ E| − |M ∩ P | − |E ∩ P |

+ |M ∩ E ∩ P |

= 60 +200 +40 −6 −5 −13 +2

= 278

{0, 1, 2, … , 9}

(7, 2, 9, 5, 4, 1, 3, 8, 0, 6).

(7, 2, 5, , , , 3, 8, 1, 9).6
–

0
–

4–

P42 P60 P04

P60 P04 P42 ∪ ∪P42 P04 P60

P60

{0, 1, 2, … , 9}

{60, 1, 2, 3, 4, 5, 7, 8, 9}.

(7, 2, 5, , , 4, 3, 8, 1, 9)⟷ (7, 2, 5, , 4, 3, 8, 1, 9)6
–

0
–

60
–––

9! | | = 9!P60 | | = | | = 9!P04 P42

∩P42 P60

{42, 60, 1, 3, 5, 7, 8, 9}.

| ∩ | = 8!P42 P60 | ∩ | = 8!P60 P04

{604, 1, 2, 3, 5, 7, 8, 9}.

| ∩ | = 8!P42 P04 | ∩ ∩ | = 7!P60 P04 P42

{6042, 1, 3, 5, 7, 8, 9}.

| ∩ ∩ | = 9! +9! +9! −8! −8! −8! +7!.P42 P04 P60

n

minus

plus
minus

plus

| ∪ ∪ ⋯ ∪ | =S1 S2 Sn

the sum of the sizes of the individual sets

the sizes of all two-way intersections

the sizes of all three-way intersections

the sizes of all four-way intersections

the sizes of all five-way intersections, etc.
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This way of expressing Inclusion-Exclusion is easy to understand and nearly as precise as expressing it in mathematical
symbols, but we’ll need the symbolic version below, so let’s work on deciphering it now.

We already have a concise notation for the sum of sizes of the individual sets, namely,

A “two-way intersection” is a set of the form  for . We regard  as the same two-way intersection as 
, so we can assume that . Now we can express the sum of the sizes of the two-way intersections as

Similarly, the sum of the sizes of the three-way intersections is

These sums have alternating signs in the Inclusion-Exclusion formula, with the sum of the -way intersections getting the sign
. This finally leads to a symbolic version of the rule:

Rule (Inclusion-Exclusion).

While it’s often handy express the rule in this way as a sum of sums, it is not necessary to group the terms by how many sets
are in the intersections. So another way to state the rule is:

Rule (Inclusion-Exclusion-II).

A proof of these rules using just highschool algebra is given in Problem 14.52.

Computing Euler’s Function
We can also use Inclusion-Exclusion to derive the explicit formula for Euler’s function claimed in Corollary 8.10.11: if the
prime factorization of  is  for distinct primes , then

To begin, let  be the set of integers in  that are not relatively prime to . So . Next, let  be the set of
integers in  that are divisible by :

So the integers in  are precisely the integers in  that are divisible by at least one of the ’s. Namely,

| |.∑
i=1

n

Si

∩Si Sj ineqj ∩Sj Si

∩Si Sj i < j

| ∩ |.∑
i≤i<j≤n

Si Sj

| ∩ ∩ |.∑
i≤i<j<k≤n

Si Sj Sk

k

(−1)k−1

∣
∣
∣⋃

i=1

n

Si
∣
∣
∣ = | |∑

i=1

n

Si

− | ∩ |∑
i≤i<j≤n

Si Sj

+ | ∩ ∩ | +⋯∑
i≤i<j<k≤n

Si Sj Sk

+(−1 .)n−1∣
∣
∣⋂

i=1

n

Si
∣
∣
∣

= (−1
∣
∣
∣⋃

i=1

n

Si
∣
∣
∣ ∑

∅≠I⊆{1,…,n}

)|I|+1∣
∣
∣⋂

i∈I

Si
∣
∣
∣ (14.9.1)

n ⋯pe1

1 pem
m pi

ϕ(n) = n (1 − ) .∏
i=1

m 1

pi

(14.9.2)

S [0..n) n ϕ(n) = n −|S| Ca

[0..n) a

::= {k ∈ [0..n) ∣ a|k}.Ca

S [0..n) pi

S = .⋃
i=1

m

Cpi (14.9.3)
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We’ll be able to find the size of this union using Inclusion-Exclusion because the intersections of the ’s are easy to count.
For example,  is the set of integers in  that are divisible by each of  and . But since the  are
distinct primes, being divisible by each of them is the same as being divisible by their product. Now if  is a positive divisor of

, then there are exactly  multiples of  in . So exactly  of the integers in  are divisible by all three
primes . In other words,

This reasoning extends to arbitrary intersections of ’s, namely,

for any nonempty set . This lets us calculate:

so

which proves ( ).

Yikes! That was pretty hairy. Are you getting tired of all that nasty algebra? If so, then good news is on the way. In the next
section, we will show you how to prove some heavy-duty formulas without using any algebra at all. Just a few words and you
are done. No kidding.

 ...though not at MIT anymore.

Cpi

∩ ∩Cp Cq Cr [0..n) p, q r p, q, r

k

n n/k k [0..n) n/pqr [0..n)
p, q, r

| ∩ ∩ | = .Cp Cq Cr

n

pqr

Cp

= .
∣
∣
∣⋂

j∈I

Cpj

∣
∣
∣

n

∏j∈I pj

(14.9.4)

I ∈ [1..m]

|S| =
∣

∣
∣⋃
i=1

m

Cpi

∣

∣
∣

= (−1∑
∅≠I⊆[1..m]

)|I|+1
∣

∣
∣
∣⋂
i∈I

Cpi

∣

∣
∣
∣

= (−1∑
∅≠I⊆[1..m]

)|I|+1 n

∏j∈I pj

= −n ∑
∅≠I⊆[1..m]

1

(− )∏j∈I pj

= −n( (1 − ))+n,∏
i=1

m 1

pi

(by 14.9.3)

(by Inclusion-Exclusion (14.9.1))

(by 14.9.4)

ϕ(n) = n −|S| = n (1 − ) ,∏
i=1

m 1

pi

14.9.2

5
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14.10: Combinatorial Proofs
Suppose you have  different T-shirts, but only want to keep . You could equally well select the  shirts you want to keep or
select the complementary set of  shirts you want to throw out. Thus, the number of ways to select  shirts from among 
must be equal to the number of ways to select  shirts from among . Therefore:

This is easy to prove algebraically, since both sides are equal to:

But we didn’t really have to resort to algebra; we just used counting principles.

Hmmm....

Pascal’s Triangle Identity
Bob, famed Math for Computer Science Teaching Assistant, has decided to try out for the US Olympic boxing team. After all,
he’s watched all of the Rocky movies and spent hours in front of a mirror sneering, “Yo, you wanna piece a’ me?!” Bob figures
that  people (including himself) are competing for spots on the team and only  will be selected. As part of maneuvering for
a spot on the team, he needs to work out how many different teams are possible. There are two cases to consider:

Bob is selected for the team, and his  teammates are selected from among the other  competitors. The number
of different teams that can be formed in this way is:

Bob is not selected for the team, and all  team members are selected from among the other  competitors. The
number of teams that can be formed this way is:

All teams of the first type contain Bob, and no team of the second type does; therefore, the two sets of teams are disjoint. Thus,
by the Sum Rule, the total number of possible Olympic boxing teams is:

Ted, equally-famed Teaching Assistant, thinks Bob isn’t so tough and so he might as well also try out. He reasons that 
people (including himself) are trying out for  spots. Thus, the number of ways to select the team is simply:

Ted and Bob each correctly counted the number of possible boxing teams. Thus, their answers must be equal. So we know:

Lemma 14.10.1 (Pascal’s Triangle Identity).

We proved Pascal’s Triangle Identity without any algebra! Instead, we relied purely on counting techniques.

Giving a Combinatorial Proof
A combinatorial proof is an argument that establishes an algebraic fact by relying on counting principles. Many such proofs
follow the same basic outline:

n k k

n −k k n

n −k n

( ) =( ).
n

k

n

n −k

.
n!

k!(n −k)!

n k

k −1 n −1

( ).
n −1

k −1

k n −1

( ).
n −1

k

( )+( ).
n −1

k −1

n −1

k

n

k

( ).
n

k

( ) =( )+( )
n

k

n −1

k −1

n −1

k
(14.10.1)
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1. Define a set .
2. Show that  by counting one way.
3. Show that  by counting another way.
4. Conclude that .

In the preceding example,  was the set of all possible Olympic boxing teams. Bob computed

by counting one way, and Ted computed

by counting another way. Equating these two expressions gave Pascal’s Identity.

Checking a Combinatorial Proof

Combinatorial proofs are based on counting the same thing in different ways. This is fine when you’ve become practiced at
different counting methods, but when in doubt, you can fall back on bijections and sequence counting to check such proofs.

For example, let’s take a closer look at the combinatorial proof of Pascal’s Identity ( ). In this case, the set  of things
to be counted is the collection of all size-  subsets of integers in the interval .

Now we’ ve already counted  one way, via the Bookkeeper Rule, and found . The other “way” corresponds to
defining a bijection between  and the disjoint union of two sets  and  where,

Clearly  and  are disjoint since the pairs in the two sets have different first coordinates, so . Also,

Now finding a bijection  will prove the identity ( ). In particular, we can define

It should be obvious that  is a bijection.

Colorful Combinatorial Proof
The set that gets counted in a combinatorial proof in different ways is usually defined in terms of simple sequences or sets
rather than an elaborate story about Teaching Assistants. Here is another colorful example of a combinatorial argument.

Proof

We give a combinatorial proof. Let  be all -card hands that can be dealt from a deck containing  different red
cards and  different black cards. First, note that every -element set has

S

|S| = n

|S| = m

n = m

S

|S| =( )+( )
n −1

k −1

n −1

k

|S| =( )
n

k

14.10.1 S

k [1..n]

S |S| = ( )n
k

S A B

A

B

::= {(1, X) ∣ X ⊆ [2, n] AND |X| = k −1}

::= {(0, Y ) ∣ Y ⊆ [2, n] AND |Y | = k}

A B |A ∪ B| = |A| + |B|

|A| = # specified sets X =( ).
n −1

k −1

|B| = # specified sets Y =( ).
n −1

k

f : (A ∪ B) → S 14.10.1

f(c) ::={
X ∪ {1}

Y

 if c = (1, X),

 if c = (0, Y ).

f

Theorem 14.10.2

( )( ) =( )∑
r=0

n n

r

2n

n −r

3n

n

S n n

2n 3n

|S| =( )
3n

n
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-element subsets.

From another perspective, the number of hands with exactly  red cards is

since there are  ways to choose the  red cards and  ways to choose the  black cards. Since the number
of red cards can be anywhere from 0 to , the total number of n-card hands is:

Equating these two expressions for  proves the theorem. 

Finding a Combinatorial Proof

Combinatorial proofs are almost magical. Theorem 14.10.2 looks pretty scary, but we proved it without any algebraic
manipulations at all. The key to constructing a combinatorial proof is choosing the set  properly, which can be tricky.
Generally, the simpler side of the equation should provide some guidance. For example, the right side of Theorem 14.10.2 is 

, which suggests that it will be helpful to choose  to be all -element subsets of some -element set.

n

r

( )( )
n

r

2n

n −r

( )n

r
r ( )2n

n−r
n −r

n

|S| = ( )( ).∑
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n n

r

2n

n −r
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n
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CHAPTER OVERVIEW
15: GENERATING FUNCTIONS

Generating Functions are one of the most surprising and useful inventions in Discrete Mathematics.
Roughly speaking, generating functions transform problems about sequences into problems about
algebra. This is great because we’ve got piles of algebraic rules. Thanks to generating functions, we
can reduce problems about sequences to checking properties of algebraic expressions. This will
allow us to use generating functions to solve all sorts of counting problems.

Several flavors of generating functions such as ordinary, exponential, and Dirichlet come up
regularly in combinatorial mathematics. In addition, Z-transforms, which are closely related to
ordinary generating functions, are important in control theory and signal processing. But ordinary
generating functions are enough to illustrate the power of the idea, so we’ll stick to them. So from
now on generating function will mean the ordinary kind, and we will offer a taste of this large
subject by showing how generating functions can be used to solve certain kinds of counting problems and how they can be used to find
simple formulas for linear-recursive functions.

15.1: INFINITE SERIES
15.2: COUNTING WITH GENERATING FUNCTIONS
15.3: PARTIAL FRACTIONS
15.4: SOLVING LINEAR RECURRENCES
15.5: FORMAL POWER SERIES
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15.1: Infinite Series
Informally, a generating function, , is an infinite series

We use the notation  for the coefficient of xn in the generating function . That is, .

We can analyze the behavior of any sequence of numbers  by regarding the elements of the sequence as
successive coefficients of a generating function. It turns out that properties of complicated sequences that arise from counting,
recursive definition, and programming problems are easy to explain by treating them as generating functions.

Generating functions can produce noteworthy insights even when the sequence of coefficients is trivial. For example, let 
be the generating function for the infinite sequence of ones , namely, the geometric series.

We’ll use typical generating function reasoning to derive a simple formula for . The approach is actually an easy version
of the perturbation method of Section 13.1.2. Specifically,

Solving for  gives

In other words,

Continuing with this approach yields a nice formula for

Specifically,

Solving for  gives

On other words,

Never Mind Convergence
Equations ( ) and ( ) hold numerically only when , because both generating function series diverge when 

. But in the context of generating functions, we regard infinite series as formal algebraic objects. Equations such as (

F (x)

F (x) = + x + + +⋯ .f0 f1 f2x2 f3x3 (15.1.1)

[ ]F (x)xn F (x) [ ]F (x) ::=xn fn

, , … …f0 f1 fn

G(x)

1, 1, …

G(x) ::= 1 +x + +⋯ + +⋯ .x2 xn (15.1.2)

G(x)

G(x)

−xG(x)

G(x) −xG(x)

= 1 +x + + +⋯ + +⋯x2 x3 xn

= −x − − −⋯ − −⋯x2 x3 xn

= 1.

G(x)

= G(x) ::= .
1

1 −x
∑
n=0

∞

xn (15.1.3)

[ ]( ) = 1xn 1

1 −x

N(x) ::= 1 +2x +3 +⋯ +(n +1) +⋯ .x2 xn (15.1.4)

N(x)

−xN(x)

N(x) −xN(x)

= 1 +2x +3 +4 +⋯ +(n +1) +⋯x2 x3 xn

= −x −2 −3 −⋯ −n −⋯x2 x3 xn

= 1 +x + + +⋯ + +⋯x2 x3 xn

= G(x).

N(x)

= = N(x) ::= (n +1) .
1

(1 −x)2

G(x)

1 −x
∑
n=0

∞

xn (15.1.5)

[ ]( ) = n +1.xn 1

(1 −x)2

15.1.3 15.1.5 |x| < 1

|x| ≥ 1

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48272?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/15%3A_Generating_Functions/15.01%3A_Infinite_Series
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/13%3A_Sums_and_Asymptotics/13.01%3A_The_Value_of_an_Annuity


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 15.1.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48272

) and ( ) define symbolic identities that hold for purely algebraic reasons. In fact, good use can be made of
generating functions determined by infinite series that don’t converge anywhere (besides ). We’ll explain this further in
Section 15.5 at the end of this chapter, but for now, take it on faith that you don’t need to worry about convergence.

15.1.3 15.1.5

x = 0

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48272?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/15%3A_Generating_Functions/15.05%3A_Formal_Power_Series


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 15.2.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48407

15.2: Counting with Generating Functions
Generating functions are particularly useful for representing and counting the number of ways to select  things. For example,
suppose there are two flavors of donuts, chocolate and plain. Let dn be the number of ways to select  chocolate or plain
flavored donuts. , because there are  such donut selections—all chocolate, 1 plain and  chocolate, 2
plain and  chocolate,... , all plain. We define a generating function, , for counting these donut selections by letting
the coefficient of  be . This gives us equation (15.1.5)

Apples and Bananas too
More generally, suppose we have two kinds of things—say, apples and bananas— and some constraints on how many of each
may be selected. Say there are  ways to select  apples and  ways to select  bananas. The generating function for
counting apples would be

and for bananas would be

Now suppose apples come in baskets of 6, so there is no way to select 1 to 5 apples, one way to select 6 apples, no way to
select 7, etc. In other words,

In this case we would have

Let’s also suppose there are two kinds of bananas—red and yellow. Now,  by the same reasoning used to count
selections of  chocolate and plain donuts, and by ( ) we have

So how many ways are there to select a mix of  apples and bananas? First, we decide how many apples to select. This can be
any number  from 0 to . We can then select these apples in  ways, by definition. This leaves  bananas to be
selected, which by definition can be done in  ways. So the total number of ways to select  apples and  bananas is 

. This means that the total number of ways to select some size  mix of apples and bananas is

Products of Generating Functions
Now here’s the cool connection between counting and generating functions: expression ( ) is equal to the coefficient of
xn in the product 

In other words, we’re claiming that

n

n

= n+1dn n+1 n−1
n−2 D(x)

xn dn

D(x) = .
1

(1 −x)2 (15.2.1)
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15.2.2
A(x)B(x).

[ ](A(x) ⋅B(x)) = + + +⋯ + .xn a0bn a1bn−1 a2bn−2 anb0 (15.2.3)
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Rule (Product).

To explain the generating function Product Rule, we can think about evaluating the product  by using a table to
identify all the cross-terms from the product of the sums:

In this layout, all the terms involving the same power of  lie on a 45-degree sloped diagonal. So, the index-  diagonal
contains all the -terms, and the coefficient of  in the product  is the sum of all the coefficients of the terms on
this diagonal, namely, ( ). The sequence of coefficients of the product  is called the convolution of the
sequences  and . In addition to their algebraic role, convolutions of sequences play a prominent
role in signal processing and control theory.

This Product Rule provides the algebraic justification for the fact that a geometric series equals  regardless of
convergence. Specifically, the constant 1 describes the generating function

Likewise, the expression  describes the generating function

So for the series  whose coefficients are all equal to 1, the Product Rule implies in a purely formal way that

In other words, under the Product Rule, the geometric series  is the multiplicative inverse, , of .

Similar reasoning justifies multiplying a generating function by a constant term by term. That is, a special case of the Product
Rule is the

Rule (Constant Factor). For any constant, , and generating function, ,

The Convolution Rule
We can summarize the discussion above with the

Rule (Convolution). Let  be the generating function for selecting items from a set , and let  be the generating
function for selecting items from a set  disjoint from . The generating function for selecting items from the union  is
the product .

The Rule depends on a precise definition of what “selecting items from the union ” means. Informally, the idea is that
the restrictions on the selection of items from sets  and  carry over to selecting items from .

Counting Donuts with the Convolution Rule
We can use the Convolution Rule to derive in another way the generating function  for the number of ways to select
chocolate and plain donuts given in (15.6). To begin, there is only one way to select exactly  chocolate donuts. That means
every coefficient of the generating function for selecting  chocolate donuts equals one. So the generating function for
chocolate donut selections is ; likewise for the generating function for selecting only plain donuts. Now by the
Convolution Rule, the generating function for the number of ways to select  donuts when both chocolate and plain flavors are
available is
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So we have derived ( ) without appeal to (15.1.5).

Our application of the Convolution Rule for two flavors carries right over to the general case of  flavors; the generating
function for selections of donuts when  flavors are available is . We already derived the formula for the number of
ways to select a  donuts when  flavors are available, namely,  from Corollary 14.5.3. So we have

Extracting Coefficients from Maclaurin’s Theorem

We’ve used a donut-counting argument to derive the coefficients of , but it’s instructive to derive this coefficient
algebraically, which we can do using Maclaurin’s Theorem:

(Maclaurin’s Theorem).

This theorem says that the th coefficient of  is equal to its th derivative evaluated at 0 and divided by .
Computing the th derivative turns out not to be very difficult

(see Problem 15.5), so

In other words, instead of using the donut-counting formula ( ) to find the coefficients of , we could have used
this algebraic argument and the Convolution Rule to derive the donut-counting formula.

The Binomial Theorem from the Convolution Rule
The Convolution Rule also provides a new perspective on the Binomial Theorem 14.6.4. Here’s how: first, work with the
single-element set . The generating function for the number of ways to select  different elements from this set is simply 

: we have 1 way to select zero elements, 1 way to select the one element, and 0 ways to select more than one element.
Similarly, the number of ways to select  elements from any single-element set  has the same generating function .
Now by the Convolution Rule, the generating function for choosing a subset of  elements from the set  is
the product, , of the generating functions for selecting from each of the  one-element sets. Since we know that the
number of ways to select  elements from a set of size  is , we conclude that that

which is a restatement of the Binomial Theorem 14.6.4. Thus, we have proved the Binomial Theorem without having to
analyze the expansion of the expression  into a sum of products.

These examples of counting donuts and deriving the binomial coefficients illustrate where generating functions get their
power:
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Generating functions can allow counting problems to be solved by algebraic manipulation, and conversely, they can allow algebraic identities to
be derived by counting techniques.

Absurd Counting Problem
So far everything we’ve done with generating functions we could have done another way. But here is an absurd counting
problem—really over the top! In how many ways can we fill a bag with  fruits subject to the following constraints?

The number of apples must be even.
The number of bananas must be a multiple of 5.
There can be at most four oranges.
There can be at most one pear.

For example, there are 7 ways to form a bag with 6 fruits:

These constraints are so complicated that getting a nice answer may seem impossible. But let’s see what generating functions
reveal.

First, we’ll construct a generating function for choosing apples. We can choose a set of 0 apples in one way, a set of 1 apple in
zero ways (since the number of apples must be even), a set of 2 apples in one way, a set of 3 apples in zero ways, and so forth.
So, we have:

Similarly, the generating function for choosing bananas is:

Now, we can choose a set of 0 oranges in one way, a set of 1 orange in one way, and so on. However, we cannot choose more
than four oranges, so we have the generating function:

Here the right hand expression is simply the formula (13.2) for a finite geometric sum. Finally, we can choose only zero or one
pear, so we have:

The Convolution Rule says that the generating function for choosing from among all four kinds of fruit is:

Almost everything cancels! We’re left with , which we found a power series for earlier: the coefficient of  is
simply . Thus, the number of ways to form a bag of  fruits is just . This is consistent with the example we worked
out, since there were 7 different fruit bags containing 6 fruits. Amazing!

Formally, the Convolution Rule applies when there is a bijection between -element selections from  and ordered pairs
of selections from the sets  and  containing a total of  elements. We think the informal statement is clear enough.

n

 Apples 
 Bananas 
 Oranges 

 Pears 

6
0
0
0

4
0
2
0

4
0
1
1

2
0
4
0

2
0
3
1

0
5
1
0

0
5
0
1

A(x) = 1 + + + +⋯ =x2 x4 x6 1
1 −x2

B(x) = 1 + + + +⋯ =x5 x10 x15 1
1 −x5

O(x) = 1 +x+ + + = .x2 x3 x4 1 −x5

1 −x

P (x) = 1 +x

A(x)B(x)O(x)P (x) = (1 +x)
1

1 −x2

1
1 −x5

1 −x5

1 −x

=
1

(1 −x)2

= 1 +2x+3 +4 +⋯x2 x3

1/(1 −x)2 xn

n+1 n n+1

1 n A∪B

A B n

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48407?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/03%3A_Counting/13%3A_Sums_and_Asymptotics


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 15.3.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48408

15.3: Partial Fractions
We got a simple solution to the seemingly impossible counting problem of Section 15.2.6 because its generating function
simplified to the expression , whose power series coefficients we already knew. You’ve probably guessed that this
problem was contrived so the answer would work out neatly. But other problems may not be so neat. To solve more general
problems using generating functions, we need ways to find power series coefficients for generating functions given as
formulas. Maclaurin’s Theorem 15.2.1 is a very general method for finding coefficients, but it only applies when formulas for
repeated derivatives can be found, which isn’t often. However, there is an automatic way to find the power series coefficients
for any formula that is a quotient of polynomials, namely, the method of partial fractions from elementary calculus.

The partial fraction method is based on the fact that quotients of polynomials can be expressed as sums of terms whose power
series coefficients have nice formulas. For example when the denominator polynomial has distinct nonzero roots, the method
rests on

Lemma 15.3.1. Let  be a polynomial of degree less than  and let  be distinct, nonzero numbers. Then there
are constants  such that

Let’s illustrate the use of Lemma 15.3.1 by finding the power series coefficients for the function

We can use the quadratic formula to find the roots  of the denominator, .

So

With a little algebra, we find that

where

Next we find  and  which satisfy:

In general, we can do this by plugging in a couple of values for  to generate two linear equations in  and  and then solve
the equations for  and . A simpler approach in this case comes from multiplying both sides of ( ) by the left hand
denominator to get

Now letting  we obtain
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and similarly, letting  we obtain

Plugging these values for  into equation ( ) finally gives the partial fraction expansion

Each term in the partial fractions expansion has a simple power series given by the geometric sum formula:

Substituting in these series gives a power series for the generating function:

so

Partial Fractions with Repeated Roots
Lemma 15.3.1 generalizes to the case when the denominator polynomial has a repeated nonzero root with multiplicity  by
expanding the quotient into a sum a terms of the form

where  is the reciprocal of the root and . A formula for the coefficients of such a term follows from the donut formula
(15.2.5).

When , this follows from the donut formula (15.2.5) and termwise multiplication by the constant . The case for
arbitrary  follows by substituting for  in the power series; this changes  into  and so has the effect of
multiplying the coefficient of  by .

In other words,
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15.4: Solving Linear Recurrences

Generating Function for the Fibonacci Numbers
The Fibonacci numbers  are defined recursively as follows:

Generating functions will now allow us to derive an astonishing closed formula for 

Let  be the generating function for the sequence of Fibonacci numbers, that is,

Reasoning as we did at the start of this chapter to derive the formula for a geometric series, we have

so

But  is the same as the function we used to illustrate the partial fraction method for finding coefficients in Section 15.3.
So by equation (15.3.2), we arrive at what is called Binet’s formula:

Binet’s formula for Fibonacci numbers is astonishing and maybe scary. It’s not even obvious that the expression on the right
hand side ( ) is an integer. But the formula is very useful. For example, it provides—via the repeated squaring method—a
much more efficient way to compute Fibonacci numbers than crunching through the recurrence. It also make explicit the
exponential growth of these numbers.

The Towers of Hanoi
According to legend, there is a temple in Hanoi with three posts and 64 gold disks of different sizes. Each disk has a hole
through the center so that it fits on a post. In the misty past, all the disks were on the first post, with the largest on the bottom
and the smallest on top, as shown in Figure 15.1.

Figure 15.1 The initial configuration of the disks in the Towers of Hanoi problem.

Monks in the temple have labored through the years since to move all the disks to one of the other two posts according to the
following rules:

The only permitted action is removing the top disk from one post and dropping it onto another post.
A larger disk can never lie above a smaller disk on any post.
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So, for example, picking up the whole stack of disks at once and dropping them on another post is illegal. That’s good, because
the legend says that when the monks complete the puzzle, the world will end!

To clarify the problem, suppose there were only 3 gold disks instead of 64. Then the puzzle could be solved in 7 steps as
shown in Figure 15.2.

The questions we must answer are, “Given sufficient time, can the monks succeed?” If so, “How long until the world ends?”
And, most importantly, “Will this happen before the final exam?”

A Recursive Solution

The Towers of Hanoi problem can be solved recursively. As we describe the procedure, we’ll also analyze the minimum
number, , of steps required to solve the -disk problem. For example, some experimentation shows that  and .
The procedure illustrated above uses 7 steps, which shows that  is at most 7.

The recursive solution has three stages, which are described below and illustrated in Figure 15.3. For clarity, the largest disk is
shaded in the figures.

Figure 15.2 The 7-step solution to the Towers of Hanoi problem when there are  disks.

Figure 15.3 A recursive solution to the Towers of Hanoi problem.

Stage 1. Move the top  disks from the first post to the second using the solution for  disks. This can be done in 
 steps.

Stage 2. Move the largest disk from the first post to the third post. This takes just 1 step.

Stage 3. Move the  disks from the second post to the third post, again using the solution for  disks. This can also
be done in  steps.

This algorithm shows that , the minimum number of steps required to move  disks to a different post, is at most 
. We can use this fact to upper bound the number of operations required to move towers of

various heights:

tn n = 1t1 = 3t2

t3

n = 3

n−1 n−1
tn−1

n−1 n−1
tn−1

tn n

+1 + = 2 +1tn−1 tn−1 tn−1
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Continuing in this way, we could eventually compute an upper bound on , the number of steps required to move 64 disks.
So this algorithm answers our first question: given sufficient time, the monks can finish their task and end the world. This is a
shame. After all that effort, they’d probably want to smack a few high-fives and go out for burgers and ice cream, but nope—
world’s over.

Finding a Recurrence

We cannot yet compute the exact number of steps that the monks need to move the 64 disks, only an upper bound. Perhaps,
having pondered the problem since the beginning of time, the monks have devised a better algorithm

Lucky for us, there is no better algorithm. Here’s why: at some step, the monks must move the largest disk from the first post
to a different post. For this to happen, the  smaller disks must all be stacked out of the way on the only remaining post.
Arranging the  smaller disks this way requires at least  moves. After the largest disk is moved, at least another 
moves are required to pile the  smaller disks on top

This argument shows that the number of steps required is at least . Since we gave an algorithm using exactly that
number of steps, we can now write an expression for , the number of moves required to complete the Towers of Hanoi
problem with  disks:

Solving the Recurrence

We can now find a formula for  using generating functions. Let  be the generating function for the ’s, that is,

Reasoning as we did for the Fibonacci recurrence, we have

so

and

Using partial fractions,

for some constant . Now multiplying both sides by the left hand denominator gives

Substituting  for  yields  and substituting 1 for  yields , which gives

t3
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≤ 2 ⋅ +1 ≤ 15t3
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n
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Finally we can read off the simple formula for the numbers of steps needed to move a stack of  disks:

Solving General Linear Recurrences
An equation of the form

for constants  is called a degree  linear recurrence with inhomogeneous term .

The methods above can be used to solve linear recurrences with a large class of inhomogeneous terms. In particular, when the
inhomogeneous term itself has a generating function that can be expressed as a quotient of polynomials, the approach used
above to derive generating functions for the Fibonacci and Tower of Hanoi examples carries over to yield a quotient of
polynomials that defines the generating function . Then partial fractions can be used to find a
formula for  that is a linear combination of terms of the form  where  is a nonnegative integer  and  is the
reciprocal of a root of the denominator polynomial. For example, see Problems 15.15, 15.16, 15.20, and 15.21.

n

= [ ]T (x) = [ ]( )−[ ]( ) = −1.tn xn xn
1

1 −2x
xn

1

1 −x
2n

f(n) = f(n−1) + f(n−2) +⋯ + f(n−d) +h(n)c1 c2 cd (15.4.2)

∈ Cci d h(n)

f(0) +f(1)x+f(2) +⋯x2

f(n) nkαn k ≤ d α
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15.5: Formal Power Series

Divergent Generating Functions
Let  be the generating function for , that is,

Because  for all , this generating function converges only at .

Next, let  be the generating function for , that is,

Again,  converges only for , so  and  describe the same, trivial, partial function on the reals.

On the other hand,  and / have different coefficients for all powers of  greater than 1, and we can usefully
distinguish them as formal, symbolic objects.

To illustrate this, note than by subtracting 1 from  and then dividing each of the remaining terms by , we get a series
where the coefficient if  is . That is

Now a little further formal reasoning about  and  will allow us to deduce the following identity for : 

To prove this identity, note that from ( ), we have

In other words,

Solving ( ) for , we get

But  is  for  and is 1 for , so by the convolution formula,

The identity ( ) now follows immediately from ( ).

The Ring of Power Series
So why don’t we have to worry about series whose radius of convergence is zero, and how do we justify the kind of
manipulation in the previous section to derive the formula ( )? The answer comes from thinking abstractly about infinite
sequences of numbers and operations that can be performed on them.

For example, one basic operation combining two infinite sequences is adding them coordinatewise. That is, if we let

F (x) n!

F (x) ::= 1 +1x +2 +⋯ +n! +⋯ .x2 xn

= o(n!)xn x ≠ 0 x = 0 3

H(x) n ⋅ n!

H(x) ::= 0 +1x +4 +⋯ +n ⋅ n!   +⋯ .x2 xn

H(x) x = 0 H(x) F (x)

F (x) H(x) x

F (x) x

xn (n +1)!

[ ]( ) = (n +1)!.xn F (x) −1

x
(15.5.1)

F (x) H(x) n! 4

n! = 1 + (i −1) ⋅ (i −1)!∑
i=1

n

(15.5.2)

15.5.1

[ ]H(x) ::= n ⋅ n! = (n +1)! −n! = [ ]( )−[ ]F (x).xn xn
F (x) −1

x
xn

H(x) = −F (x),
F (x) −1

x
(15.5.3)

15.5.3 F (x)

F (x) = .
xH(x) +1

1 −x
(15.5.4)

[ ](xH(x) +1)xn (n −1) ⋅ (n −1)! n ≥ 1 n = 0

[ ]( ) = 1 + (i −1) ⋅ (i −1)!.xn xH(x) +1

1 −x
∑
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then we can define the sequence sum, , by the rule:

Another basic operation is sequence multiplication, , defined by the convolution rule (not coordinatewise):

These operations on infinite sequences have lots of nice properties. For example, it’s easy to check that sequence addition and
multiplication are commutative:

If we let

then it’s equally easy to check that  acts like a zero for sequences and  acts like the number one:

Now if we define

then

In fact, the operations  and  satisfy all the commutative ring axioms described in Section 8.7.1. The set of infinite
sequences of numbers together with these operations is called the ring of formal power series over these numbers.

A sequence  is the reciprocal of a sequence  when

A reciprocal of  is also called a multiplicative inverse or simply an “inverse” of . The ring axioms imply that if there is a
reciprocal, it is unique (see Problem 8.32), so the suggestive notation  can be used unambiguously to denote this
reciprocal, if it exists. For example, letting

the definition of  implies that , and so  and .

In the ring of formal power series, equation ( ) implies that the zero sequence  has no inverse, so  is undefined—
just as the expression 1/0 is undefined over the real numbers or the ring  of Section 8.7.1. It’s not hard to verify that a series
has an inverse iff its initial element is nonzero (see Problem 15.26).

Now we can explain the proper way to understand a generating function definition

It simply means that  really refers to its infinite sequence of coefficients  in the ring of formal power series.
The simple expression, , can be understood as referring to the sequence

⊕

G⊕H ::= ( + , + , … , + , …).g0 h0 g1 h1 gn hn

⊗

G⊗H ::=( + , + , … , , …) .g0 h0 g0h1 g1h0 ∑
i=0

n

gihn−i

G⊕H

G⊗H

= H ⊕G,

= H ⊗G.

Z

I

::= (0, 0, 0, …),

::= (1, 0, 0, 0, … , 0, …),

Z I

Z ⊕G
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= G,

= Z,

= G.

(15.5.5)

−G ::= (− , − , − , …)g0 g1 g2

G⊕(−G) = Z.
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H G
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G G
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Likewise,  abbreviates the sequence  above, and the familiar equation

can be understood as a way of restating the assertion that  is . In other words, the powers of the variable  just serve as a
place holders—and as reminders of the definition of convolution. The equation ( ) has nothing to do with the values of 
or the convergence of the series. Rather, it is stating a property that holds in the ring of formal power series. The reasoning
about the divergent series in the previous section is completely justified as properties of formal power series.

This section is based on an example from “Use of everywhere divergent generating function,” mathoverflow, response 8,147
by Aaron Meyerowitz, Nov. 12, 2010.

A combinatorial proof of ( ) is given in Problem 14.64.

The elements in the sequences may be the real numbers, complex numbers, or, more generally, may be the elements from any
given commutative ring.

1 −x J

= 1 +x + + +⋯
1

1 −x
x2 x3 (15.5.6)

K 1/J x

15.5.6 x

3

4 15.5.2

5

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48410?pdf


1 6/29/2021

SECTION OVERVIEW
4: PROBABILITY

16: EVENTS AND PROBABILITY SPACES
16.1: LET'S MAKE A DEAL
16.2: THE FOUR STEP METHOD
16.3: STRANGE DICE
16.4: THE BIRTHDAY PRINCIPLE
16.5: SET THEORY AND PROBABILITY

17: CONDITIONAL PROBABILITY
17.1: MONTY HALL CONFUSION
17.2: DEFINITION AND NOTATION
17.3: THE FOUR-STEP METHOD FOR CONDITIONAL PROBABILITY
17.4: WHY TREE DIAGRAMS WORK
17.5: THE LAW OF TOTAL PROBABILITY
17.6: SIMPSON’S PARADOX
17.7: INDEPENDENCE
17.8: MUTUAL INDEPENDENCE

18: RANDOM VARIABLES
18.1: RANDOM VARIABLE EXAMPLES
18.2: INDEPENDENCE
18.3: DISTRIBUTION FUNCTIONS
18.4: GREAT EXPECTATIONS
18.5: LINEARITY OF EXPECTATION

19: DEVIATION FROM THE MEAN
19.1: MARKOV’S THEOREM
19.2: CHEBYSHEV’S THEOREM
19.3: PROPERTIES OF VARIANCE
19.4: ESTIMATION BY RANDOM SAMPLING
19.5: CONFIDENCE VERSUS PROBABILITY
19.6: SUMS OF RANDOM VARIABLES
19.7: REALLY GREAT EXPECTATIONS

20: RANDOM WALKS
20.1: GAMBLER’S RUIN
20.2: RANDOM WALKS ON GRAPHS

https://libretexts.org/
https://eng.libretexts.org/
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.01%3A_Let's_Make_a_Deal
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.02%3A_The_Four_Step_Method
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.03%3A_Strange_Dice
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.04%3A_The_Birthday_Principle
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.05%3A_Set_Theory_and_Probability
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.01%3A_Monty_Hall_Confusion
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.02%3A_Definition_and_Notation
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.03%3A_The_Four-Step_Method_for_Conditional_Probability
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.04%3A_Why_Tree_Diagrams_Work
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.05%3A_The_Law_of_Total_Probability
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.06%3A__Simpsons_Paradox
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.07%3A_Independence
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/17%3A_Conditional_Probability/17.08%3A_Mutual_Independence
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/18%3A_Random_Variables
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/18%3A_Random_Variables/18.01%3A_Random_Variable_Examples
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/18%3A_Random_Variables/18.02%3A_Independence
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/18%3A_Random_Variables/18.03%3A_Distribution_Functions
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/18%3A_Random_Variables/18.04%3A_Great_Expectations
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/18%3A_Random_Variables/18.05%3A__Linearity_of_Expectation
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.01%3A_Markovs_Theorem
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.02%3A_Chebyshevs_Theorem
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.03%3A_Properties_of_Variance
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.04%3A_Estimation_by_Random_Sampling
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.05%3A_Confidence_versus_Probability
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.06%3A_Sums_of_Random_Variables
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/19%3A_Deviation_from_the_Mean/19.07%3A_Really_Great_Expectations
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/20%3A_Random_Walks
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/20%3A_Random_Walks/20.01%3A_Gamblers_Ruin
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/20%3A_Random_Walks/20.02%3A_Random_Walks_on_Graphs


1 6/29/2021

CHAPTER OVERVIEW
16: EVENTS AND PROBABILITY SPACES

16.1: LET'S MAKE A DEAL
16.2: THE FOUR STEP METHOD
16.3: STRANGE DICE
16.4: THE BIRTHDAY PRINCIPLE
16.5: SET THEORY AND PROBABILITY

https://libretexts.org/
https://eng.libretexts.org/
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.01%3A_Let's_Make_a_Deal
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.02%3A_The_Four_Step_Method
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.03%3A_Strange_Dice
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.04%3A_The_Birthday_Principle
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.05%3A_Set_Theory_and_Probability


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 16.1.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48415

16.1: Let's Make a Deal
In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant responded to this letter:

The letter describes a situation like one faced by contestants in the 1970’s game show Let’s Make a Deal, hosted by Monty
Hall and Carol Merrill. Marilyn replied that the contestant should indeed switch. She explained that if the car was behind
either of the two unpicked doors—which is twice as likely as the the car being behind the picked door—the contestant wins by
switching. But she soon received a torrent of letters, many from mathematicians, telling her that she was wrong. The problem
became known as the Monty Hall Problem and it generated thousands of hours of heated debate.

This incident highlights a fact about probability: the subject uncovers lots of examples where ordinary intuition leads to
completely wrong conclusions. So until you’ve studied probabilities enough to have refined your intuition, a way to avoid
errors is to fall back on a rigorous, systematic approach such as the Four Step Method that we will describe shortly. First, let’s
make sure we really understand the setup for this problem. This is always a good thing to do when you are dealing with
probability.

Clarifying the Problem
Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some assumptions in order to have any hope of
modeling the game formally. For example, we will assume that:

1. The car is equally likely to be hidden behind each of the three doors.
2. The player is equally likely to pick each of the three doors, regardless of the car’s location.
3. After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of

staying with the original door or switching.
4. If the host has a choice of which door to open, then he is equally likely to select each of them.

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. There are other plausible interpretations that
lead to different answers. But let’s accept these assumptions for now and address the question, “What is the probability that a
player who switches wins the car?”

Suppose you’re on a game show, and you’re given the choice of three

doors. Behind one door is a car, behind the others, goats. You pick a

door, say number 1, and the host, who knows what’s behind the doors,

opens another door, say number 3, which has a goat. He says to you,

“Do you want to pick door number 2?” Is it to your advantage to

switch your choice of doors?

Craig. F. Whitaker

Columbia, MD
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16.2: The Four Step Method
Every probability problem involves some sort of randomized experiment, process, or game. And each such problem involves
two distinct challenges:

1. How do we model the situation mathematically?
2. How do we solve the resulting mathematical problem?

In this section, we introduce a four step approach to questions of the form, “What is the probability that. . . ?” In this approach,
we build a probabilistic model step by step, formalizing the original question in terms of that model. Remarkably, this
structured approach provides simple solutions to many famously confusing problems. For example, as you’ll see, the four step
method cuts through the confusion surrounding the Monty Hall problem like a Ginsu knife.

Step 1: Find the Sample Space
Our first objective is to identify all the possible outcomes of the experiment. A typical experiment involves several randomly-
determined quantities. For example, the Monty Hall game involves three such quantities:

1. The door concealing the car.
2. The door initially chosen by the player.
3. The door that the host opens to reveal a goat.

Every possible combination of these randomly-determined quantities is called an outcome. The set of all possible outcomes is
called the sample space for the experiment.

A tree diagram is a graphical tool that can help us work through the four step approach when the number of outcomes is not
too large or the problem is nicely structured. In particular, we can use a tree diagram to help understand the sample space of an
experiment. The first randomly-determined quantity in our experiment is the door concealing the prize. We represent this as a
tree with three branches, as shown in Figure 16.1. In this diagram, the doors are called A, B, and C instead of  and ,
because we’ll be adding a lot of other numbers to the picture later.

Figure 16.1 The first level in a tree diagram for the Monty Hall Problem. The branches correspond to the door behind which
the car is located.

For each possible location of the prize, the player could initially choose any of the three doors. We represent this in a second
layer added to the tree. Then a third layer represents the possibilities of the final step when the host opens a door to reveal a
goat, as shown in Figure 16.2

1, 2, 3

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48416?pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Mathematics_for_Computer_Science_(Lehman_Leighton_and_Meyer)/04%3A_Probability/16%3A_Events_and_Probability_Spaces/16.02%3A_The_Four_Step_Method


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 16.2.2 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48416

Figure 16.2 The full tree diagram for the Monty Hall Problem. The second level indicates the door initially chosen by the
player. The third level indicates the door revealed by Monty Hall.

Notice that the third layer reflects the fact that the host has either one choice or two, depending on the position of the car and
the door initially selected by the player. For example, if the prize is behind door A and the player picks door B, then the host
must open door C. However, if the prize is behind door A and the player picks door A, then the host could open either door B
or door C.

Now let’s relate this picture to the terms we introduced earlier: the leaves of the tree represent outcomes of the experiment, and
the set of all leaves represents the sample space. Thus, for this experiment, the sample space consists of 12 outcomes. For
reference, we’ve labeled each outcome in Figure 16.3 with a triple of doors indicating:

(door concealing prize, door initially chosen, door opened to reveal a goat).
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Figure 16.3 The tree diagram for the Monty Hall Problem with the outcomes labeled for each path from root to leaf. For
example, outcome  corresponds to the car being behind door , the player initially choosing door , and Monty
Hall revealing the goat behind door .

In these terms, the sample space is the set

The tree diagram has a broader interpretation as well: we can regard the whole experiment as following a path from the root to
a leaf, where the branch taken at each stage is “randomly” determined. Keep this interpretation in mind; we’ll use it again later.

Step 2: Define Events of Interest
Our objective is to answer questions of the form “What is the probability that . . . ?”, where, for example, the missing phrase
might be “the player wins by switching,” “the player initially picked the door concealing the prize,” or “the prize is behind
door C.”

A set of outcomes is called an event. Each of the preceding phrases characterizes an event. For example, the event [prize is
behind door ] refers to the set:

and the event [prize is behind the door first picked by the player] is:

Here we’re using square brackets around a property of outcomes as a notation for the event whose outcomes are the ones that
satisfy the property.

What we’re really after is the event [player wins by switching]:

The outcomes in this event are marked with checks in Figure 16.4.

(A,A,B) A A

B

S ={ }
(A,A,B), (A,A,C), (A,B,C), (A,C,B), (B,A,C), (B,B,A),

(B,B,C), (B,C,A), (C,A,B), (C,B,A), (C,C,A), (C,C,B)

C

{(C,A,B), (C,B,A), (C,C,A), (C,C,B)},

{(A,A,B), (A,A,C), (B,B,A), (B,B,C), (C,C,A), (C,C,B)}.

{(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}. (16.2.1)
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Figure 16.4 The tree diagram for the Monty Hall Problem, where the outcomes where the player wins by switching are
denoted with a check mark.

Notice that exactly half of the outcomes are checked, meaning that the player wins by switching in half of all outcomes. You
might be tempted to conclude that a player who switches wins with probability . This is wrong. The reason is that these
outcomes are not all equally likely, as we’ll see shortly.

Step 3: Determine Outcome Probabilities
So far we’ve enumerated all the possible outcomes of the experiment. Now we must start assessing the likelihood of those
outcomes. In particular, the goal of this step is to assign each outcome a probability, indicating the fraction of the time this
outcome is expected to occur. The sum of all the outcome probabilities must equal one, reflecting the fact that there always
must be an outcome.

Ultimately, outcome probabilities are determined by the phenomenon we’re modeling and thus are not quantities that we can
derive mathematically. However, mathematics can help us compute the probability of every outcome based on fewer and more
elementary modeling decisions. In particular, we’ll break the task of determining outcome probabilities into two stages.

Step 3a: Assign Edge Probabilities

First, we record a probability on each edge of the tree diagram. These edgeprobabilities are determined by the assumptions we
made at the outset: that the prize is equally likely to be behind each door, that the player is equally likely to pick each door, and
that the host is equally likely to reveal each goat, if he has a choice. Notice that when the host has no choice regarding which
door to open, the single branch is assigned probability 1. For example, see Figure 16.5.

1/2
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Figure 16.5 The tree diagram for the Monty Hall Problem where edge weights denote the probability of that branch being
taken given that we are at the parent of that branch. For example, if the car is behind door , then there is a 1/3 chance that the
player’s initial selection is door . The rightmost column shows the outcome probabilities for the Monty Hall Problem. Each
outcome probability is simply the product of the probabilities on the path from the root to the outcome leaf.

Step 3b: Compute Outcome Probabilities

Our next job is to convert edge probabilities into outcome probabilities. This is a purely mechanical process:

calculate the probability of an outcome by multiplying the edge-probabilities on the path from the root to that outcome.

For example, the probability of the topmost outcome in Figure 16.5, , is

We’ll examine the official justification for this rule in Section 17.4, but here’s an easy, intuitive justification: as the steps in an
experiment progress randomly along a path from the root of the tree to a leaf, the probabilities on the edges indicate how likely
the path is to proceed along each branch. For example, a path starting at the root in our example is equally likely to go down
each of the three top-level branches.

How likely is such a path to arrive at the topmost outcome, ? Well, there is a 1-in-3 chance that a path would follow
the -branch at the top level, a 1-in-3 chance it would continue along the -branch at the second level, and 1-in-2 chance it
would follow the -branch at the third level. Thus, there is half of a one third of a one third chance, of arriving at the 

 leaf. That is, the chance is —the same product (in reverse order) we arrived at in ( ).

We have illustrated all of the outcome probabilities in Figure 16.5.

Specifying the probability of each outcome amounts to defining a function that maps each outcome to a probability. This
function is usually called . In these terms, we’ve just determined that:

A

B

(A,A,B)

⋅ ⋅ = .
1

3

1

3

1

2

1

18
(16.2.2)

(A,A,B)

A A

B

(A,A,B) 1/3 ⋅ 1/3 ⋅ 1/2 = 1/18 16.2.2

Pr[−]

Pr[(A,A,B)]

Pr[(A,A,C)]

Pr[(A,B,C)]

= ,
1

18

= ,
1

18

= ,
1

9
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Step 4: Compute Event Probabilities
We now have a probability for each outcome, but we want to determine the probability of an event. The probability of an event

 is denoted by , and it is the sum of the probabilities of the outcomes in . For example, the probability of the
[switching wins] event ( ) is

It seems Marilyn’s answer is correct! A player who switches doors wins the car with probability . In contrast, a player who
stays with his or her original door wins with probability , since staying wins if and only if switching loses.

We’re done with the problem! We didn’t need any appeals to intuition or ingenious analogies. In fact, no mathematics more
difficult than adding and multiplying fractions was required. The only hard part was resisting the temptation to leap to an
“intuitively obvious” answer.

Alternative Interpretation of the Monty Hall Problem
Was Marilyn really right? Our analysis indicates that she was. But a more accurate conclusion is that her answer is correct
provided we accept her interpretation of the question. There is an equally plausible interpretation in which Marilyn’s answer is
wrong. Notice that Craig Whitaker’s original letter does not say that the host is required to reveal a goat and offer the player
the option to switch, merely that he did these things. In fact, on the Let’s Make a Deal show, Monty Hall sometimes simply
opened the door that the contestant picked initially. Therefore, if he wanted to, Monty could give the option of switching only
to contestants who picked the correct door initially. In this case, switching never works!

E Pr[E] E

16.2.1

Pr [switching wins]

= Pr[(A,B,C)] +Pr[(A,C,B)] +Pr[(B,A,C)] +Pr[(B,C,A)] +Pr[(C,A,B)] +Pr[(C,B,A)]

= + + + + +
1

9

1

9

1

9

1

9

1

9

1

9

= .
2

3

2/3

1/3
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16.3: Strange Dice
The four-step method is surprisingly powerful. Let’s get some more practice with it. Imagine, if you will, the following
scenario.

It’s a typical Saturday night. You’re at your favorite pub, contemplating the true meaning of infinite cardinalities, when a
burly-looking biker plops down on the stool next to you. Just as you are about to get your mind around , biker
dude slaps three strange-looking dice on the bar and challenges you to a $100 wager. His rules are simple. Each player selects
one die and rolls it once. The player with the lower value pays the other player $100.

Naturally, you are skeptical, especially after you see that these are not ordinary dice. Each die has the usual six sides, but
opposite sides have the same number on them, and the numbers on the dice are different, as shown in Figure 16.6.

Figure 16.6 The strange dice. The number of pips on each concealed face is the same as the number on the opposite face. For
example, when you roll die , the probabilities of getting a 2, 6, or 7 are each .

Biker dude notices your hesitation, so he sweetens his offer: he will pay you $105 if you roll the higher number, but you only
need pay him $100 if he rolls higher, and he will let you pick a die first, after which he will pick one of the other two. The
sweetened deal sounds persuasive since it gives you a chance to pick what you think is the best die, so you decide you will
play. But which of the dice should you choose? Die  is appealing because it has a 9, which is a sure winner if it comes up.
Then again, die  has two fairly large numbers, and die  has an 8 and no really small values.

In the end, you choose die  because it has a 9, and then biker dude selects die . Let’s see what the probability is that you
will win. (Of course, you probably should have done this before picking die  in the first place.) Not surprisingly, we will use
the four-step method to compute this probability.

Die A versus Die B
Step 1: Find the sample space.

The tree diagram for this scenario is shown in Figure 16.7. In particular, the sample space for this experiment are the nine pairs
of values that might be rolled with Die  and Die :

pow(pow(R))

A 1/3

B

A C

B A

B

A B
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Figure 16.7 The tree diagram for one roll of die  versus die . Die  wins with probability .

For this experiment, the sample space is a set of nine outcomes:

Step 2: Define events of interest.

We are interested in the event that the number on die  is greater than the number on die . This event is a set of five
outcomes:

These outcomes are marked  in the tree diagram in Figure 16.7.

Step 3: Determine outcome probabilities.

To find outcome probabilities, we first assign probabilities to edges in the tree diagram. Each number on each die comes up
with probability , regardless of the value of the other die. Therefore, we assign all edges probability . The probability of
an outcome is the product of the probabilities on the corresponding root-to-leaf path, which means that every outcome has
probability . These probabilities are recorded on the right side of the tree diagram in Figure 16.7.

Step 4: Compute event probabilities.

The probability of an event is the sum of the probabilities of the outcomes in that event. In this case, all the outcome
probabilities are the same, so we say that the sample space is uniform. Computing event probabilities for uniform sample
spaces is particularly easy since you just have to compute the number of outcomes in the event. In particular, for any event 
in a uniform sample space ,

In this case,  is the event that die  beats die , so , , and

This is bad news for you. Die  beats die  more than half the time and, not surprisingly, you just lost $100.

Biker dude consoles you on your “bad luck” and, given that he’s a sensitive guy beneath all that leather, he offers to go double
or nothing.  Given that your wallet only has $25 in it, this sounds like a good plan. Plus, you figure that choosing die  will
give you the advantage.

So you choose , and then biker dude chooses . Can you guess who is more likely to win? (Hint: it is generally not a good
idea to gamble with someone you don’t know in a bar, especially when you are gambling with strange dice.)

A B A 5/9

S = {(2, 1), (2, 5), (2, 9), (6, 1), (6, 5), (6, 9), (7, 1), (7, 5), (7, 9)}.

A B

{(2, 1), (6, 1), (6, 5), (7, 1), (7, 5)}.

A

1/3 1/3

1/9

E

S

Pr[E] = .
|E|

|S|
(16.3.1)

E A B |E| = 5 |S| = 9

Pr[E] = 5/9.

A B

1 A

A C

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48417?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 16.3.3 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48417

Die  versus Die 
We can construct the tree diagram and outcome probabilities as before. The result is shown in Figure 16.8, and there is bad
news again. Die C will beat die A with probability , and you lose once again.

Figure 16.8 The tree diagram for one roll of die  versus die . Die  wins with probability .

You now owe the biker dude $200 and he asks for his money. You reply that you need to go to the bathroom.

Die  versus Die 
Being a sensitive guy, biker dude nods understandingly and offers yet another wager. This time, he’ll let you have die . He’ll
even let you raise the wager to $200 so you can win your money back.

This is too good a deal to pass up. You know that die  is likely to beat die  and that die  is likely to beat die , and so die 
 is surely the best. Whether biker dude picks  or , the odds would be in your favor this time. Biker dude must really be a

nice guy.

So you pick , and then biker dude picks . Wait—how come you haven’t caught on yet and worked out the tree diagram
before you took this bet? If you do it now, you’ll see by the same reasoning as before that  beats  with probability . But
surely there is a mistake! How is it possible that

The problem is not with the math, but with your intuition. Since  will beat  more often than not, and  will beat  more
often than not, it seems like  ought to beat  more often than not, that is, the “beats more often” relation ought to be
transitive. But this intuitive idea is simply false: whatever die you pick, biker dude can pick one of the others and be likely to
win. So picking first is actually a disadvantage, and as a result, you now owe biker dude $400.

Just when you think matters can’t get worse, biker dude offers you one final wager for $1,000. This time, instead of rolling
each die once, you will each roll your die twice, and your score is the sum of your rolls, and he will even let you pick your die
second, that is, after he picks his. Biker dude chooses die . Now you know that die  will beat die  with probability  on
one roll, so, jumping at this chance to get ahead, you agree to play, and you pick die . After all, you figure that since a roll of
die  beats a roll of die  more often that not, two rolls of die  are even more likely to beat two rolls of die , right?

Wrong! (Did we mention that playing strange gambling games with strangers in a bar is a bad idea?)

Rolling Twice
If each player rolls twice, the tree diagram will have four levels and  outcomes. This means that it will take a while to
write down the entire tree diagram. But it’s easy to write down the first two levels as in Figure 16.9(a) and then notice that the
remaining two levels consist of nine identical copies of the tree in Figure 16.9(b).

A C

5/9

C A C 5/9

B C

C

C A A B

C A B

C B

B C 5/9

C  beats A with probability 5/9,

A beats B with probability 5/9,

B beats C  with probability 5/9?

A B B C

A C

B A B 5/9

A

A B A B

= 8134
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Figure 16.9 Parts of the tree diagram for die  versus die  where each die is rolled twice. The first two levels are shown in
(a). The last two levels consist of nine copies of the tree in (b).

The probability of each outcome is  and so, once again, we have a uniform probability space. By equation (
), this means that the probability that  wins is the number of outcomes where  beats  divided by 81.

To compute the number of outcomes where  beats , we observe that the two rolls of die  result in nine equally likely
outcomes in a sample space  in which the two-roll sums take the values

Likewise, two rolls of die  result in nine equally likely outcomes in a sample space  in which the two-roll sums take the
values

We can treat the outcome of rolling both dice twice as a pair , where  wins iff the sum of the two -rolls of
outcome  is larger the sum of the two -rolls of outcome . If the -sum is 4, there is only one  with a smaller -sum,
namely, when the -sum is 2. If the -sum is 8, there are three ’s with a smaller -sum, namely, when the -sum is 2 or 6.
Continuing the count in this way, the number of pairs  for which the -sum is larger than the -sum is

A similar count shows that there are 42 pairs for which -sum is larger than the -sum, and there are two pairs where the
sums are equal, namely, when they both equal 14. This means that  loses to  with probability  and ties with
probability . Die  wins with probability only .

How can it be that  is more likely than  to win with one roll, but  is more likely to win with two rolls? Well, why not?
The only reason we’d think otherwise is our unreliable, untrained intuition. (Even the authors were surprised when they first
learned about this, but at least they didn’t lose $1400 to biker dude.) In fact, the die strength reverses no matter which two die
we picked. So for one roll,

but for two rolls,

where we have used the symbols  and  to denote which die is more likely to result in the larger value.

The weird behavior of the three strange dice above generalizes in a remarkable way: there are arbitrarily large sets of dice
which will beat each other in any desired pattern according to how many times the dice are rolled.

TBA - Reference Ron Graham paper.

B A

(1/3 = 1/81)4

16.3.1 A A B

A B A
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(4, 8, 8, 9, 9, 12, 13, 13, 14).
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(2, 6, 6, 10, 10, 10, 14, 14, 18).
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x B y A y B

B A y B B

(x, y) A B

1 +3 +3 +3 +3 +6 +6 +6 +6 = 37.

B A

A B 42/81 > 1/2

2/81 A 37/81

A B B

A ≻ B ≻ C ≻ A, (16.3.2)

A ≺ B ≺ C ≺ A, (16.3.3)

≻ ≺

2

2 

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48417?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 16.4.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48418

16.4: The Birthday Principle
There are 95 students in a class. What is the probability that some birthday is shared by two people? Comparing 95 students to
the 365 possible birthdays, you might guess the probability lies somewhere around —but you’d be wrong: the probability
that there will be two people in the class with matching birthdays is actually more than 0.9999.

To work this out, we’ll assume that the probability that a randomly chosen student has a given birthday is . We’ll also
assume that a class is composed of n randomly and independently selected students. Of course  and  in this
case, but we’re interested in working things out in general. These randomness assumptions are not really true, since more
babies are born at certain times of year, and students’ class selections are typically not independent of each other, but
simplifying in this way gives us a start on analyzing the problem. More importantly, these assumptions are justifiable in
important computer science applications of birthday matching. For example, birthday matching is a good model for collisions
between items randomly inserted into a hash table. So we won’t worry about things like spring procreation preferences that
make January birthdays more common, or about twins’ preferences to take classes together (or not).

Exact Formula for Match Probability
There are  sequences of  birthdays, and under our assumptions, these are equally likely. There are 

 length  sequences of distinct birthdays. That means the probability that everyone has a
different birthday is:

For  and , the value of ( ) is less than , which means the probability of having some pair of
matching birthdays actually is more than . So it would be pretty astonishing if there were no pair of
students in the class with matching birthdays.

For , the probability of no match turns out to be asymptotically equal to the upper bound ( ). For  in
particular, the probability of no match is asymptotically equal to . This leads to a rule of thumb which is useful in many
contexts in computer science:

The Birthday Principle

If there are  days in a year and  people in a room, then the probability that two share a birthday is about 
.

For example, the Birthday Principle says that if you have  people in a room, then the probability that two share
a birthday is about 0.632. The actual probability is about 0.626, so the approximation is quite good.

Among other applications, it implies that to use a hash function that maps  items into a hash table of size , you can expect
many collisions if  is more than a small fraction of . The Birthday Principle also famously comes into play as the basis of
“birthday attacks” that crack certain cryptographic systems.

The fact that  for all  follows by truncating the Taylor series . The
approximation  is pretty accurate when  is small.
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16.5: Set Theory and Probability
Let’s abstract what we’ve just done into a general mathematical definition of sample spaces and probability.

Probability Spaces

A countable sample space  is a nonempty countable set.  An element  is called an outcome. A subset of  is
called an event.

A probability function on a sample space  is a total function  such that

 for all , and
.

A sample space together with a probability function is called a probability space. For any event , the probability of  is
defined to be the sum of the probabilities of the outcomes in :

In the previous examples there were only finitely many possible outcomes, but we’ll quickly come to examples that have a
countably infinite number of outcomes.

The study of probability is closely tied to set theory because any set can be a sample space and any subset can be an event.
General probability theory deals with uncountable sets like the set of real numbers, but we won’t need these, and sticking to
countable sets lets us define the probability of events using sums instead of integrals. It also lets us avoid some distracting
technical problems in set theory like the Banach-Tarski “paradox” mentioned in Chapter 7.

Probability Rules from Set Theory
Most of the rules and identities that we have developed for finite sets extend very naturally to probability.

An immediate consequence of the definition of event probability is that for disjoint events  and ,

This generalizes to a countable number of events:

Rule 16.5.3 (Sum Rule). If  are pairwise disjoint events, then

The Sum Rule lets us analyze a complicated event by breaking it down into simpler cases. For example, if the probability that
a randomly chosen MIT student is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then the
probability that a random MIT student is native to one of these three countries is 70%.

Another consequence of the Sum Rule is that , which follows because  and  is the union of the
disjoint sets  and . This equation often comes up in the form:

Sometimes the easiest way to compute the probability of an event is to compute the probability of its complement and then
apply this formula.

Definition 16.5.1

S 4 ω ∈ S S

Definition 16.5.2

S Pr : S →R

Pr[ω] ≥ 0 ω ∈ S

Pr[ω] = 1∑ω∈S

E ⊆ S E

E

Pr[E] ::= Pr[ω].∑
ω∈E

E F

Pr[E ∪ F ] = Pr[E] +Pr[F ].

, , … , , …E0 E1 En

Pr[ ] = Pr[ ].⋃
n∈N

En ∑
n∈N

En

Pr[A] +Pr[ ] = 1A
¯ ¯¯̄

Pr[S] = 1 S

A A
¯ ¯¯̄

Pr[ ] = 1 −Pr[A]. (Complement Rule)A
¯ ¯¯̄
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Some further basic facts about probability parallel facts about cardinalities of finite sets. In particular:

The Difference Rule follows from the Sum Rule because  is the union of the disjoint sets  and . Inclusion-
Exclusion then follows from the Sum and Difference Rules, because  is the union of the disjoint sets  and .
Boole’s inequality is an immediate consequence of Inclusion-Exclusion since probabilities are nonnegative. Monotonicity
follows from the definition of event probability and the fact that outcome probabilities are nonnegative.

The two-event Inclusion-Exclusion equation above generalizes to any finite set of events in the same way as the corresponding
Inclusion-Exclusion rule for  sets. Boole’s inequality also generalizes to both finite and countably infinite sets of events:

Rule 16.5.4 (Union Bound).

The Union Bound is useful in many calculations. For example, suppose that  is the event that the -th critical component
among  components in a spacecraft fails. Then  is the event that some critical component fails. If 
is small, then the Union Bound can provide a reassuringly small upper bound on this overall probability of critical failure.

Uniform Probability Spaces

A finite probability space, , is said to be uniform if  is the same for every outcome .

As we saw in the strange dice problem, uniform sample spaces are particularly easy to work with. That’s because for any event
,

This means that once we know the cardinality of  and , we can immediately obtain . That’s great news because we
developed lots of tools for computing the cardinality of a set in Part III.

For example, suppose that you select five cards at random from a standard deck of 52 cards. What is the probability of having
a full house? Normally, this question would take some effort to answer. But from the analysis in Section 14.7.2, we know that

and

where  is the event that we have a full house. Since every five-card hand is equally likely, we can apply equation ( ) to
find that

Infinite Probability Spaces

Pr[B −A]

Pr[A ∪ B]

Pr[A ∪ B]

If A ⊆ B,

= Pr[B] −Pr[A ∩ B],

= Pr[A] +Pr[B] −Pr[A ∩ B],

≤ Pr[A] +Pr[B],

then Pr[A] ≤ Pr[B].

(Difference Rule)

(Inclusion-Exclusion)

(Boole's Inequality)

(Monotonicity Rule)

B B −A A ∩ B

A ∪ B A B −A

n

Pr[ ∪ ⋯ ∪ ∪ ⋯] ≤ Pr[ ] +⋯ +Pr[ ] +⋯ .E1 En E1 En (16.5.1)

Ei i

n ∪ ⋯ ∪E1 En Pr[ ]∑n
i=1 Ei

Definition 16.5.5

S Pr[ω] ω ∈ S

E ⊆ S

Pr[E] = .
|E|

|S|
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Infinite probability spaces are fairly common. For example, two players take turns flipping a fair coin. Whoever flips heads
first is declared the winner. What is the probability that the first player wins? A tree diagram for this problem is shown in
Figure 16.10.

Figure 16.10 The tree diagram for the game where players take turns flipping a fair coin. The first player to flip heads wins.

The event that the first player wins contains an infinite number of outcomes, but we can still sum their probabilities:

Similarly, we can compute the probability that the second player wins:

In this case, the sample space is the infinite set

where  stands for a length  string of ’s. The probability function is

To verify that this is a probability space, we just have to check that all the probabilities are nonnegative and that they sum to 1.
The given probabilities are all nonnegative, and applying the formula for the sum of a geometric series, we find that

Notice that this model does not have an outcome corresponding to the possibility that both players keep flipping tails forever.
(In the diagram, flipping forever corresponds to following the infinite path in the tree without ever reaching a leaf/outcome.) If
leaving this possibility out of the model bothers you, you’re welcome to fix it by adding another outcome, , to indicate
that that’s what happened. Of course since the probabilities of the other outcomes already sum to 1, you have to define the
probability of  to be 0. Now outcomes with probability zero will have no impact on our calculations, so there’s no
harm in adding it in if it makes you happier. On the other hand, in countable probability spaces it isn’t necessary to have
outcomes with probability zero, and we will generally ignore them.

Yes, sample spaces can be infinite. If you did not read Chapter 7, don’t worry—countable just means that you can list the
elements of the sample space as 
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17.1: Monty Hall Confusion
Remember how we said that the Monty Hall problem confused even professional mathematicians? Based on the work we did
with tree diagrams, this may seem surprising—the conclusion we reached followed routinely and logically. How could this
problem be so confusing to so many people?

Well, one flawed argument goes as follows: let’s say the contestant picks door A. And suppose that Carol, Monty’s assistant,
opens door B and shows us a goat. Let’s use the tree diagram 16.3 from Chapter 16 to capture this situation. There are exactly
three outcomes where contestant chooses door , and there is a goat behind door :

These outcomes have respective probabilities 1/18, 1/18, 1/9.

Among those outcomes, switching doors wins only on the last outcome, . The other two outcomes together have the
same 1/9 probability as the last one So in this situation, the probability that we win by switching is the same as the probability
that we lose. In other words, in this situation, switching isn’t any better than sticking!

Something has gone wrong here, since we know that the actual probability of winning by switching in 2/3. The mistaken
conclusion that sticking or switching are equally good strategies comes from a common blunder in reasoning about how
probabilities change given some information about what happened. We have asked for the probability that one event, [win by
switching], happens, given that another event, [pick A \text{AND} goat at B], happens. We use the notation

for this probability which, by the reasoning above, equals 1/2.

Behind the Curtain
A “given” condition is essentially an instruction to focus on only some of the possible outcomes. Formally, we’re defining a
new sample space consisting only of some of the outcomes. In this particular example, we’re given that the player chooses
door A and that there is a goat behind B. Our new sample space therefore consists solely of the three outcomes listed in (

). In the opening of Section 17.1, we calculated the conditional probability of winning by switching given that one of
these outcome happened, by weighing the 1/9 probability of the win-by-switching outcome, , against the 

 probability of the three outcomes in the new sample space.

There is nothing wrong with this calculation. So how come it leads to an incorrect conclusion about whether to stick or switch?
The answer is that this was the wrong thing to calculate, as we’ll explain in the next section.

A B

(A,A,B), (A,A,C), (C,A,B). (17.1.1)

(C,A,B)

Pr[[[win by switching] ∣ [[pick A AND goat at B]]

17.1.1

(C,A,B)

1/18 +1/18 +1/9

Pr[[[win by switching] ∣ [[pick A AND goat at B]] = Pr[(C,A,B) ∣ {(C,A,B), (A,A,B), (A,A,C)}]

+ = = .
Pr[(C,A,B)]

Pr[{(C,A,B), (A,A,B), (A,A,C)}]

1/9

1/18 +1/18 +1/9

1
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17.2: Definition and Notation
The expression  denotes the probability of event , given that event  happens. In the example above, event  is
the event of winning on a switch, and event  is the event that a goat is behind door B and the contestant chose door A. We
calculated  using a formula which serves as the definition of conditional probability:

Let  and  be events where  has nonzero probability. Then

The conditional probability  is undefined when the probability of event  is zero. To avoid cluttering up statements
with uninteresting hypotheses that conditioning events like  have nonzero probability, we will make an implicit assumption
from now on that all such events have nonzero probability.

Pure probability is often counterintuitive, but conditional probability can be even worse. Conditioning can subtly alter
probabilities and produce unexpected results in randomized algorithms and computer systems as well as in betting games. But
Definition 17.2.1 is very simple and causes no trouble—provided it is properly applied.

What went wrong
So if everything in the opening Section 17.1 is mathematically sound, why does it seem to contradict the results that we
established in Chapter 16? The problem is a common one: we chose the wrong condition. In our initial description of the
scenario, we learned the location of the goat when Carol opened door B. But when we defined our condition as “the contestant
opens A and the goat is behind B,” we included the outcome  in which Carol opens door C! The correct conditional
probability should have been “what are the odds of winning by switching given the contestant chooses door A and Carol opens
door B.” By choosing a condition that did not reflect everything known. we inadvertently included an extraneous outcome in
our calculation. With the correct conditioning, we still win by switching 1/9 of the time, but the smaller set of known outcomes
has smaller total probability:

The conditional probability would then be:

which is exactly what we already deduced from the tree diagram 16.2 in the previous chapter.

The O. J. Simpson Trial

In an opinion article in the New York Times, Steven Strogatz points to the O. J. Simpson trial as an example of poor choice of
conditions. O. J. Simpson was a retired football player who was accused, and later acquitted, of the murder of his wife, Nicole
Brown Simpson. The trial was widely publicized and called the “trial of the century.” Racial tensions, allegations of police
misconduct, and new-at-the-time DNA evidence captured the public’s attention. But Strogatz, citing mathematician and author
I.J. Good, focuses on a less well-known aspect of the case: whether O. J.’s history of abuse towards his wife was admissible
into evidence.

The prosecution argued that abuse is often a precursor to murder, pointing to statistics indicating that an abuser was as much as
ten times more likely to commit murder than was a random indidual. The defense, however, countered with statistics
indicating that the odds of an abusive husband murdering his wife were “infinitesimal,” roughly 1 in 2500. Based on those
numbers, the actual relevance of a history of abuse to a murder case would appear limited at best. According to the defense,
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introducing that history would make the jury hate Simpson but would lack any probitive value. Its discussion should be barred
as prejudicial.

In other words, both the defense and the prosecution were arguing conditional probability, specifically the likelihood that a
woman will be murdered by her husband, given that her husband abuses her. But both defense and prosecution omitted a vital
piece of data from their calculations: Nicole Brown Simpson was murdered. Strogatz points out that based on the defense’s
numbers and the crime statistics of the time, the probability that a woman was murdered by her abuser, given that she was
abused and murdered, is around 80%.

Strogatz’s article goes into more detail about the calculations behind that 80% figure. But the real point we wanted to make is
that conditional probability is used and misused all the time, and even experts under public scrutiny make mistakes.

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48423?pdf


Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer 6/29/2021 17.3.1 CC-BY-NC-SA https://eng.libretexts.org/@go/page/48424

17.3: The Four-Step Method for Conditional Probability
In a best-of-three tournament, the local C-league hockey team wins the first game with probability . In subsequent games,
their probability of winning is determined by the outcome of the previous game. If the local team won the previous game, then
they are invigorated by victory and win the current game with probability . If they lost the previous game, then they are
demoralized by defeat and win the current game with probability only . What is the probability that the local team wins the
tournament, given that they win the first game?

This is a question about a conditional probability. Let  be the event that the local team wins the tournament, and let  be the
event that they win the first game. Our goal is then to determine the conditional probability .

We can tackle conditional probability questions just like ordinary probability problems: using a tree diagram and the four step
method. A complete tree diagram is shown in Figure 17.1.

Figure 17.1 The tree diagram for computing the probability that the local team wins two out of three games given that they
won the first game.

Step 1: Find the Sample Space

Each internal vertex in the tree diagram has two children, one corresponding to a win for the local team (labeled ) and one
corresponding to a loss (labeled ). The complete sample space is:

Step 2: Define Events of Interest

The event that the local team wins the whole tournament is:

And the event that the local team wins the first game is:

The outcomes in these events are indicated with check marks in the tree diagram in Figure 17.1.

Step 3: Determine Outcome Probabilities

Next, we must assign a probability to each outcome. We begin by labeling edges as specified in the problem statement.
Specifically, the local team has a  chance of winning the first game, so the two edges leaving the root are each assigned
probability . Other edges are labeled  or  based on the outcome of the preceding game. We then find the probability
of each outcome by multiplying all probabilities along the corresponding root-to-leaf path. For example, the probability of
outcome  is:

Step 4: Compute Event Probabilities
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We can now compute the probability that the local team wins the tournament, given that they win the first game:

We’re done! If the local team wins the first game, then they win the whole tournament with probability .

Pr[A ∣ B] =
Pr[A∩B]

Pr[B]

=
Pr[{WW ,WLW}]

Pr[{WW ,WLW ,WLL}]

=
1/3 +1/18

1/3 +1/18 +1/9

= .
7

9

7/9
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17.4: Why Tree Diagrams Work
We’ve now settled into a routine of solving probability problems using tree diagrams. But we’ve left a big question
unaddressed: mathematical justification behind those funny little pictures. Why do they work?

The answer involves conditional probabilities. In fact, the probabilities that we’ve been recording on the edges of tree
diagrams are conditional probabilities. For example, consider the uppermost path in the tree diagram for the hockey team
problem, which corresponds to the outcome . The first edge is labeled , which is the probability that the local team
wins the first game. The second edge is labeled , which is the probability that the local team wins the second game, given
that they won the first—a conditional probability! More generally, on each edge of a tree diagram, we record the probability
that the experiment proceeds along that path, given that it reaches the parent vertex.

So we’ve been using conditional probabilities all along. For example, we concluded that:

Why is this correct?

The answer goes back to Definition 17.2.1 of conditional probability which could be written in a form called the Product Rule
for conditional probabilities:

Rule (Conditional Probability Product Rule: 2 Events).

Multiplying edge probabilities in a tree diagram amounts to evaluating the right side of this equation. For example:

So the Conditional Probability Product Rule is the formal justification for multiplying edge probabilities to get outcome
probabilities.

To justify multiplying edge probabilities along a path of length three, we need a rule for three events:

An -event version of the Rule is given in Problem 17.1, but its form should be clear from the three event version.

Probability of Size-  Subsets
As a simple application of the product rule for conditional probabilities, we can use the rule to calculate the number of size-
subsets of the integers . Of course we already know this number is , but now the rule will give us a new derivation of
the formula for .

Let’s pick some size-  subset, , as a target. Suppose we choose a size-  subset at random, with all subsets of 
equally likely to be chosen, and let  be the probability that our randomly chosen equals this target. That is, the probability of
picking  is , and since all sets are equally likely to be chosen, the number of size-  subsets equals .

So what’s ? Well, the probability that the smallest number in the random set is one of the  numbers in  is . Then, given
that the smallest number in the random set is in , the probability that the second smallest number in the random set is one of
the remaining  elements in  is . So by the product rule, the probability that the two smallest numbers in
the random set are both in  is

Next, given that the two smallest numbers in the random set are in , the probability that the third smallest number is one of
the  remaining elements in  is . So by the product rule, the probability that the three smallest numbers
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in the random set are all in  is

Continuing in this way, it follows that the probability that all  elements in the randomly chosen set are in , that is, the
probabilty that the randomly chosen set equals the target, is

So we have again shown the number of size-  subsets of , namely , is

Medical Testing
Breast cancer is a deadly disease that claims thousands of lives every year. Early detection and accurate diagnosis are high
priorities, and routine mammograms are one of the first lines of defense. They’re not very accurate as far as medical tests go,
but they are correct between 90% and 95% of the time, which seems pretty good for a relatively inexpensive non-invasive
test.  However, mammogram results are also an example of conditional probabilities having counterintuitive consequences. If
the test was positive for breast cancer in you or a loved one, and the test is better than 90% accurate, you’d naturally expect
that to mean there is better than 90% chance that the disease was present. But a mathematical analysis belies that gut instinct.
Let’s start by precisely defining how accurate a mammogram is:

1. If you have the condition, there is a 10% chance that the test will say you do not have it. This is called a “false negative.”
2. If you do not have the condition, there is a 5% chance that the test will say you do. This is a “false positive.”

Four Steps Again
Now suppose that we are testing middle-aged women with no family history of cancer. Among this cohort, incidence of breast
cancer rounds up to about 1%.

Step 1: Find the Sample Space

The sample space is found with the tree diagram in Figure 17.2.

Figure 17.2 The tree diagram for a breast cancer test.

Step 2: Define Events of Interest
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Let  be the event that the person has breast cancer. Let  be the event that the test was positive. The outcomes in each event
are marked in the tree diagram. We want to find , the probability that a person has breast cancer, given that the test
was positive.

Step 3: Find Outcome Probabilities

First, we assign probabilities to edges. These probabilities are drawn directly from the problem statement. By the Product
Rule, the probability of an outcome is the product of the probabilities on the corresponding root-to-leaf path. All probabilities
are shown in Figure 17.2.

Step 4: Compute Event Probabilities

From Definition 17.2.1, we have

So, if the test is positive, then there is an 84.6% chance that the result is incorrect, even though the test is nearly 95% accurate!
So this seemingly pretty accurate test doesn’t tell us much. To see why percent accuracy is no guarantee of value, notice that
there is a simple way to make a test that is 99% accurate: always return a negative result! This test gives the right answer for
all healthy people and the wrong answer only for the 1% that actually have cancer. This 99% accurate test tells us nothing; the
“less accurate” mammogram is still a lot more useful.

Natural Frequencies
That there is only about a 15% chance that the patient actually has the condition when the test say so may seem surprising at
first, but it makes sense with a little thought. There are two ways the patient could test positive: first, the patient could have the
condition and the test could be correct; second, the patient could be healthy and the test incorrect. But almost everyone is
healthy! The number of healthy individuals is so large that even the mere 5% with false positive results overwhelm the number
of genuinely positive results from the truly ill.

Thinking like this in terms of these “natural frequencies” can be a useful tool for interpreting some of the strange seeming
results coming from those formulas. For example, let’s take a closer look at the mammogram example.

Imagine 10,000 women in our demographic. Based on the frequency of the disease, we’d expect 100 of them to have breast
cancer. Of those, 90 would have a positve result. The remaining 9,900 woman are healthy, but 5% of them—500, give or take
—will show a false positive on the mammogram. That gives us 90 real positives out of a little fewer than 600 positives. An
85% error rate isn’t so surprising after all.

Posteriori Probabilities
If you think about it much, the medical testing problem we just considered could start to trouble you. You may wonder if a
statement like “If someone tested positive, then that person has the condition with probability 18%” makes sense, since a given
person being tested either has the disease or they don’t.

One way to understand such a statement is that it just means that 15% of the people who test positive will actually have the
condition. Any particular person has it or they don’t, but a randomly selected person among those who test positive will have
the condition with probability 15%.

But what does this 15% probability tell you if you personally got a positive result? Should you be relieved that there is less
than one chance in five that you have the disease? Should you worry that there is nearly one chance in five that you do have
the disease? Should you start treatment just in case? Should you get more tests?

These are crucial practical questions, but it is important to understand that they are not mathematical questions. Rather, these
are questions about statistical judgements and the philosophical meaning of probability. We’ll say a bit more about this after
looking at one more example of after-the-fact probabilities.

The Hockey Team in Reverse

Suppose that we turn the hockey question around: what is the probability that the local C-league hockey team won their first
game, given that they won the series?

A B

Pr[A ∣ B]

Pr[A ∣ B] = = ≈ 15.4%
Pr[A ∩ B]
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As we discussed earlier, some people find this question absurd. If the team has already won the tournament, then the first game
is long since over. Who won the first game is a question of fact, not of probability. However, our mathematical theory of
probability contains no notion of one event preceding another. There is no notion of time at all. Therefore, from a
mathematical perspective, this is a perfectly valid question. And this is also a meaningful question from a practical
perspective. Suppose that you’re told that the local team won the series, but not told the results of individual games. Then,
from your perspective, it makes perfect sense to wonder how likely it is that local team won the first game.

A conditional probability  is called a posteriori if event  precedes event  in time. Here are some other examples
of a posteriori probabilities:

The probability it was cloudy this morning, given that it rained in the afternoon.
The probability that I was initially dealt two queens in Texas No Limit Hold ’Em poker, given that I eventually got four-of-
a-kind.

from ordinary probabilities; the distinction comes from our view of causality, which is a philosophical question rather than a
mathematical one.

Let’s return to the original problem. The probability that the local team won their first game, given that they won the series is 
. We can compute this using the definition of conditional probability and the tree diagram in Figure 17.1:

In general, such pairs of probabilities are related by Bayes’ Rule:

(Bayes’ Rule).

Proof

We have

definition of conditional probability. Dividing by  gives ( ). 

Philosphy of Probability
Let’s try to assign a probability to the event

It’s not obvious how to check whether such a large number is prime, so you might try an estimation based on the density of
primes. The Prime Number Theorem implies that only about 1 in 5 million numbers in this range are prime, so you might say
that the probability is about . On the other hand, given that we chose this example to make some philosophical point,
you might guess that we probably purposely chose an obscure looking prime number, and you might be willing to make an
even money bet that the number is prime. In other words, you might think the probability is . Finally, we can take the
position that assigning a probability to this statement is nonsense because there is no randomness involved; the number is
either prime or it isn’t. This is the view we take in this text.

An alternate view is the Bayesian approach, in which a probability is interpreted as a degree of belief in a proposition. A
Bayesian would agree that the number above is either prime or composite, but they would be perfectly willing to assign a
probability to each possibility. The Bayesian approach is very broad in its willingness to assign probabilities to any event, but
the problem is that there is no single “right” probability for an event, since the probability depends on one’s initial beliefs. On
the other hand, if you have confidence in some set of initial beliefs, then Bayesianism provides a convincing framework for
updating your beliefs as further information emerges.
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As an aside, it is not clear whether Bayes himself was Bayesian in this sense. However, a Bayesian would be willing to talk
about the probability that Bayes was Bayesian.

Another school of thought says that probabilities can only be meaningfully applied to repeatable processes like rolling dice or
flipping coins. In this frequentist view, the probability of an event represents the fraction of trials in which the event occurred.
So we can make sense of the a posteriori probabilities of the Cleague hockey example of Section 17.4.5 by imagining that
many hockey series were played, and the probability that the local team won their first game, given that they won the series, is
simply the fraction of series where they won the first game among all the series they won.

Getting back to prime numbers, we mentioned in Section 8.5.1 that there is a probabilistic primality test. If a number  is
composite, there is at least a  chance that the test will discover this. In the remaining  of the time, the test is
inconclusive. But as long as the result is inconclusive, the test can be run independently again and again up to, say, 1000 times.
So if  actually is composite, then the probability that 1000 repetitions of the probabilistic test do not discover this is at most:

If the test remained inconclusive after 1000 repetitions, it is still logically possible that  is composite, but betting that  is
prime would be the best bet you’ll ever get to make! If you’re comfortable using probability to describe your personal belief
about primality after such an experiment, you are being a Bayesian. A frequentist would not assign a probability to ’s
primality, but they would also be happy to bet on primality with tremendous confidence. We’ll examine this issue again when
we discuss polling and confidence levels in Section 19.5.

Despite the philosophical divide, the real world conclusions Bayesians and Frequentists reach from probabilities are pretty
much the same, and even where their interpretations differ, they use the same theory of probability.

The statistics in this example are roughly based on actual medical data, but have been rounded or simplified for illustrative
purposes.
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17.5: The Law of Total Probability
Breaking a probability calculation into cases simplifies many problems. The idea is to calculate the probability of an event 
by splitting into two cases based on whether or not another event E occurs. That is, calculate the probability of  and 

. By the Sum Rule, the sum of these probabilities equals . Expressing the intersection probabilities as conditional
probabilities yields:

Rule 17.5.1 (Law of Total Probability: single event).

For example, suppose we conduct the following experiment. First, we flip a fair coin. If heads comes up, then we roll one die
and take the result. If tails comes up, then we roll two dice and take the sum of the two results. What is the probability that this
process yields a 2? Let  be the event that the coin comes up heads, and let  be the event that we get a 2 overall. Assuming
that the coin is fair,  There are now two cases. If we flip heads, then we roll a 2 on a single die with
probability . On the other hand, if we flip tails, then we get a sum of 2 on two dice with probability 

. Therefore, the probability that the whole process yields a 2 is

This rule extends to any set of disjoint events that make up the entire sample space. For example,

Rule (Law of Total Probability: 3-events). If , and  are disjoint and , then

This in turn leads to a three-event version of Bayes’ Rule in which the probability of event  given  is calculated from the
“inverse” conditional probabilities of  given  and :

Rule (Bayes’ Rule: 3-events).

The generalization of these rules to  disjoint events is a routine exercise (Problems 17.3 and 17.4).

Conditioning on a Single Event
The probability rules that we derived in Section 16.5.2 extend to probabilities conditioned on the same event. For example, the
Inclusion-Exclusion formula for two sets holds when all probabilities are conditioned on an event :

This is easy to verify by plugging in the Definition 17.2.1 of conditional probability.

It is important not to mix up events before and after the conditioning bar. For example, the following is not a valid identity:

False Claim.

A simple counter-example is to let  and  be events over a uniform space with most of their outcomes in , but not
overlapping. This ensures that  and  are both close to 1. For example,

so
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E1 A

A , ,E1 E2 E3

Pr( ∣ A) = .E1

Pr[A ∣ ] ⋅ Pr[ ]E1 E1

Pr[A ∣ ] ⋅ Pr[ ] +Pr[A ∣ ] ⋅ Pr[ ] +Pr[A ∣ ] ⋅ Pr[ ]E1 E1 E2 E2 E3 E3

n

C

Pr[A ∪ B ∣ C] = Pr[A ∣ C] +Pr[B ∣ C] −Pr[A ∩ B ∣ C].

2

Pr[A ∣ B ∪ C] = Pr[A ∣ B] +Pr[A ∣ C] −Pr[A ∣ B ∩ C]. (17.5.1)

B C A

Pr[A ∣ B] Pr[A ∣ C]

B

C

A

::= [0..9],

::= [10..18] ∪ {0},

::= [1..18],
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Also, since 0 is the only outcome in  and , we have

So the right hand side of ( ) is 1.8, while the left hand side is a probability which can be at most 1—actually, it is .

Problem 17.14 explains why this and similar conditional identities follow on general principles from the corresponding
unconditional identities.

Pr[A ∣ B] = = Pr[A ∣ C].
9

10

B ∩ C 0 ∉ A

Pr[A ∣ B ∩ C] = 0

17.5.1 18/19

2
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17.6: Simpson’s Paradox
In 1973, a famous university was investigated for gender discrimination[5]. The investigation was prompted by evidence that,
at first glance, appeared definitive: in 1973, 44% of male applicants to the school’s graduate programs were accepted, but only
35% of female applicants were admitted.

However, this data turned out to be completely misleading. Analysis of the individual departments, showed not only that few
showed significant evidence of bias, but also that among the few departments that did show statistical irregularities, most were
slanted in favor of women. This suggests that if there was any sex discrimination, then it was against men!

Given the discrepancy in these findings, it feels like someone must be doing bad math—intentionally or otherwise. But the
numbers are not actually inconsistent. In fact, this statistical hiccup is common enough to merit its own name: Simpson’s
Paradox occurs when multiple small groups of data all exhibit a similar trend, but that trend reverses when those groups are
aggregated. To explain how this is possible, let’s first clarify the problem by expressing both arguments in terms of conditional
probabilities. For simplicity, suppose that there are only two departments, EE and CS. Consider the experiment where we pick
a random candidate. Define the following events:

 ::= the candidate is admitted to his or her program of choice,
 ::= the candidate is a woman applying to the EE department,
 ::= the candidate is a woman applying to the CS department,
 ::= the candidate is a man applying to the EE department,
 ::= the candidate is a man applying to the CS department.

Table 17.1 A scenario in which men are overall more likely than women to be admitted to a school, despite being less likely to
be admitted into any given program.

Assume that all candidates are either men or women, and that no candidate belongs to both departments. That is, the events 
 and  are all disjoint.

In these terms, the plaintiff is making the following argument:

In plain English, across the university, the total probability that a woman candidate is admitted is less than the probability for a
man.

The university retorts that in any given department, a woman candidate has chances equal to or greater than those of a male
candidate; more formally, that

It is easy to believe that these two positions are contradictory . But Table 17.1 shows a set of admission statistics for which the
assertions of both the plaintiff and the university hold. In this case, a higher percentage of female applicants were admitted to
each department, but overall a higher percentage of males were accepted! So the apparently contradictory claims can in fact
both be true. How can we make sense of this seemingly paradoxical situation?

Initially, we and the plaintiffs both assumed that the overall admissions statistics for the university could only be explained by
discrimination. However, the department-by-department breakdown shows that the source of the discrepancy is that the CS
department lets in about 20% fewer candidates overall, but attracts a far larger number of woman applicants than the more

A

FEE

FCS

MEE

MCS

CS

EE

Overall

2 men admitted out of 5 candidates

50 women admitted out of 100 candidates

70 men admitted out of 100 candidates

4 women admitted out of 7 candidates

72 men admitted, 105 candidates

54 women admitted, 105 candidates

40%

50%

70%

80%

≈ 69%

≈ 51%

, , ,FEE FCS MEE MCS

Pr[A ∣ ∪ ] > Pr[A ∣ ∪ ].MEE MCS FEE FCS

Pr[A ∣ ]MEE

Pr[A ∣ ]MCS

≤ Pr[A ∣ ] andFEE

≤ Pr[A ∣ ].FCS
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permissive EE department . This leads us to the conclusion that the admissions gap in not due to any systematic bias on the
school’s part.

But suppose we replaced “the candidate is a man/woman applying to the EE department,” by “the candidate is a man/woman
for whom an admissions decision was made during an odd-numbered day of the month,” and likewise with CS and an even-
numbered day of the month. Since we don’t think the parity of a date is a cause for the outcome of an admission decision, we
would most likely dismiss the “coincidence” that on both odd and even dates, women are more frequently admitted. Instead
we would judge, based on the overall data showing women less likely to be admitted, that gender bias against women was an
issue in the university.

Bear in mind that it would be the same numerical data that we would be using to justify our different conclusions in the
department-by-department case and the even-day-odd-day case. We interpreted the same numbers differently based on our
implicit causal beliefs, specifically that departments matter and date parity does not. It is circular to claim that the data
corroborated our beliefs that there is or is not discrimination. Rather, our interpretation of the data correlation depended on our
beliefs about the causes of admission in the first place.  This example highlights a basic principle in statistics which people
constantly ignore: never assume that correlation implies causation.

At the actual university in the lawsuit, the “exclusive” departments more popular among women were those that did not
require a mathematical foundation, such as English and education. Women’s disproportionate choice of these careers reflects
gender bias, but one which predates the university’s involvement.

These issues are thoughtfully examined in Causality: Models, Reasoning and Inference, Judea Pearl, Cambridge U. Press,
2001.
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17.7: Independence
Suppose that we flip two fair coins simultaneously on opposite sides of a room. Intuitively, the way one coin lands does not
affect the way the other coin lands. The mathematical concept that captures this intuition is called independence.

An event with probability 0 is defined to be independent of every event (including itself). If , then event  is
independent of event  iff

In other words,  and  are independent if knowing that  happens does not alter the probability that  happens, as is the
case with flipping two coins on opposite sides of a room.

Potential Pitfall

Students sometimes get the idea that disjoint events are independent. The opposite is true: if , then knowing that 
happens means you know that  does not happen. Disjoint events are never independent—unless one of them has probability
zero.

Alternative Formulation
Sometimes it is useful to express independence in an alternate form which follows immediately from Definition 17.7.1:

 is independent of  if and only if

Notice that Theorem 17.7.2 makes apparent the symmetry between  being independent of  and  being independent
of :

Corollary 17.7.3.  is independent of  iff  is independent of .

Independence Is an Assumption
Generally, independence is something that you assume in modeling a phenomenon. For example, consider the experiment of
flipping two fair coins. Let  be the event that the first coin comes up heads, and let  be the event that the second coin is
heads. If we assume that  and  are independent, then the probability that both coins come up heads is:

In this example, the assumption of independence is reasonable. The result of one coin toss should have negligible impact on
the outcome of the other coin toss. And if we were to repeat the experiment many times, we would be likely to have 
about  of the time.

On the other hand, there are many examples of events where assuming independence isn’t justified. For example, an hourly
weather forecast for a clear day might list a 10% chance of rain every hour from noon to midnight, meaning each hour has a
90% chance of being dry. But that does not imply that the odds of a rainless day are a mere . In reality, if it
doesn’t rain as of 5pm, the odds are higher than 90% that it will stay dry at 6pm as well—and if it starts pouring at 5pm, the
chances are much higher than 10% that it will still be rainy an hour later.

Deciding when to assume that events are independent is a tricky business. In practice, there are strong motivations to assume
independence since many useful formulas (such as equation ( )) only hold if the events are independent. But you need to

Definition 17.7.1

Pr[B] ≠ 0 A

B

Pr[A ∣ B] = Pr[A]. (17.7.1)

A B B A

A∩B = ∅ A

B

Theorem 17.7.2

A B

Pr[A∩B] = Pr[A] ⋅ Pr[B]. (17.7.2)

A B B

A

A B B A

A B

A B

Pr[A∩B] = Pr[A] ⋅ Pr[B] = ⋅ = .
1

2

1

2

1

4

A∩B

1/4

≈ 0.280.912

17.7.2
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be careful: we’ll describe several famous examples where (false) assumptions of independence led to trouble. This problem
gets even trickier when there are more than two events in play.
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17.8: Mutual Independence
We have defined what it means for two events to be independent. What if there are more than two events? For example, how
can we say that the flips of  coins are all independent of one another? A set of events is said to be mutually independent if the
probability of each event in the set is the same no matter which of the other events has occurred. This is equivalent to saying
that for any selection of two or more of the events, the probability that all the selected events occur equals the product of the
probabilities of the selected events.

For example, four events  are mutually independent if and only if all of the following equations hold:

The generalization to mutual independence of  events should now be clear.

DNA Testing
Assumptions about independence are routinely made in practice. Frequently, such assumptions are quite reasonable.
Sometimes, however, the reasonableness of an independence assumption is not so clear, and the consequences of a faulty
assumption can be severe.

Let’s return to the O. J. Simpson murder trial. The following expert testimony was given on May 15, 1995:

Mr. Clarke: When you make these estimations of frequency—and I believe you touched a little bit on a concept called
independence?

Dr. Cotton: Yes, I did.

Mr. Clarke: And what is that again?

Dr. Cotton: It means whether or not you inherit one allele that you have is not— does not affect the second allele that you
might get. That is, if you inherit a band at 5,000 base pairs, that doesn’t mean you’ll automatically or with some probability
inherit one at 6,000. What you inherit from one parent is what you inherit from the other.

Mr. Clarke: Why is that important?

Dr. Cotton: Mathematically that’s important because if that were not the case, it would be improper to multiply the
frequencies between the different genetic locations.

Mr. Clarke: How do you—well, first of all, are these markers independent that you’ve described in your testing in this case?

Presumably, this dialogue was as confusing to you as it was for the jury. Essentially, the jury was told that genetic markers in
blood found at the crime scene matched Simpson’s. Furthermore, they were told that the probability that the markers would be
found in a randomly-selected person was at most 1 in 170 million. This astronomical figure was derived from statistics such
as:

1 person in 100 has marker .
1 person in 50 marker .
1 person in 40 has marker .
1 person in 5 has marker .

n

, , ,E1 E2 E3 E4

Pr [ ∩ ]E1 E2

Pr [ ∩ ]E1 E3

Pr [ ∩ ]E1 E4

Pr [ ∩ ]E2 E3

Pr [ ∩ ]E2 E4

Pr [ ∩ ]E3 E4

Pr [ ∩ ∩ ]E1 E2 E3

Pr [ ∩ ∩ ]E1 E2 E4

Pr [ ∩ ∩ ]E1 E3 E4

Pr [ ∩ ∩ ]E2 E3 E4

Pr [ ∩ ∩ ∩ ]E1 E2 E3 E4

= Pr [ ] ⋅ Pr [ ]E1 E2

= Pr [ ] ⋅ Pr [ ]E1 E3

= Pr [ ] ⋅ Pr [ ]E1 E4

= Pr [ ] ⋅ Pr [ ]E2 E3

= Pr [ ] ⋅ Pr [ ]E2 E4

= Pr [ ] ⋅ Pr [ ]E3 E4

= Pr [ ] ⋅ Pr [ ] ⋅ Pr [ ]E1 E2 E3

= Pr [ ] ⋅ Pr [ ] ⋅ Pr [ ]E1 E2 E4

= Pr [ ] ⋅ Pr [ ] ⋅ Pr [ ]E1 E3 E4

= Pr [ ] ⋅ Pr [ ] ⋅ Pr [ ]E2 E3 E4

= Pr [ ] ⋅ Pr [ ] ⋅ Pr [ ] ⋅ Pr [ ]E1 E2 E3 E4

n

A

B

C

D
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1 person in 170 has marker .

Then these numbers were multiplied to give the probability that a randomly-selected person would have all five markers:

The defense pointed out that this assumes that the markers appear mutually independently. Furthermore, all the statistics were
based on just a few hundred blood samples.

After the trial, the jury was widely mocked for failing to “understand” the DNA evidence. If you were a juror, would you
accept the 1 in 170 million calculation?

Pairwise Independence
The definition of mutual independence seems awfully complicated—there are so many selections of events to consider! Here’s
an example that illustrates the subtlety of independence when more than two events are involved. Suppose that we flip three
fair, mutually-independent coins. Define the following events:

 is the event that coin 1 matches coin 2.
 is the event that coin 2 matches coin 3.
 is the event that coin 3 matches coin 1.

Are  mutually independent?

The sample space for this experiment is:

Every outcome has probability  by our assumption that the coins are mutually independent.

To see if events  and  are mutually independent, we must check a sequence of equalities. It will be helpful first to
compute the probability of each event :

By symmetry,  as well. Now we can begin checking all the equalities required for mutual
independence:

By symmetry,  and  must hold also. Finally, we must check
one last condition:

The three events  and  are not mutually independent even though any two of them are independent! This not-quite
mutual independence seems weird at first, but it happens. It even generalizes:

A set , of events is -way independent iff every set of  of these events is mutually independent. The set is
pairwise independent iff it is 2-way independent.

E

Pr[A ∩ B ∩ C ∩ D ∩ E] = Pr[A] ⋅ Pr[B] ⋅ Pr[C] ⋅ Pr[D] ⋅ Pr[E]

= ⋅ ⋅ ⋅ ⋅ = .
1

100

1

50

1

40

1

5

1

170

1

170, 000, 000

A1

A2

A3

, ,A1 A2 A3

{HHH, HHT , HT H, HT T , T HH, T HT , T T H, T T T }.

(1/2 = 1/8)3

, ,A1 A2 A3

Ai

Pr [ ]A1 = Pr[HHH] +Pr[HHT ] +Pr[T T H] +Pr[T T T ]

= + + + =
1

8

1

8

1

8

1

8

1

2

Pr[ ] = Pr[ ] = 1/2A2 A3

Pr [ ∩ ]A1 A2 = Pr[HHH] +Pr[T T T ] = + = = ⋅
1

8

1

8

1

4

1

2

1

2
= Pr[ ]Pr[ ].A1 A2

Pr[ ∩ ] = Pr[ ] ⋅ Pr[ ]A1 A3 A1 A3 Pr[ ∩ ] = Pr[ ] ⋅ Pr[ ]A2 A3 A2 A3

Pr [ ∩ ∩ ]A1 A2 A3 = Pr[HHH] +Pr[T T T ] = + =
1

8

1

8

1

4

≠ = Pr[ ]Pr[ ]Pr[ ].
1

8
A1 A2 A3

, ,A1 A2 A3
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So the events  above are pairwise independent, but not mutually independent. Pairwise independence is a much
weaker property than mutual independence.

For example, suppose that the prosecutors in the O. J. Simpson trial were wrong and markers  and  appear only
pairwise independently. Then the probability that a randomly-selected person has all five markers is no more than:

The first line uses the fact that  is a subset of  (We picked out the  and  markers
because they’re the rarest.) We use pairwise independence on the second line. Now the probability of a random match is 1 in
17,000—a far cry from 1 in 170 million! And this is the strongest conclusion we can reach assuming only pairwise
independence.

On the other hand, the 1 in 17,000 bound that we get by assuming pairwise independence is a lot better than the bound that we
would have if there were no independence at all. For example, if the markers are dependent, then it is possible that

everyone with marker  has marker ,

everyone with marker  has marker ,

everyone with marker  has marker , and

everyone with marker  has marker .

In such a scenario, the probability of a match is

So a stronger independence assumption leads to a smaller bound on the probability of a match. The trick is to figure out what
independence assumption is reasonable. Assuming that the markers are mutually independent may well not be reasonable
unless you have examined hundreds of millions of blood samples. Otherwise, how would you know that marker  does not
show up more frequently whenever the other four markers are simultaneously present?

, ,A1 A2 A3

A, B, C, D, E

Pr[A ∩ B ∩ C ∩ D ∩ E] ≤ Pr[A ∩ E] = Pr[A]Pr[E]

= ⋅ = .
1

100

1

170

1

17, 000

Pr[A ∩ B ∩ C ∩ D ∩ E] Pr[A ∩ E] A E

E A

A B

B C

C D

Pr[E] = .
1

170

D

https://libretexts.org/
https://eng.libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://eng.libretexts.org/@go/page/48429?pdf


1 6/29/2021

CHAPTER OVERVIEW
18: RANDOM VARIABLES

Thus far, we have focused on probabilities of events. For example, we computed the probability that
you win the Monty Hall game or that you have a rare medical condition given that you tested
positive. But, in many cases we would like to know more. For example, how many contestants must
play the Monty Hall game until one of them finally wins? How long will this condition last? How
much will I lose gambling with strange dice all night? To answer such questions, we need to work
with random variables.

18.1: RANDOM VARIABLE EXAMPLES
18.2: INDEPENDENCE
18.3: DISTRIBUTION FUNCTIONS
18.4: GREAT EXPECTATIONS
18.5: LINEARITY OF EXPECTATION
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18.1: Random Variable Examples

A random variable  on a probability space is a total function whose domain is the sample space.

The codomain of  can be anything, but will usually be a subset of the real numbers. Notice that the name “random variable”
is a misnomer; random variables are actually functions.

For example, suppose we toss three independent, unbiased coins. Let  be the number of heads that appear. Let  if the
three coins come up all heads or all tails, and let  otherwise. Now every outcome of the three coin flips uniquely
determines the values of  and . For example, if we flip heads, tails, heads, then  and . If we flip tails, tails,
tails, then  and . In effect,  counts the number of heads, and  indicates whether all the coins match.

Since each outcome uniquely determines  and , we can regard them as functions mapping outcomes to numbers. For this
experiment, the sample space is:

Now  is a function that maps each outcome in the sample space to a number as follows:

Similarly,  is a function mapping each outcome another way:

So  and  are random variables.

Indicator Random Variables
An indicator random variable is a random variable that maps every outcome to either 0 or 1. Indicator random variables are
also called Bernoulli variables. The random variable  is an example. If all three coins match, then ; otherwise, 

.

Indicator random variables are closely related to events. In particular, an indicator random variable partitions the sample space
into those outcomes mapped to 1 and those outcomes mapped to 0. For example, the indicator  partitions the sample space
into two blocks as follows:

In the same way, an event  partitions the sample space into those outcomes in  and those not in . So  is naturally
associated with an indicator random variable, , where  for outcomes  and  for outcomes .
Thus,  where  is the event that all three coins match.

Random Variables and Events
There is a strong relationship between events and more general random variables as well. A random variable that takes on
several values partitions the sample space into several blocks. For example,  partitions the sample space as follows:

Definition 18.1.1

R

R

C M = 1

M = 0

C M C = 2 M = 0

C = 0 M = 1 C M

C M
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Each block is a subset of the sample space and is therefore an event. So the assertion that  defines the event

and this event has probability

Likewise  is the event  and has probability .

More generally, any assertion about the values of random variables defines an event. For example, the assertion that 
defines

and so 

Another example is the assertion that  is an odd number. If you think about it for a minute, you’ll realize that this is an
obscure way of saying that all three coins came up heads, namely,

.T T T
  

C=0

T T H T HT HT T
  

C=1

T HH HT H HHT
  

C=2

HHH
  

C=3

C = 2

[C = 2] = {T HH, HT H, HHT },

Pr[C = 2] = Pr[T HH] +Pr[HT H] +Pr[HHT ] = + + = 3/8.
1

8

1

8

1

8

[M = 1] {T T T , HHH} 1/4

C ≤ 1

[C ≤ 1] = {T T T , T T H, T HT , HT T },

Pr[C ≤ 1] = 1/2.

C ⋅ M

[C ⋅ M  is odd] = {HHH}.
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18.2: Independence
The notion of independence carries over from events to random variables as well. Random variables  and  are
independent iff for all , the two events

are independent.

For example, are  and  independent? Intuitively, the answer should be “no.” The number of heads, , completely
determines whether all three coins match; that is, whether . But, to verify this intuition, we must find some 
such that:

One appropriate choice of values is  and . In this case, we have:

The first probability is zero because we never have exactly two heads  when all three coins match . The
other two probabilities were computed earlier.

On the other hand, let  be the indicator variable for the event that the first flip is a Head, so

Then  is independent of , since

This example is an instance of:

Lemma 18.2.1. Two events are independent iff their indicator variables are independent.

The simple proof is left to Problem 18.1.

Intuitively, the independence of two random variables means that knowing some information about one variable doesn’t
provide any information about the other one. We can formalize what “some information” about a variable  is by defining it
to be the value of some quantity that depends on . This intuitive property of independence then simply means that functions
of independent variables are also independent:

Lemma 18.2.2. Let  and  be independent random variables, and  and  be functions such that 
 and . Then  and  are independent random variables.

The proof is another simple exercise left to Problem 18.30.

As with events, the notion of independence generalizes to more than two random variables.

Random variables  are mutually independent iff for all , the  events

are mutually independent. They are -way independent iff every subset of  of them are mutually independent.

Lemmas 18.2.1 and 18.2.2 both extend straightforwardly to -way independent variables.
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18.3: Distribution Functions
A random variable maps outcomes to values. The probability density function, , of a random variable, , measures
the probability that  takes the value , and the closely related cumulative distribution function, , measures the
probability that . Random variables that show up for different spaces of outcomes often wind up behaving in much the
same way because they have the same probability of taking different values, that is, because they have the same pdf/cdf.

Let  be a random variable with codomain . The probability density function of  is a function 
defined by:

If the codomain is a subset of the real numbers, then the cumulative distribution function is the function 
 defined by:

A consequence of this definition is that

This is because  has a value for each outcome, so summing the probabilities over all outcomes is the same as summing over
the probabilities of each value in the range of .

As an example, suppose that you roll two unbiased, independent, 6-sided dice. Let  be the random variable that equals the
sum of the two rolls. This random variable takes on values in the set . A plot of the probability density
function for  is shown in Figure 18.1. The lump in the middle indicates that sums close to 7 are the most likely. The total area
of all the rectangles is 1 since the dice must take on exactly one of the sums in .

The cumulative distribution function for  is shown in Figure 18.2: The height of the th bar in the cumulative distribution
function is equal to the sum of the heights of the leftmost  bars in the probability density function. This follows from the
definitions of pdf and cdf:

It also follows from the definition that

Figure 18.1 The probability density function for the sum of two 6-sided dice.
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Figure 18.2 The cumulative distribution function for the sum of two 6-sided dice.

Both  and  capture the same information about , so take your choice. The key point here is that neither the
probability density function nor the cumulative distribution function involves the sample space of an experiment.

One of the really interesting things about density functions and distribution functions is that many random variables turn out to
have the same pdf and cdf. In other words, even though  and  are different random variables on different probability
spaces, it is often the case that

In fact, some pdf’s are so common that they are given special names. For example, the three most important distributions in
computer science are the Bernoulli distribution, the uniform distribution, and the binomial distribution. We look more closely
at these common distributions in the next several sections.

Bernoulli Distributions
A Bernoulli distribution is the distribution function for a Bernoulli variable. Specifically, the Bernoulli distribution has a
probability density function of the form  where

for some . The corresponding cumulative distribution function is  where

Uniform Distributions
A random variable that takes on each possible value in its codomain with the same probability is said to be uniform. If the
codomain  has  elements, then the uniform distribution has a pdf of the form

where

for all 

If the elements of  in increasing order are , then the cumulative distribution function would be 
where

Uniform distributions come up all the time. For example, the number rolled on a fair die is uniform on the set .
An indicator variable is uniform when its pdf is .
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The Numbers Game
Enough definitions—let’s play a game! We have two envelopes. Each contains an integer in the range , and the
numbers are distinct. To win the game, you must determine which envelope contains the larger number. To give you a fighting
chance, we’ll let you peek at the number in one envelope selected at random. Can you devise a strategy that gives you a better
than 50% chance of winning?

For example, you could just pick an envelope at random and guess that it contains the larger number. But this strategy wins
only 50% of the time. Your challenge is to do better.

So you might try to be more clever. Suppose you peek in one envelope and see the number 12. Since 12 is a small number, you
might guess that the number in the other envelope is larger. But perhaps we’ve been tricky and put small numbers in both
envelopes. Then your guess might not be so good!

An important point here is that the numbers in the envelopes may not be random. We’re picking the numbers and we’re
choosing them in a way that we think will defeat your guessing strategy. We’ll only use randomization to choose the numbers
if that serves our purpose: making you lose!

Intuition Behind the Winning Strategy

People are surprised when they first learn that there is a strategy that wins more than 50% of the time, regardless of what
numbers we put in the envelopes.

Suppose that you somehow knew a number  that was in between the numbers in the envelopes. Now you peek in one
envelope and see a number. If it is bigger than , then you know you’re peeking at the higher number. If it is smaller than ,
then you’re peeking at the lower number. In other words, if you know a number  between the numbers in the envelopes, then
you are certain to win the game.

The only flaw with this brilliant strategy is that you do not know such an . This sounds like a dead end, but there’s a cool way
to salvage things: try to guess ! There is some probability that you guess correctly. In this case, you win 100% of the time. On
the other hand, if you guess incorrectly, then you’re no worse off than before; your chance of winning is still 50%. Combining
these two cases, your overall chance of winning is better than 50%.

Many intuitive arguments about probability are wrong despite sounding persuasive. But this one goes the other way: it may not
convince you, but it’s actually correct. To justify this, we’ll go over the argument in a more rigorous way—and while we’re at
it, work out the optimal way to play.

Analysis of the Winning Strategy

For generality, suppose that we can choose numbers from the integer interval . Call the lower number  and the higher
number .

Your goal is to guess a number  between  and . It’s simplest if  does not equal  or , so you should select  at random
from among the half-integers:

But what probability distribution should you use?

The uniform distribution—selecting each of these half-integers with equal probability— turns out to be your best bet. An
informal justification is that if we figured out that you were unlikely to pick some number—say —then we’d always put
50 and 51 in the envelopes. Then you’d be unlikely to pick an  between  and  and would have less chance of winning.

After you’ve selected the number , you peek into an envelope and see some number . If , then you guess that you’re
looking at the larger number. If , then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We can do this with the usual four step method and
a tree diagram.

Step 1: Find the sample space.

You either choose x too low , too high , or just right . Then you either peek at the lower number 
 or the higher number . This gives a total of six possible outcomes, as show in Figure 18.3.
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Figure 18.3 The tree diagram for the numbers game.

Step 2: Define events of interest.

The four outcomes in the event that you win are marked in the tree diagram.

Step 3: Assign outcome probabilities.

First, we assign edge probabilities. Your guess  is too low with probability , too high with probability , and
just right with probability . Next, you peek at either the lower or higher number with equal probability. Multiplying
along root-to-leaf paths gives the outcome probabilities.

Step 4: Compute event probabilities.

The probability of the event that you win is the sum of the probabilities of the four outcomes in that event:

The final inequality relies on the fact that the higher number  is at least 1 greater than the lower number  since they are
required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless of the numbers in the envelopes! So with numbers
chosen from the range , you win with probability at least . If instead we agree to stick to
numbers , then your probability of winning rises to 55%. By Las Vegas standards, those are great odds.

Randomized Algorithms

The best strategy to win the numbers game is an example of a randomized algorithm—it uses random numbers to influence
decisions. Protocols and algorithms that make use of random numbers are very important in computer science. There are many
problems for which the best known solutions are based on a random number generator.

For example, the most commonly-used protocol for deciding when to send a broadcast on a shared bus or Ethernet is a
randomized algorithm known as exponential backoff. One of the most commonly-used sorting algorithms used in practice,
called quicksort, uses random numbers. You’ll see many more examples if you take an algorithms course. In each case,
randomness is used to improve the probability that the algorithm runs quickly or otherwise performs well.

Binomial Distributions
The third commonly-used distribution in computer science is the binomial distribution. The standard example of a random
variable with a binomial distribution is the number of heads that come up in  independent flips of a coin. If the coin is fair,
then the number of heads has an unbiased binomial distribution, specified by the pdf :
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This is because there are  sequences of  coin tosses with exactly  heads, and each such sequence has probability .

A plot of  is wn in Figure 18.4. The most likely outcome is  heads, and the probability falls off rapidly for larger
and smaller values of . The falloff regions to the left and right of the main hump are called the tails of the distribution.

Figure 18.4 The pdf for the unbiased binomial distribution for .

In many fields, including Computer Science, probability analyses come down to getting small bounds on the tails of the
binomial distribution. In the context of a problem, this typically means that there is very small probability that something bad
happens, which could be a server or communication link overloading or a randomized algorithm running for an exceptionally
long time or producing the wrong result.

The tails do get small very fast. For example, the probability of flipping at most 25 heads in 100 tosses is less than 1 in
3,000,000. In fact, the tail of the distribution falls off so rapidly that the probability of flipping exactly 25 heads is nearly twice
the probability of flipping exactly 24 heads plus the probability of flipping exactly 23 heads plus ... the probability of flipping
no heads.

The General Binomial Distribution

If the coins are biased so that each coin is heads with probability , then the number of heads has a general binomial density
function specified by the pdf  where

for some  and . This is because there are  sequences with  heads and  tails, but now 
is the probability of each such sequence.

For example, the plot in Figure 18.5 shows the probability density function  corresponding to flipping 
independent coins that are heads with probability . The graph shows that we are most likely to get  heads, as
you might expect. Once again, the probability falls off quickly for larger and smaller values of .

Figure 18.5 The pdf for the general binomial distribution  for  and .
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18.4: Great Expectations
The expectation or expected value of a random variable is a single number that reveals a lot about the behavior of the variable.
The expectation of a random variable is also known as its mean or average. For example, the first thing you typically want to
know when you see your grade on an exam is the average score of the class. This average score turns out to be precisely the
expectation of the random variable equal to the score of a random student.

More precisely, the expectation of a random variable is its “average” value when each value is weighted according to its
probability. Formally, the expected value of a random variable is defined as follows:

If  is a random variable defined on a sample space , then the expectation of  is

Let’s work through some examples.

The Expected Value of a Uniform Random Variable
Rolling a 6-sided die provides an example of a uniform random variable. Let  be the value that comes up when you roll a fair
6-sided die. Then by ( ), the expected value of  is

This calculation shows that the name “expected” value is a little misleading; the random variable might never actually take on
that value. No one expects to roll a  on an ordinary die!

In general, if  is a random variable with a uniform distribution on , then the expectation of  is simply
the average of the ’s:

The Expected Value of a Reciprocal Random Variable
Define a random variable  to be the reciprocal of the value that comes up when you roll a fair 6-sided die. That is, 
where  is the value that you roll. Now,

Notice that

The Expected Value of an Indicator Random Variable
The expected value of an indicator random variable for an event is just the probability of that event.

Lemma 18.4.2. If  is the indicator random variable for event , then

Proof.

For example, if  is the event that a coin with bias  comes up heads, then .
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Alternate Definition of Expectation
There is another standard way to define expectation.

For any random variable ,

The proof of Theorem 18.4.3, like many of the elementary proofs about expectation in this chapter, follows by regrouping
of terms in equation ( ):

Proof

Suppose  is defined on a sample space . Then,

The first equality follows because the events  for  partition the sample space , so summing
over the outcomes in  for  is the same as summing over . 

In general, equation ( ) is more useful than the defining equation ( ) for calculating expected values. It also has the
advantage that it does not depend on the sample space, but only on the density function of the random variable. On the other
hand, summing over all outcomes as in equation ( ) sometimes yields easier proofs about general properties of
expectation.

Conditional Expectation
Just like event probabilities, expectations can be conditioned on some event. Given a random variable , the expected value of

 conditioned on an event  is the probability-weighted average value of R over outcomes in . More formally:

The conditional expectation  of a random variable  given event  is:

For example, we can compute the expected value of a roll of a fair die, given that the number rolled is at least 4. We do this by
letting  be the outcome of a roll of the die. Then by equation ( ),

Conditional expectation is useful in dividing complicated expectation calculations into simpler cases. We can find a desired
expectation by calculating the conditional expectation in each simple case and averaging them, weighing each case by its
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probability.

For example, suppose that 49.6% of the people in the world are male and the rest female—which is more or less true. Also
suppose the expected height of a randomly chosen male is , while the expected height of a randomly chosen female is 

 What is the expected height of a randomly chosen person? We can calculate this by averaging the heights of men and
women. Namely, let  be the height (in feet) of a randomly chosen person, and let  be the event that the person is male and 

 the event that the person is female. Then

which is a little less than 

This method is justified by:

(Law of Total Expectation). Let  be a random variable on a sample space , and suppose that  is a
partition of . Then

Proof

Mean Time to Failure
A computer program crashes at the end of each hour of use with probability , if it has not crashed already. What is the
expected time until the program crashes? This will be easy to figure out using the Law of Total Expectation, Theorem 18.4.5.
Specifically, we want to find  where  is the number of hours until the first crash. We’ll do this by conditioning on
whether or not the crash occurs in the first hour.

So define  to be the event that the system fails on the first step and  to be the complementary event that the system does not
fail on the first step. Then the mean time to failure  is

Since  is the condition that the system crashes on the first step, we know that

Since  is the condition that the system does not crash on the first step, conditioning on  is equivalent to taking a first step
without failure and then starting over without conditioning. Hence,

5′11′′

5′5′′

H M

F

Ex[H] = Ex[H ∣ M ]Pr[M ] +Ex[H ∣ F ]Pr[F ]

= (5 +11/12) ⋅ 0.496 +(5 +5/12) ⋅ (1 −0.496)

= 5.6646 ⋯

.5′8′′

Theorem 18.4.5

R S , , … ,A1 A2

S

Ex[R] = Ex[R ∣ ]Pr[ ].∑
i

Ai Ai

Ex[R] = r ⋅ Pr[R = r]∑
r∈range(R)

= r ⋅ Pr[R = r ∣ ]Pr[ ]∑
r

∑
i

Ai Ai

= r ⋅ Pr[R = r ∣ ]Pr[ ]∑
r

∑
i

Ai Ai

= r ⋅ Pr[R = r ∣ ]Pr[ ]∑
i

∑
r

Ai Ai

= Pr[ ] r ⋅ Pr[R = r ∣ ]∑
i

Ai ∑
r

Ai

= Pr[ ]Ex[R ∣ ].∑
i

Ai Ai

(by 18.4.2)

(Law of Total Probability)

(distribute constant r)

(exchange order of summation)

(factor constant Pr[ ])Ai

(Def 18.4.4 of cond. expectation)

■

p

Ex[C] C

A A
¯ ¯¯̄

Ex[C]

Ex[C] = Ex[C ∣ A]Pr[A] +Ex[C ∣ ]Pr[ ].A
¯ ¯¯̄

A
¯ ¯¯̄

(18.4.4)
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Ex[C ∣ A] = 1. (18.4.5)
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Plugging ( ) and ( ) into ( ):

Then, rearranging terms gives

and thus

The general principle here is well-worth remembering.

Mean Time to Failure

If a system independently fails at each time step with probability , then the expected number of steps up to the first failure is 
.

So, for example, if there is a 1% chance that the program crashes at the end of each hour, then the expected time until the
program crashes is  hours.

As a further example, suppose a couple insists on having children until they get a boy, then how many baby girls should they
expect before their first boy? Assume for simplicity that there is a 50% chance that a child will be a boy and that the genders
of siblings are mutually independent.

This is really a variant of the previous problem. The question, “How many hours until the program crashes?” is
mathematically the same as the question, “How many children must the couple have until they get a boy?” In this case, a crash
corresponds to having a boy, so we should set . By the preceding analysis, the couple should expect a baby boy after
having  children. Since the last of these will be a boy, they should expect just one girl. So even in societies where
couples pursue this commitment to boys, the expected population will divide evenly between boys and girls.

There is a simple intuitive argument that explains the mean time to failure formula ( ). Suppose the system is restarted
after each failure. This makes the mean time to failure the same as the mean time between successive repeated failures. Now if
the probability of failure at a given step is , then after  steps we expect to have  failures. Now, by definition, the average
number of steps between failures is equal to , namely, .

For the record, we’ll state a formal version of this result. A random variable like  that counts steps to first failure is said to
have a geometric distribution with parameter .

A random variable, , has a geometric distribution with parameter  iff  and

Lemma 18.4.7. If a random variable  has a geometric distribution with parameter , then

Expected Returns in Gambling Games
Some of the most interesting examples of expectation can be explained in terms of gambling games. For straightforward
games where you win  dollars with probability  and you lose  dollars with probability , it is easy to compute your
expected return or winnings. It is simply

Ex[C ∣ ] = 1 +Ex[C].A
¯ ¯¯̄

(18.4.6)

18.4.5 18.4.6 18.4.4

Ex[C] = 1 ⋅ p +(1 +Ex[C])(1 −p)

= p +1 −p +(1 −p)Ex[C]

= 1 +(1 −p)Ex[C].

1 = Ex[C] −(1 −p)Ex[C] = pEx[C],

Ex[C] = 1/p.

p

1/p

1/0.01 = 100

p = 1/2

1/p = 2

18.4.7

p n pn

np/p 1/p

C

p

Definition 18.4.6

C p codomain(C) = Z
+

Pr[C = i] = (1 −p p.)i−1

C p

Ex[C] = .
1

p
(18.4.7)

w p x 1 −p

pw −(1 −p)x dollars.
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For example, if you are flipping a fair coin and you win $1 for heads and you lose $1 for tails, then your expected winnings are

In such cases, the game is said to be fair since your expected return is zero.

Splitting the Pot

We’ll now look at a different game which is fair—but only on first analysis.

It’s late on a Friday night in your neighborhood hangout when two new biker dudes, Eric and Nick, stroll over and propose a
simple wager. Each player will put $2 on the bar and secretly write “heads” or “tails” on their napkin. Then you will flip a fair
coin. The $6 on the bar will then be “split”—that is, be divided equally—among the players who correctly predicted the
outcome of the coin toss. Pot splitting like this is a familiar feature in poker games, betting pools, and lotteries.

This sounds like a fair game, but after your regrettable encounter with strange dice (Section 16.3), you are definitely skeptical
about gambling with bikers. So before agreeing to play, you go through the four-step method and write out the tree diagram to
compute your expected return. The tree diagram is shown in Figure 18.6.

Figure 18.6 The tree diagram for the game where three players each wager $2 and then guess the outcome of a fair coin toss.
The winners split the pot.

The “payoff” values in Figure 18.6 are computed by dividing the $6 pot  among those players who guessed correctly and then
subtracting the $2 that you put into the pot at the beginning. For example, if all three players guessed correctly, then your
payoff is $0, since you just get back your $2 wager. If you and Nick guess correctly and Eric guessed wrong, then your payoff
is

In the case that everyone is wrong, you all agree to split the pot and so, again, your payoff is zero.

To compute your expected return, you use equation ( ):

This confirms that the game is fair. So, for old time’s sake, you break your solemn vow to never ever engage in strange
gambling games.

⋅ 1 −(1 − ) ⋅ 1 = 0.
1

2

1

2

1

−2 = 1.
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The Impact of Collusion

Needless to say, things are not turning out well for you. The more times you play the game, the more money you seem to be
losing. After 1000 wagers, you have lost over $500. As Nick and Eric are consoling you on your “bad luck,” you do a back-of-
the-envelope calculation and decide that the probability of losing $500 in 1000 fair $2 wagers is very, very small.

Now it is possible of course that you are very, very unlucky. But it is more likely that something fishy is going on. Somehow
the tree diagram in Figure 18.6 is not a good model of the game.

The “something” that’s fishy is the opportunity that Nick and Eric have to collude against you. The fact that the coin flip is fair
certainly means that each of Nick and Eric can only guess the outcome of the coin toss with probability . But when you
look back at the previous 1000 bets, you notice that Eric and Nick never made the same guess. In other words, Nick always
guessed “tails” when Eric guessed “heads,” and vice-versa. Modelling this fact now results in a slightly different tree diagram,
as shown in Figure 18.7.

Figure 18.7 The revised tree diagram reflecting the scenario where Nick always guesses the opposite of Eric.

The payoffs for each outcome are the same in Figures 18.6 and 18.7, but the probabilities of the outcomes are different. For
example, it is no longer possible for all three players to guess correctly, since Nick and Eric are always guessing differently.
More importantly, the outcome where your payoff is $4 is also no longer possible. Since Nick and Eric are always guessing
differently, one of them will always get a share of the pot. As you might imagine, this is not good for you!

When we use equation ( ) to compute your expected return in the collusion scenario, we find that

So watch out for these biker dudes! By colluding, Nick and Eric have made it so that you expect to lose $.50 every time you
play. No wonder you lost $500 over the course of 1000 wagers.

How to Win the Lottery

Similar opportunities to collude arise in many betting games. For example, consider the typical weekly football betting pool,
where each participant wagers $10 and the participants that pick the most games correctly split a large pot. The pool seems fair
if you think of it as in Figure 18.6. But, in fact, if two or more players collude by guessing differently, they can get an “unfair”
advantage at your expense!

In some cases, the collusion is inadvertent and you can profit from it. For example, many years ago, a former MIT Professor of
Mathematics named Herman Chernoff figured out a way to make money by playing the state lottery. This was surprising since

1/2

18.4.2
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the state usually takes a large share of the wagers before paying the winners, and so the expected return from a lottery ticket is
typically pretty poor. So how did Chernoff find a way to make money? It turned out to be easy!

In a typical state lottery,

all players pay $1 to play and select 4 numbers from 1 to 36,
the state draws 4 numbers from 1 to 36 uniformly at random,
the states divides  of the money collected among the people who guessed correctly and spends the other half
redecorating the governor’s residence.

This is a lot like the game you played with Nick and Eric, except that there are more players and more choices. Chernoff
discovered that a small set of numbers was selected by a large fraction of the population. Apparently many people think the
same way; they pick the same numbers not on purpose as in the previous game with Nick and Eric, but based on the Red Sox
winning average or today’s date. The result is as though the players were intentionally colluding to lose. If any one of them
guessed correctly, then they’d have to split the pot with many other players. By selecting numbers uniformly at random,
Chernoff was unlikely to get one of these favored sequences. So if he won, he’d likely get the whole pot! By analyzing actual
state lottery data, he determined that he could win an average of 7 cents on the dollar. In other words, his expected return was
not  as you might think, but .  Inadvertent collusion often arises in betting pools and is a phenomenon that you
can take advantage of.

The money invested in a wager is commonly referred to as the pot.

Most lotteries now offer randomized tickets to help smooth out the distribution of selected sequences.

1/2
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18.5: Linearity of Expectation
Expected values obey a simple, very helpful rule called Linearity of Expectation. Its simplest form says that the expected value
of a sum of random variables is the sum of the expected values of the variables.

For any random variables  and ,

Proof

Let . The proof follows straightforwardly by rearranging terms in equation (18.4.1) in the definition of
expectation:

A small extension of this proof, which we leave to the reader, implies

For any random variables  and constants ,

In other words, expectation is a linear function. A routine induction extends the result to more than two variables:

Corollary 18.5.3 (Linearity of Expectation). For any random variables  and constants ,

The great thing about linearity of expectation is that no independence is required. This is really useful, because dealing with
independence is a pain, and we often need to work with random variables that are not known to be independent.

As an example, let’s compute the expected value of the sum of two fair dice.

Expected Value of Two Dice
What is the expected value of the sum of two fair dice?

Let the random variable  be the number on the first die, and let  be the number on the second die. We observed earlier
that the expected value of one die is 3.5. We can find the expected value of the sum using linearity of expectation:

Assuming that the dice were independent, we could use a tree diagram to prove that this expected sum is 7, but this would be a
bother since there are 36 cases. And without assuming independence, it’s not apparent how to apply the tree diagram approach
at all. But notice that we did not have to assume that the two dice were independent. The expected sum of two dice is 7—even
if they are controlled to act together in some way—as long as each individual controlled die remains fair.

Theorem 18.5.1

R1 R2

Ex[ + ] = Ex[ ] +Ex[ ].R1 R2 R1 R2

T ::= +R1 R2

Ex[T ] ::= T (ω) ⋅ Pr[ω]∑
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ω∈S

R1 R2
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ω∈S

R1 ∑
ω∈S

R2

= Ex[ ] +Ex[ ].R1 R2
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(by (18.4.1)) ■
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Sums of Indicator Random Variables
Linearity of expectation is especially useful when you have a sum of indicator random variables. As an example, suppose there
is a dinner party where  men check their hats. The hats are mixed up during dinner, so that afterward each man receives a
random hat. In particular, each man gets his own hat with probability . What is the expected number of men who get their
own hat?

Letting  be the number of men that get their own hat, we want to find the expectation of . But all we know about  is that
the probability that a man gets his own hat back is . There are many different probability distributions of hat permutations
with this property, so we don’t know enough about the distribution of  to calculate its expectation directly using equation
(18.4.1) or (18.4.2). But linearity of expectation lets us sidestep this issue.

We’ll use a standard, useful trick to apply linearity, namely, we’ll express  as a sum of indicator variables. In particular, let 
 be an indicator for the event that the th man gets his own hat. That is,  if the th man gets his own hat, and 

otherwise. The number of men that get their own hat is then the sum of these indicator random variables:

These indicator variables are not mutually independent. For example, if  men all get their own hats, then the last man is
certain to receive his own hat. But again, we don’t need to worry about this dependence, since linearity holds regardless.

Since  is an indicator random variable, we know from Lemma 18.4.2 that

By Linearity of Expectation and equation ( ), this means that

So even though we don’t know much about how hats are scrambled, we’ve figured out that on average, just one man gets his
own hat back, regardless of the number of men with hats!

More generally, Linearity of Expectation provides a very good method for computing the expected number of events that will
happen.

Given any collection of events , the expected number of events that will occur is

For example,  could be the event that the th man gets the right hat back. But in general, it could be any subset of the
sample space, and we are asking for the expected number of events that will contain a random sample point.

Proof

Define  to be the indicator random variable for , where  if  and  if . Let 
. Then
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So whenever you are asked for the expected number of events that occur, all you have to do is sum the probabilities that each
event occurs. Independence is not needed.

Expectation of a Binomial Distribution
Suppose that we independently flip  biased coins, each with probability  of coming up heads. What is the expected number
of heads?

Let  be the random variable denoting the number of heads. Then  has a binomial distribution with parameters , and

Applying equation (18.4.2), this means that

This sum looks a tad nasty, but linearity of expectation leads to an easy derivation of a simple closed form. We just express 
as a sum of indicator random variables, which is easy. Namely, let  be the indicator random variable for the th coin coming
up heads, that is,

Then the number of heads is simply

By Theorem 18.5.4,

That really was easy. If we flip  mutually independent coins, we expect to get  heads. Hence the expected value of a
binomial distribution with parameters  and  is simply .

But what if the coins are not mutually independent? It doesn’t matter—the answer is still  because Linearity of Expectation
and Theorem 18.5.4 do not assume any independence.

If you are not yet convinced that Linearity of Expectation and Theorem 18.5.4 are powerful tools, consider this: without even
trying, we have used them to prove a complicated looking identity, namely,

which follows by combining equations ( ) and ( ) (see also Exercise 18.26).

The next section has an even more convincing illustration of the power of linearity to solve a challenging problem.

The Coupon Collector Problem

Ex[R] = Ex[ ]∑
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n
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= Pr[ = 1]∑
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n

Ri

= Pr[ ].∑
i=1

n

Ai

(by Linearity of Expectation)

(by Lemma 18.4.2)

(def of indicator variable)
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Every time we purchase a kid’s meal at Taco Bell, we are graciously presented with a miniature “Racin’ Rocket” car together
with a launching device which enables us to project our new vehicle across any tabletop or smooth floor at high velocity.
Truly, our delight knows no bounds.

There are different colored Racin’ Rocket cars. The color of car awarded to us by the kind server at the Taco Bell register
appears to be selected uniformly and independently at random. What is the expected number of kid’s meals that we must
purchase in order to acquire at least one of each color of Racin’ Rocket car?

The same mathematical question shows up in many guises: for example, what is the expected number of people you must poll
in order to find at least one person with each possible birthday? The general question is commonly called the coupon collector
problem after yet another interpretation.

A clever application of linearity of expectation leads to a simple solution to the coupon collector problem. Suppose there are
five different colors of Racin’ Rocket cars, and we receive this sequence:

Let’s partition the sequence into 5 segments:

The rule is that a segment ends whenever we get a new kind of car. For example, the middle segment ends when we get a red
car for the first time. In this way, we can break the problem of collecting every type of car into stages. Then we can analyze
each stage individually and assemble the results using linearity of expectation.

In the general case there are  colors of Racin’ Rockets that we’re collecting. Let  be the length of the th segment. The
total number of kid’s meals we must purchase to get all  Racin’ Rockets is the sum of the lengths of all these segments:

Now let’s focus our attention on , the length of the th segment. At the beginning of segment , we have  different types
of car, and the segment ends when we acquire a new type. When we own  types, each kid’s meal contains a type that we
already have with probability . Therefore, each meal contains a new type of car with probability .
Thus, the expected number of meals until we get a new kind of car is  by the Mean Time to Failure rule. This means
that

Linearity of expectation, together with this observation, solves the coupon collector problem:

Cool! It’s those Harmonic Numbers again.

We can use equation ( ) to answer some concrete questions. For example, the expected number of die rolls required to
see every number from 1 to 6 is:

And the expected number of people you must poll to find at least one person with each possible birthday is:
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Infinite Sums
Linearity of expectation also works for an infinite number of random variables provided that the variables satisfy an absolute
convergence criterion.

(Linearity of Expectation). Let , be random variables such that

converges. Then

Proof

Let 
We leave it to the reader to verify that, under the given convergence hypothesis, all the sums in the following
derivation are absolutely convergent, which justifies rearranging them as follows:

Gambling Paradox
One of the simplest casino bets is on “red” or “black” at the roulette table. In each play at roulette, a small ball is set spinning
around a roulette wheel until it lands in a red, black, or green colored slot. The payoff for a bet on red or black matches the bet;
for example, if you bet $10 on red and the ball lands in a red slot, you get back your original $10 bet plus another matching
$10.

The casino gets its advantage from the green slots, which make the probability of both red and black each less than . In the
US, a roulette wheel has 2 green slots among 18 black and 18 red slots, so the probability of red is . In Europe,
where roulette wheels have only 1 green slot, the odds for red are a little better—that is, —but still less than
even.

Of course you can’t expect to win playing roulette, even if you had the good fortune to gamble against a fair roulette wheel. To
prove this, note that with a fair wheel, you are equally likely win or lose each bet, so your expected win on any spin is zero.
Therefore if you keep betting, your expected win is the sum of your expected wins on each bet: still zero.

Even so, gamblers regularly try to develop betting strategies to win at roulette despite the bad odds. A well known strategy of
this kind is bet doubling, where you bet, say, $10 on red and keep doubling the bet until a red comes up. This means you stop
playing if red comes up on the first spin, and you leave the casino with a $10 profit. If red does not come up, you bet $20 on

Theorem 18.5.5

, , …R0 R1
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∑
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= [ (s)] ⋅ Pr[s]∑
s∈S

∑
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∞

Ri
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s∈S

= Ex[T ]

= Ex [ ] .∑
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∞
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(Def. 18.4.1)

(exchanging order of summation)

(factoring out Pr[s])

(Def. of T)

(Def. 18.4.1)
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18/37 ≈ 0.486
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the second spin. Now if the second spin comes up red, you get your $20 bet plus $20 back and again walk away with a net
profit of $20 10 D $10. If red does not come up on the second spin, you next bet $40 and walk away with a net win of $40 20
10 D $10 if red comes up on on the third spin, and so on.

Since we’ve reasoned that you can’t even win against a fair wheel, this strategy against an unfair wheel shouldn’t work. But
wait a minute! There is a 0.486 probability of red appearing on each spin of the wheel, so the mean time until a red occurs is
less than three. What’s more, red will come up eventually with probability one, and as soon as it does, you leave the casino $10
ahead. In other words, by bet doubling you are certain to win $10, and so your expectation is $10, not zero!

Something’s wrong here.

Solution to the Paradox
The argument claiming the expectation is zero against a fair wheel is flawed by an implicit, invalid use of linearity of
expectation for an infinite sum.

To explain this carefully, let  be the number of dollars you win on your th bet, where  is defined to be zero if red comes
up before the th spin of the wheel. Now the dollar amount you win in any gambling session is

and your expected win is

Moreover, since we’re assuming the wheel is fair, it’s true that , so

The flaw in the argument that you can’t win is the implicit appeal to linearity of expectation to conclude that the expectation
(\label{18.5.7}) equals the sum of expectations in (\label{18.5.8}). This is a case where linearity of expectation fails to hold—
even though the expectation (\label{18.5.7}) is 10 and the sum (\label{18.5.8}) of expectations converges. The problem is that
the expectation of the sum of the absolute values of the bets diverges, so the condition required for infinite linearity fails. In
particular, under bet doubling your th bet is  dollars while the probability that you will make an nth bet is . So

Therefore the sum

diverges rapidly.

So the presumption that you can’t beat a fair game, and the argument we offered to support this presumption, are mistaken: by
bet doubling, you can be sure to walk away a winner. Probability theory has led to an apparently absurd conclusion. But
probability theory shouldn’t be rejected because it leads to this absurd conclusion.

If you only had a finite amount of money to bet with—say enough money to make  bets before going bankrupt—then it
would be correct to calculate your expection by summing , and your expectation would be zero for the
fair wheel and negative against an unfair wheel. In other words, in order to follow the bet doubling strategy, you need to have
an infinite bankroll. So it’s absurd to assume you could actually follow a bet doubling strategy, and it’s entirely reasonable that
an absurd assumption leads to an absurd conclusion.

Expectations of Products
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While the expectation of a sum is the sum of the expectations, the same is usually not true for products. For example, suppose
that we roll a fair 6-sided die and denote the outcome with the random variable . Does ?

We know that  and thus . Let’s compute  to see if we get the same result.

That is,

So the expectation of a product is not always equal to the product of the expectations.

There is a special case when such a relationship does hold however; namely, when the random variables in the product are
independent.

For any two independent random variables 

The proof follows by rearrangement of terms in the sum that defines . Details appear in Problem 18.25.

Theorem 18.5.6 extends routinely to a collection of mutually independent variables.

Corollary 18.5.7. [Expectation of Independent Product]

If random variables  are mutually independent, then
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CHAPTER OVERVIEW
19: DEVIATION FROM THE MEAN

In the previous chapter, we took it for granted that expectation is useful and developed a bunch of
techniques for calculating expected values. But why should we care about this value? After all, a
random variable may never take a value anywhere near its expectation.

The most important reason to care about the mean value comes from its connection to estimation by
sampling. For example, suppose we want to estimate the average age, income, family size, or other
measure of a population. To do this, we determine a random process for selecting people—say,
throwing darts at census lists. This process makes the selected person’s age, income, and so on into a
random variable whose mean equals the actual average age or income of the population. So, we can
select a random sample of people and calculate the average of people in the sample to estimate the
true average in the whole population. But when we make an estimate by repeated sampling, we need
to know how much confidence we should have that our estimate is OK, and how large a sample is needed to reach a given confidence
level. The issue is fundamental to all experimental science. Because of random errors—noise—repeated measurements of the same
quantity rarely come out exactly the same. Determining how much confidence to put in experimental measurements is a fundamental
and universal scientific issue. Technically, judging sampling or measurement accuracy reduces to finding the probability that an estimate
deviates by a given amount from its expected value.

Another aspect of this issue comes up in engineering. When designing a sea wall, you need to know how strong to make it to withstand
tsunamis for, say, at least a century. If you’re assembling a computer network, you might need to know how many component failures it
should tolerate to likely operate without maintenance for at least a month. If your business is insurance, you need to know how large a
financial reserve to maintain to be nearly certain of paying benefits for, say, the next three decades. Technically, such questions come
down to finding the probability of extreme deviations from the mean.

This issue of deviation from the mean is the focus of this chapter.

19.1: MARKOV’S THEOREM
19.2: CHEBYSHEV’S THEOREM
19.3: PROPERTIES OF VARIANCE
Variance is the average of the square of the distance from the mean. For this reason, variance is sometimes called the “mean square
deviation.” Then we take its square root to get the standard deviation—which in turn is called “root mean square deviation.”

19.4: ESTIMATION BY RANDOM SAMPLING
19.5: CONFIDENCE VERSUS PROBABILITY
19.6: SUMS OF RANDOM VARIABLES
19.7: REALLY GREAT EXPECTATIONS
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19.1: Markov’s Theorem
Markov’s theorem gives a generally coarse estimate of the probability that a random variable takes a value much larger than
its mean. It is an almost trivial result by itself, but it actually leads fairly directly to much stronger results.

The idea behind Markov’s Theorem can be explained by considering the quantity known as intelligence quotient, IQ, which
remains in wide use despite doubts about its legitimacy. IQ was devised so that its average measurement would be 100. This
immediately implies that at most  of the population can have an IQ of 300 or more, because if more than a third had an IQ
of 300, then the average would have to be more than . So, the probability that a randomly chosen person has
an IQ of 300 or more is at most 1/3. By the same logic, we can also conclude that at most 2/3 of the population can have an IQ
of 150 or more.

Of course, these are not very strong conclusions. No IQ of over 300 has ever been recorded; and while many IQ’s of over 150
have been recorded, the fraction of the population that actually has an IQ that high is very much smaller than . But though
these conclusions are weak, we reached them using just the fact that the average IQ is 100—along with another fact we took
for granted, that IQ is never negative. Using only these facts, we can’t derive smaller fractions, because there are nonnegative
random variables with mean 100 that achieve these fractions. For example, if we choose a random variable equal to 300 with
probability  and 0 with probability , then its mean is 100, and the probability of a value of 300 or more really is .

(Markov’s Theorem). If  is a nonnegative random variable, then for all 

Proof

Let  vary over the range of . Then for any 

where the first inequality follows from the fact that .

Dividing the first and last expressions in ( ) by x gives the desired result. 

Our focus is deviation from the mean, so it’s useful to rephrase Markov’s Theorem this way:

Corollary 19.1.2. If  is a nonnegative random variable, then for all 

This Corollary follows immediately from Markov’s Theorem(19.1.1) by letting  be .

Applying Markov’s Theorem
Let’s go back to the Hat-Check problem of Section 18.5.2. Now we ask what the probability is that  or more men get the right
hat, this is, what the value of  is.

We can compute an upper bound with Markov’s Theorem. Since we know , Markov’s Theorem implies

1/3

1/3 ⋅ 300 = 100

2/3

1/3 2/3 1/3
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For example, there is no better than a 20% chance that 5 men get the right hat, regardless of the number of people at the dinner
party.

The Chinese Appetizer problem is similar to the Hat-Check problem. In this case,  people are eating different appetizers
arranged on a circular, rotating Chinese banquet tray. Someone then spins the tray so that each person receives a random
appetizer. What is the probability that everyone gets the same appetizer as before?

There are  equally likely orientations for the tray after it stops spinning. Everyone gets the right appetizer in just one of these 
 orientations. Therefore, the correct answer is .

But what probability do we get from Markov’s Theorem? Let the random variable, , be the number of people that get the
right appetizer. Then of course , so applying Markov’s Theorem, we find:

So for the Chinese appetizer problem, Markov’s Theorem is precisely right!

Unfortunately, Markov’s Theorem is not always so accurate. For example, it gives the same  upper limit for the probability
that everyone gets their own hat back in the Hat-Check problem, where the probability is actually . So for Hat-Check,
Markov’s Theorem gives a probability bound that is way too large.

Markov’s Theorem for Bounded Variables
Suppose we learn that the average IQ among MIT students is 150 (which is not true, by the way). What can we say about the
probability that an MIT student has an IQ of more than 200? Markov’s theorem immediately tells us that no more than 

 or  of the students can have such a high IQ. Here, we simply applied Markov’s Theorem to the random variable, 
, equal to the IQ of a random MIT student to conclude:

But let’s observe an additional fact (which may be true): no MIT student has an IQ less than 100. This means that if we let 
, then  is nonnegative and , so we can apply Markov’s Theorem to T and conclude:

So only half, not , of the students can be as amazing as they think they are. A bit of a relief!

In fact, we can get better bounds applying Markov’s Theorem to  instead of  for any lower bound  on  (see Problem
19.3). Similarly, if we have any upper bound, , on a random variable, , then  will be a nonnegative random variable,
and applying Markov’s Theorem to  will allow us to bound the probability that  is much less than its expectation.
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19.2: Chebyshev’s Theorem
We’ve seen that Markov’s Theorem can give a better bound when applied to  rather than . More generally, a good trick
for getting stronger bounds on a random variable  out of Markov’s Theorem is to apply the theorem to some cleverly chosen
function of . Choosing functions that are powers of the absolute value of R turns out to be especially useful. In particular,
since  is nonnegative for any real number , Markov’s inequality also applies to the event . But for positive 

 > 0 this event is equivalent to the event  for , so we have:

Lemma 19.2.1. For any random variable  and positive real numbers ,

Rephrasing (19.2.1) in terms of , the random variable that measures R’s deviation from its mean, we get

The case when  turns out to be so important that the numerator of the right hand side of ( ) has been given a name:

The variance, , of a random variable, , is:

Variance is also known as mean square deviation.

The restatement of ( ) for  is known as Chebyshev’s Theorem

(Chebyshev). Let  be a random variable and . Then

The expression  for variance is a bit cryptic; the best approach is to work through it from the inside
out. The innermost expression, , is precisely the deviation of  above its mean. Squaring this, we obtain, 

. This is a random variable that is near 0 when  is close to the mean and is a large positive number when 
 deviates far above or below the mean. So if  is always close to the mean, then the variance will be small. If  is often

far from the mean, then the variance will be large.

Variance in Two Gambling Games
The relevance of variance is apparent when we compare the following two gambling games.

Game A: We win $2 with probability  and lose $1 with probability .

Game B: We win $1002 with probability  and lose $2001 with probability .

Which game is better financially? We have the same probability, , of winning each game, but that does not tell the whole
story. What about the expected return for each game? Let random variables  and  be the payoffs for the two games. For
example,  is 2 with probability  and -1 with probability . We can compute the expected payoff for each game as
follows:
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(19.2.1)

z = 2 19.2.1

Definition 19.2.2
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The expected payoff is the same for both games, but the games are very different. This difference is not apparent in their
expected value, but is captured by variance.

We can compute the  by working “from the inside out” as follows:

Similarly, we have for :

The variance of Game A is 2 and the variance of Game B is more than two million! Intuitively, this means that the payoff in
Game A is usually close to the expected value of $1, but the payoff in Game B can deviate very far from this expected value.

High variance is often associated with high risk. For example, in ten rounds of Game A, we expect to make $10, but could
conceivably lose $10 instead. On the other hand, in ten rounds of game B, we also expect to make $10, but could actually lose
more than $20,000!

Standard Deviation
In Game B above, the deviation from the mean is 1001 in one outcome and -2002 in the other. But the variance is a whopping
2,004,002. The happens because the “units” of variance are wrong: if the random variable is in dollars, then the expectation is
also in dollars, but the variance is in square dollars. For this reason, people often describe random variables using standard
deviation instead of variance.

The standard deviation, , of a random variable, , is the square root of the variance:

So the standard deviation is the square root of the mean square deviation, or the root mean square for short. It has the same
units—dollars in our example—as the original random variable and as the mean. Intuitively, it measures the average deviation
from the mean, since we can think of the square root on the outside as canceling the square on the inside.

Example 19.2.5. The standard deviation of the payoff in Game B is:

The random variable  actually deviates from the mean by either positive 1001 or negative 2002, so the standard deviation of
1416 describes this situation more closely than the value in the millions of the variance.
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 with probability  2
3

 with probability  1
3

= 1 ⋅ +4 ⋅
2

3

1

3
= 2.

Var[B]

B −Ex[B]

(B −Ex[B])2

Ex[(B −Ex[B] ])2

Var[B]

= {
1001

−2002

 with probability  2
3

 with probability  1
3

= {
1, 002, 001

4, 008, 004

 with probability  2
3

 with probability  1
3

= 1, 002, 001 ⋅ +4, 008, 004 ⋅
2

3

1

3
= 2, 004, 002.

Definition 19.2.4

σR R

::= = .σR Var[R]
− −−−−−

√ Ex[(R −Ex[R] ])2
− −−−−−−−−−−−−−

√

= = ≈ 1416.σR Var[B]
− −−−−−

√ 2, 004, 002
− −−−−−−−

√

B
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For bell-shaped distributions like the one illustrated in Figure 19.1, the standard deviation measures the “width” of the interval
in which values are most likely to fall. This can be more clearly explained by rephrasing Chebyshev’s Theorem in terms of
standard deviation, which we can do by substituting  in (19.1):

Figure 19.1 The standard deviation of a distribution indicates how wide the “main part” of it is.

Corollary 19.2.6. Let  be a random variable, and let  be a positive real number.

Now we see explicitly how the “likely” values of  are clustered in an -sized region around , confirming that the
standard deviation measures how spread out the distribution of  is around its mean.

The IQ Example

Suppose that, in addition to the national average IQ being 100, we also know the standard deviation of IQ’s is 10. How rare is
an IQ of 300 or more?

Let the random variable, , be the IQ of a random person. So , , and  is nonnegative. We want to
compute .

We have already seen that Markov’s Theorem 19.1.1 gives a coarse bound, namely,

Now we apply Chebyshev’s Theorem to the same problem:

So Chebyshev’s Theorem implies that at most one person in four hundred has an IQ of 300 or more. We have gotten a much
tighter bound using additional information—the variance of —than we could get knowing only the expectation.

There are Chebyshev Theorems in several other disciplines, but Theorem 19.2.3 is the only one we’ll refer to.

x = cσR

R c

Pr[|R −Ex[R]| ≥ c ] ≤ .σR

1

c2
(19.2.2)

R O( )σR Ex[R]

R

R Ex[R] = 100 = 10σR R

Pr[R ≥ 300]

Pr[R ≥ 300] ≤ .
1

3

Pr[R ≥ 300] = Pr[|R −100| ≥ 200] ≤ = = .
Var[R]

2002

102

2002

1

400

R

1
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19.3: Properties of Variance
Variance is the average of the square of the distance from the mean. For this reason, variance is sometimes called the “mean
square deviation.” Then we take its square root to get the standard deviation—which in turn is called “root mean square
deviation.”

But why bother squaring? Why not study the actual distance from the mean, namely, the absolute value of , instead
of its root mean square? The answer is that variance and standard deviation have useful properties that make them much more
important in probability theory than average absolute deviation. In this section, we’ll describe some of those properties. In the
next section, we’ll see why these properties are important.

Formula for Variance
Applying linearity of expectation to the formula for variance yields a convenient alternative formula.

Lemma 19.3.1.

for any random variable, .

Here we use the notation  as shorthand for .

Proof. Let  Then

A simple and very useful formula for the variance of an indicator variable is an immediate consequence.

Corollary 19.3.2. If  is a Bernoulli variable where , then

Proof. By Lemma 18.4.2, . But  only takes values 0 and 1, so  and equation ( ) follows immediately
from Lemma 19.3.1. 

Variance of Time to Failure
According to Section 18.4.6, the mean time to failure is  for a process that fails during any given hour with probability .
What about the variance?

By Lemma 19.3.1,

so all we need is a formula for .

Reasoning about  using conditional expectation worked nicely in Section 18.4.6 to find mean time to failure, and a similar
approach works for . Namely, the expected value of  is the probability, , of failure in the first hour times , plus the
probability, , of non-failure in the first hour times the expected value of . So

R −Ex[R]

Var[R] = Ex[ ] − [R],R2 Ex2

R

[R]Ex2 (Ex[R])2

μ = Ex[R].

Var[R] = Ex[(R −Ex[R] ])2

= Ex[(R −μ ])2

= Ex[ −2μR + ]R2 μ2

= Ex[ ] −2μEx[R] +R2 μ2

= Ex[ ] −2 +R2 μ2 μ2

= Ex[ ] −R2 μ2

= Ex[ ] − [R].R2 Ex2

(Def 19.2.2 of variance)

(def of μ)

(linearity of expectation)

(def of μ)

(def of μ)

■

B p ::= Pr[B = 1]

Var[B] = p − = p(1 −p).p2 (19.3.1)

Ex[B] = p B = BB2 19.3.1

■

1/p p

Var[C] = Ex[ ] −(1/pC 2 )2 (19.3.2)

Ex[ ]C 2

C

C 2 C 2 p 12

(1 −p) (C +1)2
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Combining this with ( ) proves

Lemma 19.3.3. If failures occur with probability  independently at each step, and  is the number of steps until the first
failure  , then

Dealing with Constants
It helps to know how to calculate the variance of :

[Square Multiple Rule for Variance] Let  be a random variable and  a constant. Then

Proof

Beginning with the definition of variance and repeatedly applying linearity of expectation, we have:

It’s even simpler to prove that adding a constant does not change the variance, as the reader can verify:

Let  be a random variable and  a constant. Then

Recalling that the standard deviation is the square root of variance, this implies that the standard deviation of  is simply
 times the standard deviation of :

Corollary 19.3.6.

Ex[ ]C 2 = p ⋅ +(1 −p)Ex[(C +1 ]12 )2

= p +(1 −p)(Ex[ ] + +1)C 2 2

p

= p +(1 −p)Ex[ ] +(1 −p)( +1) , soC 2 2

p

pEx[ ]C 2 = p +(1 −p)( +1)
2

p

= and
+(1 −p)(2 +p)p2

p

Ex[ ] = .C 2 2 −p

p2

19.3.2

p C
2

Var[C] = .
1 −p

p2
(19.3.3)

aR +b

Theorem 19.3.4

R a

Var[aR] = Var[R].a2 (19.3.4)

Var[aR] ::= Ex[(aR −Ex[aR] ])2

= Ex[(aR −2aREx[aR] + [aR]])2 Ex2

= Ex[(aR ] −Ex[2aREx[aR]] + [aR])2 Ex2

= Ex[ ] −2Ex[aR]Ex[aR] + [aR]a2 R2 Ex2

= Ex[R] − [R]a2 a2Ex2

= (Ex[ ] − [R])a2 R2 Ex2

= Var[R]a2 (Lemma 19.3.1)

■

Theorem 19.3.5

R b

Var[R +b] = Var[R]. (19.3.5)

aR +b

|a| R
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Variance of a Sum
In general, the variance of a sum is not equal to the sum of the variances, but variances do add for independent variables. In
fact, mutual independence is not necessary: pairwise independence will do. This is useful to know because there are some
important situations, such as Birthday Matching in Section 16.4, that involve variables that are pairwise independent but not
mutually independent.

If  and  are independent random variables, then

Proof

We may assume that , since we could always replace  by  in equation ( ); likewise for .
This substitution preserves the independence of the variables, and by Theorem 19.3.5, does not change the variances.
But for any variable  with expectation zero, we have , so we need only prove

But ( ) follows from linearity of expectation and the fact that

since  and  are independent:

It’s easy to see that additivity of variance does not generally hold for variables that are not independent. For example, if 
, then equation ( ) becomes . By the Square Multiple Rule, Theorem 19.3.4,

this holds iff , which implies that . So equation ( ) fails when  and  has
nonzero variance.

The proof of Theorem 19.3.7 carries over to the sum of any finite number of variables. So we have:

[Pairwise Independent Additivity of Variance] If  are pairwise independent random variables, then

Now we have a simple way of computing the variance of a variable, , that has an -binomial distribution. We know that 
 where the  are mutually independent indicator variables with . The variance of each  is 

 by Corollary 19.3.2, so by linearity of variance, we have

Lemma 19.3.9 (Variance of the Binomial Distribution). If  has the -binomial distribution, then

That is,  has the geometric distribution with parameter  according to Definition 18.4.6.

= |a| .σ(aR+b) σR

Theorem 19.3.7

R S

Var[R +S] = Var[R] +Var[S]. (19.3.6)

Ex[R] = 0 R R −Ex[R] 19.3.6 S

T Var[T ] = Ex[ ]T 2

Ex[(R +S ] = Ex[ ] +Ex[ ].)2 R2 S2 (19.3.7)

19.3.7

Ex[RS] = Ex[R]Ex[S] (19.3.8)

R S

Ex[(R +S ])2 = Ex[ +2RS + ]R2 S2

= Ex[ ] +2Ex[RS] +Ex[ ]R2 S2

= Ex[ ] +2Ex[R]Ex[S] +Ex[ ]R2 S2

= Ex[ ] +2 ⋅ 0 ⋅ 0 +Ex[ ]R2 S2

= Ex[ ] +Ex[ ]R2 S2

(by (19.3.8))

■

R = S 19.3.6 Var[R +R] = Var[R] +Var[R]

4Var[R] = 2Var[R] Var[R] = 0 19.3.6 R = S R

Theorem 19.3.8

, , … ,R1 R2 Rn

Var[ + +⋯ + ] = Var[ ] +Var[ ] +⋯ +Var[ ].R1 R2 Rn R1 R2 Rn (19.3.9)

J (n, p)

J =∑n
k=1 Ik Ik Pr[ = 1] = pIk Ik

p(1 −p)

J (n, p)

Var[J] = nVar[ ] = np(1 −p).Ik (19.3.10)

2 C p
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19.4: Estimation by Random Sampling
Democratic politicians were astonished in 2010 when their early polls of sample voters showed Republican Scott Brown was
favored by a majority of voters and so would win the special election to fill the Senate seat that the late Democrat Teddy
Kennedy had occupied for over 40 years. Based on their poll results, they mounted an intense, but ultimately unsuccessful,
effort to save the seat for their party.

Voter Poll
Suppose at some time before the election that  was the fraction of voters favoring Scott Brown. We want to estimate this
unknown fraction . Suppose we have some random process for selecting voters from registration lists that selects each voter
with equal probability. We can define an indicator variable, , by the rule that  if the random voter most prefers
Brown, and  otherwise.

Now to estimate , we take a large number, , of random choices of voters  and count the fraction who favor Brown. That is,
we define variables , where  is interpreted to be the indicator variable for the event that the th chosen voter
prefers Brown. Since our choices are made independently, the ’s are independent. So formally, we model our estimation
process by assuming we have mutually independent indicator variables , each with the same probability, , of
being equal to 1. Now let  be their sum, that is,

The variable  describes the fraction of sampled voters who favor Scott Brown. Most people intuitively, and correctly,
expect this sample fraction to give a useful approximation to the unknown fraction, .

So we will use the sample value, , as our statistical estimate of . We know that  has a binomial distribution with
parameters  and ; we can choose , but  is unknown.

How Large a Sample?

Suppose we want our estimate to be within 0.04 of the fraction, , at least 95% of the time. This means we want

So we’d better determine the number,  of times we must poll voters so that inequality ( ) will hold. Chebyshev's
Theorem offers a simple way to determine such a .

Sn is binomially distributed. Equation (19.3.10), combined with the fact that  is maximized when , that is,
when  (check for yourself!), gives

Next, we bound the variance of :

Using Chebyshev’s bound and ( ) we have:

p

p

K K = 1

K = 0

p n 3

, , …K1 K2 Ki i

Ki

, , …K1 K2 p

Sn

::= .Sn ∑
i=1

n

Ki (19.4.1)

/nSn

p

/nSn p Sn

n p n p

p

Pr[ −p ≤ 0.04] ≥ 0.95.
∣

∣
∣
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n

∣

∣
∣ (19.4.2)

n 19.4.2

n

p(1 −p) p = 1 −p

p = 1/2

Var[ ] = n(p(1 −p)) ≤ n ⋅ = .Sn

1

4

n

4
(19.4.3)

/nSn
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1

n

2
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≤
1

n
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4

=
1

4n

((Square Multiple Rule for Variance (19.3.4))

(by (19.4.3))

(19.4.4)

19.4.4

Pr[ −p ≥ 0.04] ≤ ≤ =
∣

∣
∣
Sn

n

∣

∣
∣

Var[ /n]Sn

(0.04)2

1
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To make our our estimate with 95% confidence, we want the righthand side of ( ) to be at most . So we choose  so
that

that is,

Section 19.6.2 describes how to get tighter estimates of the tails of binomial distributions that lead to a bound on  that is
about four times smaller than the one above. But working through this example using only the variance illustrates an approach
to estimation that is applicable to arbitrary random variables, not just binomial variables.

Matching Birthdays
There are important cases where the relevant distributions are not binomial because the mutual independence properties of the
voter preference example do not hold. In these cases, estimation methods based on Chebyshev’s Theorem may be the best
approach. Birthday Matching is an example. We already saw in Section 16.4 that in a class of 95 students, it is virtually certain
that at least one pair of students will have the same birthday, which suggests that several pairs of students are likely to have the
same birthday. How many matched birthdays should we expect?

As before, suppose there are  students and  days in the year, and let  be the number of pairs of students with matching
birthdays. Now it will be easy to calculate the expected number of pairs of students with matching birthdays. Then we can take
the same approach as we did in estimating voter preferences to get an estimate of the probability of getting a number of pairs
close to the expected number.

Unlike the situation with voter preferences, having matching birthdays for different pairs of students are not mutually
independent events. Knowing Alice’s birthday matches Bob’s tells us nothing about who Carol matches, and knowing Alice
has the same birthday as Carol tells us nothing about who Bob matches. But if Alice matches Bob and Alice matches Carol,
it’s certain that Bob and Carol match as well! The events that various pairs of students have matching birthdays are not
mutually independent, and indeed not even three-way independent. The best we can say is that they are pairwise independent.
This will allow us to apply the same reasoning to Birthday Matching as we did for voter preference. Namely, let 

 be the birthdays of  independently chosen people, and let  be the indicator variable for the event that the 
th and th people chosen have the same birthdays, that is, the event . So in our probability model, the ’s are

mutually independent variables, and the  ’s are pairwise independent. Also, the expectations of  for  equals the
probability that , namely, .

Now, , the number of matching pairs of birthdays among the  choices, is simply the sum of the  ’s:

So by linearity of expectation

Similarly,

In particular, for a class of  students with  possible birthdays, we have  and 
. So by Chebyshev’s Theorem

19.4.5 1/20 n

≤ ,
156.25

n

1

20

n ≥ 3, 125.

n

n d M

, , … ,B1 B2 Bn n Ei,j

i j [ = ]Bi Bj Bi

Ei,j Ei,j i ≠ j

=Bi Bj 1/d

M n Ei,j

M ::= .∑
1≤i<j≤n

Ei,j (19.4.6)

Ex[M ] = Ex[ ] = Ex =( ) ⋅ .∑
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Var[M ] = Var[ ]∑
1≤i<j≤n

Ei,j

= Var∑
1≤i<j≤n

Ei,j

=( ) ⋅ (1 − ) .
n

2

1

d

1

d

((Theorem 19.3.8)

((Corollary 19.3.2)

n = 95 d = 365 Ex[M ] ≈ 12.23

Var[M ] ≈ 12.23(1 −1/365) < 12.2
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Letting , we conclude that there is a better than 75% chance that in a class of 95 students, the number of pairs of students
with the same birthday will be within 7 of 12.23, that is, between 6 and 19.

Pairwise Independent Sampling
The reasoning we used above to analyze voter polling and matching birthdays is very similar. We summarize it in slightly
more general form with a basic result called the Pairwise Independent Sampling Theorem. In particular, we do not need to
restrict ourselves to sums of zero-one valued variables, or to variables with the same distribution. For simplicity, we state the
Theorem for pairwise independent variables with possibly different distributions but with the same mean and variance.

(Pairwise Independent Sampling). Let  be pairwise independent variables with the same mean, , and
deviation, . Define

Then

Proof

We observe first that the expectation of  is :

The second important property of  is that its variance is the variance of  divided by :

This is enough to apply Chebyshev’s Theorem and conclude:

Pr[|M −Ex[M ]| ≥ x] < .
12.2

x2

x = 7

Theorem 19.4.1
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(Square Multiple Rule for Variance (19.3.4))
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The Pairwise Independent Sampling Theorem provides a quantitative general statement about how the average of independent
samples of a random variable approaches the mean. In particular, it proves what is known as the Law of Large Numbers : by
choosing a large enough sample size, we can get arbitrarily accurate estimates of the mean with confidence arbitrarily close to
100%.

Corollary 19.4.2. [Weak Law of Large Numbers] Let  be pairwise independent variables with the same mean, ,
and the same finite deviation, and let

Then for every ,

We’re choosing a random voter  times with replacement. We don’t remove a chosen voter from the set of voters eligible to
be chosen later; so we might choose the same voter more than once! We would get a slightly better estimate if we required 
different people to be chosen, but doing so complicates both the selection process and its analysis for little gain.

This is the Weak Law of Large Numbers. As you might suppose, there is also a Strong Law, but it’s outside the scope of
6.042.
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19.5: Confidence versus Probability
So Chebyshev’s Bound implies that sampling 3,125 voters will yield a fraction that, 95% of the time, is within 0.04 of the
actual fraction of the voting population who prefer Brown.

Notice that the actual size of the voting population was never considered because it did not matter. People who have not
studied probability theory often insist that the population size should influence the sample size. But our analysis shows that
polling a little over 3000 people people is always sufficient, regardless of whether there are ten thousand, or a million, or a
billion voters. You should think about an intuitive explanation that might persuade someone who thinks population size
matters.

Now suppose a pollster actually takes a sample of 3,125 random voters to estimate the fraction of voters who prefer Brown,
and the pollster finds that 1250 of them prefer Brown. It’s tempting, but sloppy, to say that this means:

False Claim. With probability 0.95, the fraction, , of voters who prefer Brown is . Since 
, there is a 95% chance that more than a third of the voters prefer Brown to all other candidates.

What’s objectionable about this statement is that it talks about the probability or “chance” that a real world fact is true, namely
that the actual fraction, , of voters favoring Brown is more than . But  is what it is, and it simply makes no sense to talk
about the probability that it is something else. For example, suppose  is actually 0.3; then it’s nonsense to ask about the
probability that it is within 0.04 of . It simply isn’t.

This example of voter preference is typical: we want to estimate a fixed, unknown real-world quantity. But being unknown
does not make this quantity a random variable, so it makes no sense to talk about the probability that it has some property.

A more careful summary of what we have accomplished goes this way:

We have described a probabilistic procedure for estimating the value of the actual fraction, . The probability that our
estimation procedure will yield a value within 0.04 of  is 0.95.

This is a bit of a mouthful, so special phrasing closer to the sloppy language is commonly used. The pollster would describe
his conclusion by saying that

At the 95% confidence level, the fraction of voters who prefer Brown is .

So confidence levels refer to the results of estimation procedures for real-world quantities. The phrase “confidence level”
should be heard as a reminder that some statistical procedure was used to obtain an estimate, and in judging the credibility of
the estimate, it may be important to learn just what this procedure was.

p 1250/3125 ±0.04

1250/3125 −0.04 > 1/3

p 1/3 p

p

1250/3125

p

p

1250/3125 ±0.04
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19.6: Sums of Random Variables
If all you know about a random variable is its mean and variance, then Chebyshev’s Theorem is the best you can do when it
comes to bounding the probability that the random variable deviates from its mean. In some cases, however, we know more—
for example, that the random variable has a binomial distribution— and then it is possible to prove much stronger bounds.
Instead of polynomially small bounds such as , we can sometimes even obtain exponentially small bounds such as .
As we will soon discover, this is the case whenever the random variable  is the sum of  mutually independent random
variables  where . A random variable with a binomial distribution is just one of many examples of
such a . Here is another.

Motivating Example
Fussbook is a new social networking site oriented toward unpleasant people. Like all major web services, Fussbook has a load
balancing problem: it receives lots of forum posts that computer servers have to process. If any server is assigned more work
than it can complete in a given interval, then it is overloaded and system performance suffers. That would be bad, because
Fussbook users are not a tolerant bunch. So balancing the work load across mutliple servers is vital.

An early idea was to assign each server an alphabetic range of forum topics. (“That oughta work!”, one programmer said.) But
after the computer handling the “privacy” and “preferred text editor” threads melted from overload, the drawback of an ad hoc
approach was clear: it’s easy to miss something that will mess up your plan.

If the length of every task were known in advance, then finding a balanced distribution would be a kind of “bin packing”
problem. Such problems are hard to solve exactly, but approximation algorithms can come close. Unfortunately, in this case
task lengths are not known in advance, which is typical of workload problems in the real world.

So the load balancing problem seems sort of hopeless, because there is no data available to guide decisions. So the
programmers of Fussbook gave up and just randomly assigned posts to computers. Imagine their surprise when the system
stayed up and hasn’t crashed yet!

As it turns out, random assignment not only balances load reasonably well, but also permits provable performance guarantees.
In general, a randomized approach to a problem is worth considering when a deterministic solution is hard to compute or
requires unavailable information.

Specifically, Fussbook receives 24,000 forum posts in every 10-minute interval. Each post is assigned to one of several servers
for processing, and each server works sequentially through its assigned tasks. It takes a server an average of  second to
process a post. Some posts, such as pointless grammar critiques and snide witticisms, are easier, but no post—not even the
most protracted harangues—takes more than one full second.

Measuring workload in seconds, this means a server is overloaded when it is assigned more than 600 units of work in a given
600 second interval. Fussbook’s average processing load of  seconds per interval would keep 10
computers running at 100% capacity with perfect load balancing. Surely, more than 10 servers are needed to cope with random
fluctuations in task length and imperfect load balance. But would 11 be enough? . . . or 15, 20, 100? We’ll answer that question
with a new mathematical tool.

The Chernoff Bound
The Chernoff  bound is a hammer that you can use to nail a great many problems. Roughly, the Chernoff bound says that
certain random variables are very unlikely to significantly exceed their expectation. For example, if the expected load on a
processor is just a bit below its capacity, then that processor is unlikely to be overloaded, provided the conditions of the
Chernoff bound are satisfied.

More precisely, the Chernoff Bound says that the sum of lots of little, independent random variables is unlikely to significantly
exceed the mean of the sum. The Markov and Chebyshev bounds lead to the same kind of conclusion but typically provide
much weaker bounds. In particular, the Markov and Chebyshev bounds are polynomial, while the Chernoff bound is
exponential.

Here is the theorem. The proof will come later in Section 19.6.6.

1/c2 1/ec

T n

, , … ,T1 T2 Tn 0 ≤ ≤ 1Ti

T

1/4

24, 000 ⋅ 1/4 = 6000
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(Chernoff Bound). Let  be mutually independent random variables such that  for all . Let 
. Then for all ,

where .

The Chernoff bound applies only to distributions of sums of independent random variables that take on values in the real
interval . The binomial distribution is the most well-known distribution that fits these criteria, but many others are
possible, because the Chernoff bound allows the variables in the sum to have differing, arbitrary, or even unknown
distributions over the range . Furthermore, there is no direct dependence on either the number of random variables in the
sum or their expectations. In short, the Chernoff bound gives strong results for lots of problems based on little information—
no wonder it is widely used!

Chernoff Bound for Binomial Tails
The Chernoff bound can be applied in easy steps, though the details can be daunting at first. Let’s walk through a simple
example to get the hang of it: bounding the probability that the number of heads that come up in 1000 independent tosses of a
coin exceeds the expectation by 20% or more. Let  be an indicator variable for the event that the th coin is heads. Then the
total number of heads is

The Chernoff bound requires that the random variables  be mutually independent and take on values in the range . Both
conditions hold here. In this example the ’s only take the two values 0 and 1, since they’re indicators.

The goal is to bound the probability that the number of heads exceeds its expectation by 20% or more; that is, to bound 
 where . To that end, we compute  as defined in the theorem:

If we assume the coin is fair, then  Plugging these values into the Chernoff bound gives:

So the probability of getting 20% or more extra heads on 1000 coins is less than 1 in 10,000.

The bound rapidly becomes much smaller as the number of coins increases, because the expected number of heads appears in
the exponent of the upper bound. For example, the probability of getting at least 20% extra heads on a million coins is at most

which is an inconceivably small number.

Alternatively, the bound also becomes stronger for larger deviations. For example, suppose we’re interested in the odds of
getting 30% or more extra heads in 1000 tosses, rather than 20%. In that case,  instead of 1.2. Consequently, the
parameter  rises from 0.0187 to about 0.0410, which may not seem significant, but because  appears in the exponent
of the upper bound, the final probability decreases from around 1 in 10,000 to about 1 in a billion!

Chernoff Bound for a Lottery Game
Pick-4 is a lottery game in which you pay $1 to pick a 4-digit number between 0000 and 9999. If your number comes up in a
random drawing, then you win $5,000. Your chance of winning is 1 in 10,000. If 10 million people play, then the expected
number of winners is 1000. When there are exactly 1000 winners, the lottery keeps $5 million of the $10 million paid for
tickets. The lottery operator’s nightmare is that the number of winners is much greater—especially at the point where more
than 2000 win and the lottery must pay out more than it received. What is the probability that will happen?

Theorem 19.6.1

, … ,T1 Tn 0 ≤ ≤ 1Ti i

T = +⋯ +T1 Tn c ≥ 1

Pr[T ≥ cEx[T ]] ≤ e−β(c)Ex[T ] (19.6.1)

β(c) ::= c lnc −c +1

[0, 1]

[0, 1]
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T = +⋯ + .T1 T1000

Ti [0, 1]

Ti

Pr[T ≥ cEx[T ]] c = 1.2 β(c)

β(c) = c ln(c) −c +1 = 0.0187 …

Ex[T ] = 500

Pr[T ≥ 1.2Ex[T ]] ≤ e−β(c).Ex[T ]

= < 0.0000834.e−(0.0187…)⋅500
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Let  be an indicator for the event that the th player wins. Then  is the total number of winners. If we
assume  that the players’ picks and the winning number are random, independent and uniform, then the indicators  are
independent, as required by the Chernoff bound.

Since 2000 winners would be twice the expected number, we choose , compute , and plug these values
into the Chernoff bound:

So there is almost no chance that the lottery operator pays out more than it took in. In fact, the number of winners won’t even
be 10% higher than expected very often. To prove that, let , compute , and plug in again:

So the Pick-4 lottery may be exciting for the players, but the lottery operator has little doubt as to the outcome!

Randomized Load Balancing
Now let’s return to Fussbook and its load balancing problem. Specifically, we need to determine a number, , of servers that
makes it very unlikely that any server is overloaded by being assigned more than 600 seconds of work in a given interval.

To begin, let’s find the probability that the first server is overloaded. Letting  be the number of seconds of work assigned to
the first server, this means we want an upper bound on . Let  be the number of seconds that the first server
spends on the th task: then  is zero if the task is assigned to another machine, and otherwise  is the length of the task. So 

 is the total number of seconds of work assigned to the first server, where .

The Chernoff bound is applicable only if the  are mutually independent and take on values in the range . The first
condition is satisfied if we assume that assignment of a post to a server is independent of the time required to process the post.
The second condition is satisfied because we know that no post takes more than 1 second to process; this is why we chose to
measure work in seconds.

In all, there are 24,000 tasks, each with an expected length of  second. Since tasks are assigned to the  servers at random,
the expected load on the first server is:

So if there are fewer than 10 servers, then the expected load on the first server is greater than its capacity, and we can expect it
to be overloaded. If there are exactly 10 servers, then the server is expected to run for  seconds, which is 100%
of its capacity.

Now we can use the Chernoff bound based on the number of servers to bound the probability that the first server is overloaded.
We have from ( )

so by the Chernoff bound

The probability that some server is overloaded is at most  times the probability that the first server is overloaded, by the
Union Bound in Section 16.5.2. So

Ti i T = +⋯ +T1 Tn
6 Ti

c = 2 β(c) = 0.386 …

Pr[T ≥ 2000] = Pr[T ≥ 2Ex[T ]]

≤ =e−kEx[T ] e−(0.386…)⋅1000

< .e−386

c = 1.1 β(c) = 0.00484 …

Pr[T ≥ 1.1Ex[T ]] ≤ e−kEx[T ]

= < 0.01.e−(0.00484)⋅1000

m

T

Pr[T ≥ 600] Ti

i Ti Ti

T = ∑Ti

i=1 n = 24, 000

Ti [0, 1]

1/4 m

Ex[T ] =
24, 000 tasks  ⋅ 1/4 second per task

m servers 
= 6000/m seconds . (19.6.2)

6000/10 = 600

19.6.2

600 = cEx[T ] where c ::= m/10,

Pr[T ≥ 600] = Pr[T ≥ cEx[T ]] ≤ ,e−(c ln(c)−c+1)⋅6000/m
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where . Some values of this upper bound are tabulated below:

These values suggest that a system with  machines might suffer immediate overload,  machines could fail in a
few days, but  should be fine for a century or two!

Proof of the Chernoff Bound
The proof of the Chernoff bound is somewhat involved. In fact, Chernoff himself couldn’t come up with it: his friend, Herman
Rubin, showed him the argument. Thinking the bound not very significant, Chernoff did not credit Rubin in print. He felt
pretty bad when it became famous!

Proof. (of Theorem 19.6.1)

For clarity, we’ll go through the proof “top down.” That is, we’ll use facts that are proved immediately afterward.

The key step is to exponentiate both sides of the inequality  and then apply the Markov bound:

Algebra aside, there is a brilliant idea in this proof: in this context, exponentiating somehow supercharges the Markov bound.
This is not true in general! One unfortunate side-effect of this supercharging is that we have to bound some nasty expectations
involving exponentials in order to complete the proof. This is done in the two lemmas below, where variables take on values as
in Theorem 19.6.1.

Lemma 19.6.2.

Proof.

The third equality depends on the fact that functions of independent variables are also independent (see Lemma 18.2.2).

Lemma 19.6.3.

Pr[some server is overloaded] ≤ Pr[server i is overloaded]∑
i=1

m

= mPr[the first server is overloaded]

≤ m ,e−(c ln(c)−c+1)⋅6000/m

c = m/10

m

m

m

= 11 : 0.784 …

= 12 : 0.000999 …

= 13 : 0.0000000760 …

m = 11 m = 12

m = 13
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ec ln(c)Ex[T ]
e−(c ln(c)−c+1)Ex[T ]

(Markov Bound)

(Lemma 19.6.2 below)

■
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(Lemma 19.6.3 below)
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Proof. All summations below range over values  taken by the random variable , which are all required to be in the interval 
.

The second step relies on the inequality

which holds for all  in  and . This follows from the general principle that a convex function, namely , is less than
the linear function, , between their points of intersection, namely  0 and 1. This inequality is why the
variables Ti are restricted to the real interval 

Comparing the Bounds
Suppose that we have a collection of mutually independent events , and we want to know how many of the
events are likely to occur.

Let  be the indicator random variable for  and define

for  Define

to be the number of events that occur.

We know from Linearity of Expectation that

This is true even if the events are not independent.

By Theorem 19.3.8, we also know that

and thus that

This is true even if the events are only pairwise independent.

Markov’s Theorem tells us that for any ,

Chebyshev’s Theorem gives us the stronger result that

v Ti
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The Chernoff Bound gives us an even stronger result, namely, that for any ,

In this case, the probability of exceeding the mean by  decreases as an exponentially small function of the deviation.

By considering the random variable , we can also use the Chernoff Bound to prove that the probability that  is much
lower than  is also exponentially small.

Murphy’s Law
If the expectation of a random variable is much less than 1, then Markov’s Theorem implies that there is only a small
probability that the variable has a value of 1 or more. On the other hand, a result that we call Murphy’s Law  says that if a
random variable is an independent sum of 0–1-valued variables and has a large expectation, then there is a huge probability of
getting a value of at least 1.

(Murphy’s Law). Let  be mutually independent events. Let  be the indicator random variable for 
and define

to be the number of events that occur. Then

Proof

For example, given any set of mutually independent events, if you expect 10 of them to happen, then at least one of them will
happen with probability at least . The probability that none of them happen is at most .

So if there are a lot of independent things that can go wrong and their probabilities sum to a number much greater than 1, then
Theorem 19.6.4 proves that some of them surely will go wrong.

This result can help to explain “coincidences,” “miracles,” and crazy events that seem to have been very unlikely to happen.
Such events do happen, in part, because there are so many possible unlikely events that the sum of their probabilities is greater
than one. For example, someone does win the lottery.

In fact, if there are 100,000 random tickets in Pick-4, Theorem 19.6.4 says that the probability that there is no winner is less
than . More generally, there are literally millions of one-in-a-million possible events and so some of them will
surely occur.

Pr[|T −Ex[T ]| ≥ c ] ≤ .σT

1

c2

c > 0

Pr[T −Ex[T ] ≥ cEx[T ]] ≤ .e−(c ln(c)−c+1)Ex[T ]

cEx[T ]

n −T T

Ex[T ]

8

Theorem 19.6.4
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(linearity of expectation)
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Yes, this is the same Chernoff who figured out how to beat the state lottery—this guy knows a thing or two.

As we noted in Chapter 18, human choices are often not uniform and they can be highly dependent. For example, lots of
people will pick an important date. The lottery folks should not get too much comfort from the analysis that follows, unless
they assign random 4-digit numbers to each player.

See “A Conversation with Herman Chernoff,” Statistical Science 1996, Vol. 11, No. 4, pp 335– 350.

This is in reference and deference to the famous saying that “If something can go wrong, it probably will.”
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19.7: Really Great Expectations
Making independent tosses of a fair coin until some desired pattern comes up is a simple process you should feel solidly in
command of by now, right? So how about a bet about the simplest such process—tossing until a head comes up? Ok, you’re
wary of betting with us, but how about this: we’ll let you set the odds.

Repeating Yourself
Here’s the bet: you make independent tosses of a fair coin until a head comes up. Then you will repeat the process. If a second
head comes up in the same or fewer tosses than the first, you have to start over yet again. You keep starting over until you
finally toss a run of tails longer than your first one. The payment rules are that you will pay me 1 cent each time you start over.
When you win by finally getting a run of tails longer than your first one, I will pay you some generous amount. Notice by the
way that you’re certain to win—whatever your initial run of tails happened to be, a longer run will eventually occur again with
probability 1!

For example, if your first tosses are , then you will keep tossing until you get a run of 4 tails. So your winning flips
might be

In this run there are 10 heads, which means you had to start over 9 times. So you would have paid me 9 cents by the time you
finally won by tossing 4 tails. Now you’ve won, and I’ll pay you generously —how does 25 cents sound? Maybe you’d rather
have $1? How about $1000?

Of course there’s a trap here. Let’s calculate your expected winnings.

Suppose your initial run of tails had length . After that, each time a head comes up, you have to start over and try to get 
tails in a row. If we regard your getting  tails in a row as a “failed” try, and regard your having to start over because a
head came up too soon as a “successful” try, then the number of times you have to start over is the number of tries till the first
failure. So the expected number of tries will be the mean time to failure, which is , because the probability of tossing 

 tails in a row is .

Let  be the length of your initial run of tails. So  means that your initial tosses were . Let  be the number of
times you repeat trying to beat your original run of tails. The number of cents you expect to finish with is the number of cents
in my generous payment minus . It’s now easy to calculate  by conditioning on the value of :

So you can expect to pay me an infinite number of cents before winning my “generous” payment. No amount of generosity
can make this bet fair! In fact this particular example is a special case of an astonishingly general one: the expected waiting
time for any random variable to achieve a larger value is infinite.
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CHAPTER OVERVIEW
20: RANDOM WALKS

Random Walks are used to model situations in which an object moves in a sequence of steps in
randomly chosen directions. For example, physicists use threedimensional random walks to model
Brownian motion and gas diffusion. In this chapter we’ll examine two examples of random walks.
First, we’ll model gambling as a simple 1-dimensional random walk—a walk along a straight line.
Then we’ll explain how the Google search engine used random walks through the graph of world-
wide web links to determine the relative importance of websites.

20.1: GAMBLER’S RUIN
20.2: RANDOM WALKS ON GRAPHS
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20.1: Gambler’s Ruin
Suppose a gambler starts with an initial stake of  dollars and makes a sequence of $1 bets. If he wins an individual bet, he gets his money
back plus another $1. If he loses the bet, he loses the $1.

We can model this scenario as a random walk between integer points on the real line. The position on the line at any time corresponds to
the gambler’s cash-onhand, or capital. Walking one step to the right corresponds to winning a $1 bet and thereby increasing his capital by
$1. Similarly, walking one step to the left corresponds to losing a $1 bet.

The gambler plays until either he runs out of money or increases his capital to a target amount of  dollars. The amount  is defined
to be his intended profit.

If he reaches his target, he will have won his intended profit and is called an overall winner. If his capital reaches zero before reaching his
target, he will have lost  dollars; this is called going broke or being ruined. We’ll assume that the gambler has the same probability, , of
winning each individual $1 bet, and that the bets are mutually independent. We’d like to find the probability that the gambler wins.

The gambler’s situation as he proceeds with his $1 bets is illustrated in Figure 20.1. The random walk has boundaries at 0 and . If the
random walk ever reaches either of these boundary values, then it terminates.

Figure 20.1 A graph of the gambler’s capital versus time for one possible sequence of bet outcomes. At each time step, the graph goes up
with probability  and down with probability . The gambler continues betting until the graph reaches either 0 or . If he starts with $

, his intended profit is $  where .

In an unbiased game, the individual bets are fair: the gambler is equally likely to win or lose each bet—that is, . The gambler is
more likely to win if  and less likely to win if ; these random walks are called biased. We want to determine the
probability that the walk terminates at boundary  —the probability that the gambler wins. We’ll do this in Section 20.1.1. But before we
derive the probability, let’s examine what it turns out to be.

Let’s begin by supposing the gambler plays an unbiased game starting with $100 and will play until he goes broke or reaches a target of
200 dollars. Since he starts equidistant from his target and bankruptcy in this case, it’s clear by symmetry that his probability of winning is 

.

We’ll show below that starting with  dollars and aiming for a target of  dollars, the probability the gambler reaches his target
before going broke is . For example, suppose he wants to win the same $100, but instead starts out with $500. Now his chances are
pretty good: the probability of his making the 100 dollars is . And if he started with one million dollars still aiming to win $100 dollars
he almost certain to win: the probability is .

So in the unbiased game, the larger the initial stake relative to the target, the higher the probability the gambler will win, which makes
some intuitive sense. But note that although the gambler now wins nearly all the time, when he loses, he loses big. Bankruptcy costs him
$1M, while when he wins, he wins only $100. The gambler’s average win remains zero dollars, which is what you’d expect when making
fair bets.

Another useful way to describe this scenario is as a game between two players. Say Albert starts with $500, and Eric starts with $100.
They flip a fair coin, and every time a Head appears, Albert wins $1 from Eric, and vice versa for Tails. They play this game until one
person goes bankrupt. This problem is identical to the Gambler’s Ruin problem with  and . The probability
of Albert winning is .

Now suppose instead that the gambler chooses to play roulette in an American casino, always betting $1 on red. Because the casino puts
two green numbers on its roulette wheels, the probability of winning a single bet is a little less than . The casino has an advantage, but
the bets are close to fair, and you might expect that starting with $500, the gambler has a reasonable chance of winning $100—the 
probability of winning in the unbiased game surely gets reduced, but perhaps not too drastically.

This mistaken intuition is how casinos stay in business. In fact, the gambler’s odds of winning $100 by making $1 bets against the
“slightly” unfair roulette wheel are less than 1 in 37,000. If that’s surprising to you, it only gets weirder from here: 1 in 37,000 is in fact an
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upper bound on the gambler’s chance of winning regardless of his starting stake. Whether he starts with $5000 or $5 billion, he still has
almost no chance of winning!

The Probability of Avoiding Ruin
We will determine the probability that the gambler wins using an idea of Pascal’s dating back to the beginnings of the subject of
probability.

Pascal viewed the walk as a two-player game between Albert and Eric as described above. Albert starts with a stack of  chips and Eric
starts with a stack of  chips. At each bet, Albert wins Eric’s top chip with probability  and loses his top chip to Eric with
probability . They play this game until one person goes bankrupt.

Pascal’s ingenious idea was to alter the worth of the chips to make the game fair regardless of . Specifically, Pascal assigned Albert’s
bottom chip a worth of  and then assigned successive chips up his stack worths equal to  up to his top chip with worth 

. Eric’s top chip gets assigned worth , and the successive chips down his stack are worth  down to his bottom chip
worth .

The expected payoff of Albert’s first bet is worth

so this assignment makes the first bet a fair one in terms of worth. Moreover, whether Albert wins or loses the bet, the successive chip
worths counting up Albert’s stack and then down Eric’s remain , ensuring by the same reasoning that every bet has
fair worth. So, Albert’s expected worth at the end of the game is the sum of the expectations of the worth of each bet, which is 0.

When Albert wins all of Eric’s chips his total gain is worth

and when he loses all his chips to Eric, his total loss is worth . Letting  be Albert’s probability of winning, we now have

In the truly fair game when , we have , so , as claimed above.

In the biased game with , we have

Solving for  gives

We have now proved

In the Gambler’s Ruin game with initial capital, , target, , and probability  of winning each individual bet,

where 

Recurrence for the Probability of Winning
Fortunately, you don’t need to be as ingenuious Pascal in order to handle Gambler’s Ruin, because linear recurrences offer a methodical
approach to the basic problems.

The probability that the gambler wins is a function of his initial capital, , his target, , and the probability, , that he wins an
individual one dollar bet. For fixed  and , let  be the gambler’s probability of winning when his initial capital is  dollars. For
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example,  is the probability that the gambler will win given that he starts off broke and  is the probability he will win if he starts off
with his target amount, so clearly

Otherwise, the gambler starts with  dollars, where . Now suppose the gambler wins his first bet. In this case, he is left with 
 dollars and becomes a winner with probability . On the other hand, if he loses the first bet, he is left with  dollars and

becomes a winner with probability . By the Total Probability Rule, he wins with probability . Solving for 
 we have

where  is  in Section 20.1.1.

This recurrence holds only for , but there’s no harm in using ( ) to define  for all . Now, letting

be the generating function for the , we derive from ( ) and ( ) using our generating function methods that

But it’s easy to check that the denominator factors:

Now if , then using partial fractions we conclude that

for some constants . To solve for , note that by ( ) and ( ),

so letting , we get , and letting , we get . Therefore,

which implies

Finally, we can use ( ) to solve for  by letting  to get

Plugging this value of  into ( ), we arrive at the solution:

matching Pascal’s result ( ).

In the unbiased case where , we get from ( ) that

and again can use partial fractions to match Pascal’s result ( ).

simpler expression for the biased case
The expression ( ) for the probability that the Gambler wins in the biased game is a little hard to interpret. There is a simpler upper
bound which is nearly tight when the gambler’s starting capital is large and the game is biased against the gambler. Then , both the
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numerator and denominator in ( ) are positive, and the numerator is smaller. This implies that

and gives:

Corollary 20.1.2. In the Gambler’s Ruin game with initial capital, , target, , and probability  of winning each individual bet,

where 

So the gambler gains his intended profit before going broke with probability at most  raised to the intended profit power. Notice that
this upper bound does not depend on the gambler’s starting capital, but only on his intended profit. This has the amazing consequence we
announced above: no matter how much money he starts with, if he makes $1 bets on red in roulette aiming to win $100, the probability that
he wins is less than

The bound ( ) decreases exponentially as the intended profit increases. So, for example, doubling his intended profit will square his
probability of winning. In this case, the probability that the gambler’s stake goes up 200 dollars before he goes broke playing roulette is at
most

which is about 1 in 1.4 billion.

Intuition

Why is the gambler so unlikely to make money when the game is only slightly biased against him? To answer this intuitively, we can
identify two forces at work on the gambler’s wallet. First, the gambler’s capital has random upward and downward swings from runs of
good and bad luck. Second, the gambler’s capital will have a steady, downward drift, because the negative bias means an average loss of a
few cents on each $1 bet. The situation is shown in Figure 20.2.

Figure 20.2 In a biased random walk, the downward drift usually dominates swings of good luck.

Our intuition is that if the gambler starts with, say, a billion dollars, then he is sure to play for a very long time, so at some point there
should be a lucky, upward swing that puts him $100 ahead. But his capital is steadily drifting downward. If the gambler does not have a
lucky, upward swing early on, then he is doomed. After his capital drifts downward by tens and then hundreds of dollars, the size of the
upward swing the gambler needs to win grows larger and larger. And as the size of the required swing grows, the odds that it occurs
decrease exponentially. As a rule of thumb, drift dominates swings in the long term.

We can quantify these drifts and swings. After  rounds for , the number of wins by our player has a binomial distribution
with parameters  and . His expected win on any single bet is  dollars, so his expected capital is .
Now to be a winner, his actual number of wins must exceed the expected number by . But from p the formula (19.3.10), the
binomial distribution has a standard deviation of only . So for the gambler to win, he needs his number of wins to deviate by
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times its standard deviation. In our study of binomial tails, we saw that this was extremely unlikely.

In a fair game, there is no drift; swings are the only effect. In the absence of downward drift, our earlier intuition is correct. If the gambler
starts with a trillion dollars then almost certainly there will eventually be a lucky swing that puts him $100 ahead.

How Long a Walk?
Now that we know the probability, , that the gambler is a winner in both fair and unfair games, we consider how many bets he needs on
average to either win or go broke. A linear recurrence approach works here as well.

For fixed  and , let  be the expected number of bets until the game ends when the gambler’s initial capital is  dollars. Since the game
is over in zero steps if  or , the boundary conditions this time are .

Otherwise, the gambler starts with  dollars, where . Now by the conditional expectation rule, the expected number of steps
can be broken down into the expected number of steps given the outcome of the first bet weighted by the probability of that outcome. But
after the gambler wins the first bet, his capital is , so he can expect to make another  bets. That is,

Similarly, after the gambler loses his first bet, he can expect to make another en1 bets:

So we have

This yields the linear recurrence

The routine solution of this linear recurrence yields:

In the Gambler’s Ruin game with initial capital , target , and probability  of winning 8 each bet,

In the unbiased case, ( ) can be rephrased simply as

For example, if the gambler starts with $10 dollars and plays until he is broke or ahead $10, then  bets are required on
average. If he starts with $500 and plays until he is broke or ahead $100, then the expected number of bets until the game is over is 

. This simple formula ( ) cries out for an intuitive proof, but we have not found one (where are you, Pascal?).

Quit While You Are Ahead
Suppose that the gambler never quits while he is ahead. That is, he starts with  dollars, ignores any target , but plays until he is flat
broke. Call this the unbounded Gambler’s ruin game. It turns out that if the game is not favorable, that is, , the gambler is sure to
go broke. In particular, this holds in an unbiased game with .

Lemma 20.1.4. If the gambler starts with one or more dollars and plays a fair unbounded game, then he will go broke with probability 1.

Proof. If the gambler has initial capital  and goes broke in a game without reaching a target , then he would also go broke if he were
playing and ignored the target. So the probability that he will lose if he keeps playing without stopping at any target  must be at least as
large as the probability that he loses when he has a target .

But we know that in a fair game, the probability that he loses is . This number can be made arbitrarily close to 1 by choosing a
sufficiently large value of . Hence, the probability of his losing while playing without any target has a lower bound arbitrarily close to 1,
which means it must in fact be 1. 
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So even if the gambler starts with a million dollars and plays a perfectly fair game, he will eventually lose it all with probability 1. But
there is good news: if the game is fair, he can “expect” to play forever:

Lemma 20.1.5. If the gambler starts with one or more dollars and plays a fair unbounded game, then his expected number of plays is
infinite.

A proof appears in Problem 20.2.

So even starting with just one dollar, the expected number of plays before going broke is infinite! This sounds reassuring—you can go
about your business without worrying about being doomed, because doom will be infinitely delayed. To illustrate a situation where you
really needn’t worry, think about mean time to failure with a really tiny probability of failure in any given second—say . In this case
you are unlikely to fail any time much sooner than many lifetimes of the estimated age of the universe, even though you will eventually
fail with probability one.

But in general, you shouldn’t feel reassured by an infinite expected time to go broke. For example, think about a variant Gambler’s Ruin
game which works as follows: run one second of the process that has a  of failing in any second. If it does not fail, then you go
broke immediately. Otherwise, you play a fair, unbounded Gambler’s Ruin game. Now there is an overwhelming probability, ,
that you will go broke immediately. But there is a  probability that you will wind up playing fair Gambler’s Ruin, so your overall
expected time will be at least  times the expectation of fair Gambler’s Ruin, namely, it will still be infinite.

For the actual fair, unbounded Gambler’s Ruin gain starting with one dollar, there is a a 50% chance the Gambler will go broke after the
first bet, and a more than  chance of going broke within five bets, for example. So infinite expected time is not much consolation to a
Gambler who goes broke quickly with high probability.

Here we’re legitimately appealing to infinite linearity, since the payoff amounts remain bounded independent of the number of bets.
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20.2: Random Walks on Graphs
The hyperlink structure of the World Wide Web can be described as a digraph. The vertices are the web pages with a directed
edge from vertex  to vertex  if  has a link to . For example, in the following graph the vertices  correspond to
web pages and  is a directed edge when page  contains a hyperlink to .

The web graph is an enormous graph with trillions of vertices. In 1995, two students at Stanford, Larry Page and Sergey Brin,
realized that the structure of this graph could be very useful in building a search engine. Traditional document searching
programs had been around for a long time and they worked in a fairly straightforward way. Basically, you would enter some
search terms and the searching program would return all documents containing those terms. A relevance score might also be
returned for each document based on the frequency or position that the search terms appeared in the document. For example, if
the search term appeared in the title or appeared 100 times in a document, that document would get a higher score.

This approach works fine if you only have a few documents that match a search term. But on the web, there are many billions
of documents and millions of matches to a typical search. For example, on May 2, 2012, a search on Google for “
‘Mathematics for Computer Science’ text” gave 482,000 hits! Which ones should we look at first? Just because a page gets a
high keyword score—say because it has “Mathematics Mathematics ... Mathematics” copied 200 times across the front of the
document—does not make it a great candidate for attention. The web is filled with bogus websites that repeat certain words
over and over in order to attract visitors.

Google’s enormous market capital in part derives from the revenue it receives from advertisers paying to appear at the top of
search results. That top placement would not be worth much if Google’s results were as easy to manipulate as keyword
frquencies. Advertisers pay because Google’s ranking method is consistently good at determining the most relevant web pages.
For example, Google demonstrated its accuracy in our case by giving first rank  to our 6.042 text.

So how did Google know to pick our text to be first out of 482,000?—because back in 1995 Larry and Sergey got the idea to
allow the digraph structure of the web to determine which pages are likely to be the most important.

First Crack at Page Rank
Looking at the web graph, do you have an idea which vertex/page might be the best to rank first? Assume that all the pages
match the search terms for now. Well, intuitively, we should choose , since lots of other pages point to it. This leads us to
their first idea: try defining the page rank of  to be , the number of links pointing to . The idea is to think of
web pages as voting for the most important page—the more votes, the better the rank.

Unfortunately, there are some problems with this idea. Suppose you wanted to have your page get a high ranking. One thing
you could do is to create lots of dummy pages with links to your page.

There is another problem—a page could become unfairly influential by having lots of links to other pages it wanted to hype

x y x y , … ,x1 xn

⟨ → ⟩xi xj xi xj

2

x2

x indegree(x) x
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So this strategy for high ranking would amount to, “vote early, vote often,” which is no good if you want to build a search
engine that’s worth paying fees for. So, admittedly, their original idea was not so great. It was better than nothing, but certainly
not worth billions of dollars.

Random Walk on the Web Graph
But then Sergey and Larry thought some more and came up with a couple of improvements. Instead of just counting the
indegree of a vertex, they considered the probability of being at each page after a long random walk on the web graph. In
particular, they decided to model a user’s web experience as following each link on a page with uniform probability. For
example, if the user is at page , and there are three links from page , then each link is followed with probability . More
generally, they assigned each edge  of the web graph with a probability conditioned on being on page :

The simulated user experience is then just a random walk on the web graph.

We can also compute the probability of arriving at a particular page, , by summing over all edges pointing to . We thus have

For example, in our web graph, we have

One can think of this equation as  sending half its probability to  and the other half to . The page  sends all of its
probability to .

There’s one aspect of the web graph described thus far that doesn’t mesh with the user experience—some pages have no
hyperlinks out. Under the current model, the user cannot escape these pages. In reality, however, the user doesn’t fall off the
end of the web into a void of nothingness. Instead, he restarts his web journey. Moreover, even if a user does not get stuck at a
dead end, they will commonly get discouraged after following some unproductive path for a while and will decide to restart.

To model this aspect of the web, Sergey and Larry added a supervertex to the web graph and added an edge from every page to
the supervertex. Moreover, the supervertex points to every other vertex in the graph with equal probability, allowing the walk
to restart from a random place. This ensures that the graph is strongly connected.

If a page had no hyperlinks, then its edge to the supervertex has to be assigned probability one. For pages that had some
hyperlinks, the additional edge pointing to the supervertex was assigned some specially given probability. In the original
versions of Page Rank, this probability was arbitrarily set to 0.15. That is, each vertex with outdegree  got an additional
edge pointing to the supervertex with assigned probability 0.15; its other  outgoing edges were still kept equally likely, that
is, each of the  edges was assigned probability .

Stationary Distribution & Page Rank
The basic idea behind page rank is finding a stationary distribution over the web graph, so let’s define a stationary distribution.

x x 1/3

x → y x

Pr[follow link ⟨x → y⟩ ∣  at page x] ::= .
1

outdeg(x)

y y

Pr[go to y] = Pr[follow link ⟨x → y⟩ ∣  at page x] ⋅ Pr[at page x]∑
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Suppose each vertex is assigned a probability that corresponds, intuitively, to the likelihood that a random walker is at that
vertex at a randomly chosen time. We assume that the walk never leaves the vertices in the graph, so we require that

An assignment of probabilities to vertices in a digraph is a stationary distribution if for all vertices 

Sergey and Larry defined their page ranks to be a stationary distribution. They did this by solving the following system of
linear equations: find a nonnegative number, , for each vertex, , such that

corresponding to the intuitive equations given in ( ). These numbers must also satisfy the additional constraint
corresponding to ( ):

So if there are n vertices, then equations ( ) and ( ) provide a system of  linear equations in the n variables, 
. Note that constraint ( ) is needed because the remaining constraints ( ) could be satisfied by letting 

 for all , which is useless.

Sergey and Larry were smart fellows, and they set up their page rank algorithm so it would always have a meaningful solution.
Strongly connected graphs have unique stationary distributions (Problem 20.12), and their addition of a supervertex ensures
this. Moreover, starting from any vertex and taking a sufficiently long random walk on the graph, the probability of being at
each page will get closer and closer to the stationary distribution. Note that general digraphs without super-vertices may have
neither of these properties: there may not be a unique stationary distribution, and even when there is, there may be starting
points from which the probabilities of positions during a random walk do not converge to the stationary distribution (Problem
20.8).

Now just keeping track of the digraph whose vertices are trillions of web pages is a daunting task. That’s why in 2011 Google
invested $168,000,000 in a solar power plant—the electrical power drawn by Google’s servers in 2011 would have supplied
the needs of 200,000 households.  Indeed, Larry and Sergey named their system Google after the number —which is
called a “googol”—to reflect the fact that the web graph is so enormous.

Anyway, now you can see how this text ranked first out of 378,000 matches. Lots of other universities used our notes and
presumably have links to the MIT Mathematics for Computer Science Open Course Ware site, and the university sites
themselves are legitimate, which ultimately leads to the text getting a high page rank in the web graph.

First rank for some reason was an early version archived at Princeton; the Spring 2010 version on the MIT Open Courseware
site ranked 4th and 5th.

Google Details, and Defends, Its Use of Electricity, New York Times, September 8, 2011.
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CHAPTER OVERVIEW
21: RECURRENCES

21.1: THE TOWERS OF HANOI
21.2: MERGE SORT
Algorithms textbooks traditionally claim that sorting is an important, fundamental problem in
computer science. Then they smack you with sorting algorithms until life as a disk-stacking monk
in Hanoi sounds delightful. Here, we’ll cover just one well-known sorting algorithm, Merge Sort.
The analysis introduces another kind of recurrence.

21.3: LINEAR RECURRENCES
So far we’ve solved recurrences with two techniques: guess-and-verify and plugand-chug. These
methods require spotting a pattern in a sequence of numbers or expressions. In this section and the
next, we’ll give cookbook solutions for two large classes of recurrences. These methods require no flash of insight; you just follow the
recipe and get the answer

21.4: DIVIDE-AND-CONQUER RECURRENCES
21.5: A FEEL FOR RECURRENCES
We’ve guessed and verified, plugged and chugged, found roots, computed integrals, and solved linear systems and exponential
equations. Now let’s step back and look for some rules of thumb. What kinds of recurrences have what sorts of solutions?
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21.1: The Towers of Hanoi
There are several methods for solving recurrence equations. The simplest is to guess the solution and then verify that the guess
is correct with an induction proof.

For example, as a alternative to the generating function derivation in Section 15.4.2 of the value of the number, , of moves
in the Tower of Hanoi problem with  disks, we could have tried guessing. As a basis for a good guess, let’s look for a pattern
in the values of  computed above: 1, 3, 7, 15, 31, 63. A natural guess is . But whenever you guess a solution to
a recurrence, you should always verify it with a proof, typically by induction. After all, your guess might be wrong. (But why
bother to verify in this case? After all, if we’re wrong, its not the end of the... no, let’s check.)

Claim 21.1.1.  satisfies the recurrence:

Proof. The proof is by induction on . The induction hypothesis is that . This is true for  because 
. Now assume that  in order to prove that , where :

The first equality is the recurrence equation, the second follows from the induction assumption, and the last step is
simplification. 

Such verification proofs are especially tidy because recurrence equations and induction proofs have analogous structures. In
particular, the base case relies on the first line of the recurrence, which defines . And the inductive step uses the second line
of the recurrence, which defines  as a function of preceding terms.

Our guess is verified. So we can now resolve our remaining questions about the 64-disk puzzle. Since , the
monks must complete more than 18 billion billion steps before the world ends. Better study for the final

The Upper Bound Trap
When the solution to a recurrence is complicated, one might try to prove that some simpler expression is an upper bound on
the solution. For example, the exact solution to the Towers of Hanoi recurrence is . Let’s try to prove the “nicer”
upper bound , proceeding exactly as before.

Proof. (Failed attempt.) The proof is by induction on . The induction hypothesis is that . This is true for 
because . Now assume that  in order to prove that , where :

The first equality is the recurrence relation, the second follows from the induction hypothesis, and the third step is a flaming
train wreck. 

The proof doesn’t work! As is so often the case with induction proofs, the argument only goes through with a stronger
hypothesis. This isn’t to say that upper bounding the solution to a recurrence is hopeless, but this is a situation where induction
and recurrences do not mix well.

Plug and Chug
Guess-and-verify is a simple and general way to solve recurrence equations. But there is one big drawback: you have to guess
right. That was not hard for the Towers of Hanoi example. But sometimes the solution to a recurrence has a strange form that
is quite difficult to guess. Practice helps, of course, but so can some other methods.
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Plug-and-chug is another way to solve recurrences. This is also sometimes called “expansion” or “iteration.” As in guess-and-
verify, the key step is identifying a pattern. But instead of looking at a sequence of numbers, you have to spot a pattern in a
sequence of expressions, which is sometimes easier. The method consists of three steps, which are described below and
illustrated with the Towers of Hanoi example.

Step 1: Plug and Chug Until a Pattern Appears

The first step is to expand the recurrence equation by alternately “plugging” (applying the recurrence) and “chugging”
(simplifying the result) until a pattern appears. Be careful: too much simplification can make a pattern harder to spot. The rule
to remember—indeed, a rule applicable to the whole of college life—is chug in moderation.

Above, we started with the recurrence equation. Then we replaced  with , since the recurrence says the two are
equivalent. In the third step, we simplified a little—but not too much! After several similar rounds of plugging and chugging, a
pattern is apparent. The following formula seems to hold:

Once the pattern is clear, simplifying is safe and convenient. In particular, we’ve collapsed the geometric sum to a closed form
on the second line.

Step 2: Verify the Pattern

The next step is to verify the general formula with one more round of plug-andchug.

The final expression on the right is the same as the expression on the first line, except that  is replaced by . Surprisingly,
this effectively proves that the formula is correct for all . Here is why: we know the formula holds for , because that’s
the original recurrence equation. And we’ve just shown that if the formula holds for some , then it also holds for .
So the formula holds for all  by induction.

Step 3: Write  Using Early Terms with Known Values

The last step is to express  as a function of early terms whose values are known. Here, choosing  expresses  in
terms of , which is equal to 1. Simplifying gives a closed-form expression for :

We’re done! This is the same answer we got from guess-and-verify.

Let’s compare guess-and-verify with plug-and-chug. In the guess-and-verify method, we computed several terms at the
beginning of the sequence,  etc., until a pattern appeared. We generalized to a formula for the th term, . In
contrast, plug-and-chug works backward from the th term. Specifically, we started with an expression for  involving the
preceding term, , and rewrote this using progressively earlier terms, , , etc. Eventually, we noticed a pattern,
which allowed us to express  using the very first term, , whose value we knew. Substituting this value gave a closed-form
expression for . So guess-and-verify and plug-and-chug tackle the problem from opposite directions.
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21.2: Merge Sort
Algorithms textbooks traditionally claim that sorting is an important, fundamental problem in computer science. Then they
smack you with sorting algorithms until life as a disk-stacking monk in Hanoi sounds delightful. Here, we’ll cover just one
well-known sorting algorithm, Merge Sort. The analysis introduces another kind of recurrence.

Here is how Merge Sort works. The input is a list of  numbers, and the output is those same numbers in nondecreasing order.
There are two cases:

If the input is a single number, then the algorithm does nothing, because the list is already sorted.
Otherwise, the list contains two or more numbers. The first half and the second half of the list are each sorted recursively.
Then the two halves are merged to form a sorted list with all  numbers.

Let’s work through an example. Suppose we want to sort this list:

10, 7, 23, 5, 2, 8, 6, 9.

Since there is more than one number, the first half (10, 7, 23, 5) and the second half (2, 8, 6, 9) are sorted recursively. The
results are 5, 7, 10, 23 and 2, 6, 8, 9. All that remains is to merge these two lists. This is done by repeatedly emitting the
smaller of the two leading terms. When one list is empty, the whole other list is emitted. The example is worked out below. In
this table, underlined numbers are about to be emitted.

The leading terms are initially 5 and 2. So we output 2. Then the leading terms are 5 and 6, so we output 5. Eventually, the
second list becomes empty. At that point, we output the whole first list, which consists of 10 and 23. The complete output
consists of all the numbers in sorted order.

1: Finding a Recurrence
A traditional question about sorting algorithms is, “What is the maximum number of comparisons used in sorting  items?”
This is taken as an estimate of the running time. In the case of Merge Sort, we can express this quantity with a recurrence. Let 

 be the maximum number of comparisons used while Merge Sorting a list of  numbers. For now, assume that  is a power
of 2. This ensures that the input can be divided in half at every stage of the recursion.

If there is only one number in the list, then no comparisons are required, so .
Otherwise,  includes comparisons used in sorting the first half (at most ), in sorting the second half (also at most 

), and in merging the two halves. The number of comparisons in the merging step is at most . This is because at
least one number is emitted after each comparison and one more number is emitted at the end when one list becomes
empty. Since  items are emitted in all, there can be at most  comparisons.

Therefore, the maximum number of comparisons needed to Merge Sort  items is given by this recurrence:

This fully describes the number of comparisons, but not in a very useful way; a closed-form expression would be much more
helpful. To get that, we have to solve the recurrence.

2: Solving the Recurrence
Let’s first try to solve the Merge Sort recurrence with the guess-and-verify technique. Here are the first few values:

n

n

n
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Tn Tn/2

Tn/2 n −1
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We’re in trouble! Guessing the solution to this recurrence is hard because there is no obvious pattern. So let’s try the plug-and-
chug method instead.

Step 1: Plug and Chug Until a Pattern Appears

First, we expand the recurrence equation by alternately plugging and chugging until a pattern appears.

A pattern is emerging. In particular, this formula seems holds:

On the second line, we grouped the  terms and powers of 2. On the third, we collapsed the geometric sum.

Step 2: Verify the Pattern

Next, we verify the pattern with one additional round of plug-and-chug. If we guessed the wrong pattern, then this is where
we’ll discover the mistake.

The formula is unchanged except that  is replaced by . This amounts to the induction step in a proof that the formula
holds for all .

Step 3: Write  Using Early Terms with Known Values

Finally, we express  using early terms whose values are known. Specifically, if we let , then , which
we know is 0:

We’re done! We have a closed-form expression for the maximum number of comparisons used in Merge Sorting a list of 
numbers. In retrospect, it is easy to see why guess-and-verify failed: this formula is fairly complicated.

As a check, we can confirm that this formula gives the same values that we computed earlier:
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= 8(2 +n/8 −1) +(n −4) −(n −2) +(n −1)Tn/16

= 16 +(n −8) +(n −4) −(n −2) +(n −1)Tn/16

plug

chug

plug

chug

plug

chug

Tn = +(n − ) +(n − ) +⋯ (n − )2k
T

n/2k 2k−1 2k−2 20

= +kn − − ⋯ −2k
T

n/2k 2k−1 2k−2 20

= +kn − +1.2k
T

n/2k 2k

n

Tn = +kn − +12k
Tn/2k 2k

= (2 +n/ −1) +kn − +12k
Tn/2k+1 2k 2k

= +(k +1)n − +1.2k+1
Tn/2k+1 2k+1

plug

chug

k k +1

k ≥ 1

Tn

Tn k = log n =T
n/2k T1

Tn = +kn − +12k
T

n/2k 2k

= +n log n − +12log n
T

n/2log n 2log n

= n +n log n −n +1T1

= n log n −n +1.

n
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As a double-check, we could write out an explicit induction proof. This would be straightforward, because we already worked
out the guts of the proof in step 2 of the plug-and-chug procedure.

n

1

2

4

8

16

Tn

0

1

5

17

49

n log n −n +1

1 log 1 −1 +1 = 0

2 log 2 −2 +1 = 1

4 log 4 −4 +1 = 5

8 log 8 −8 +1 = 17

16 log 16 −16 +1 = 49
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21.3: Linear Recurrences
So far we’ve solved recurrences with two techniques: guess-and-verify and plugand-chug. These methods require spotting a
pattern in a sequence of numbers or expressions. In this section and the next, we’ll give cookbook solutions for two large
classes of recurrences. These methods require no flash of insight; you just follow the recipe and get the answer

Climbing Stairs
How many different ways are there to climb  stairs, if you can either step up one stair or hop up two? For example, there are
five different ways to climb four stairs:

1. step, step, step, step
2. hop, hop
3. hop, step, step
4. step, hop, step
5. step, step, hop

Working through this problem will demonstrate the major features of our first cookbook method for solving recurrences. We’ll
fill in the details of the general solution afterward.

Finding a Recurrence

As special cases, there is 1 way to climb 0 stairs (do nothing) and 1 way to climb 1 stair (step up). In general, an ascent of 
stairs consists of either a step followed by an ascent of the remaining  stairs or a hop followed by an ascent of 
stairs. So the total number of ways to climb n stairs is equal to the number of ways to climb  plus the number of ways to
climb . These observations define a recurrence:

Here,  denotes the number of ways to climb  stairs. Also, we’ve switched from subscript notation to functional notation,
from  to . Here the change is cosmetic, but the expressiveness of functions will be useful later.

This is the Fibonacci recurrence, the most famous of all recurrence equations. Fibonacci numbers arise in all sorts of
applications and in nature. Fibonacci introduced the numbers in 1202 to study rabbit reproduction. Fibonacci numbers also
appear, oddly enough, in the spiral patterns on the faces of sunflowers. And the input numbers that make Euclid’s GCD
algorithm require the greatest number of steps are consecutive Fibonacci numbers.

Solving the Recurrence

The Fibonacci recurrence belongs to the class of linear recurrences, which are essentially all solvable with a technique that you
can learn in an hour. This is somewhat amazing, since the Fibonacci recurrence remained unsolved for almost six centuries!

In general, a homogeneous linear recurrence has the form

where  and  are constants. The order of the recurrence is . Commonly, the value of the function  is also
specified at a few points; these are called boundary conditions. For example, the Fibonacci recurrence has order  with
coefficients  and . The boundary conditions are  and . The word “homogeneous”
sounds scary, but effectively means “the simpler kind.” We’ll consider linear recurrences with a more complicated form later.

Let’s try to solve the Fibonacci recurrence with the benefit centuries of hindsight. In general, linear recurrences tend to have
exponential solutions. So let’s guess that

where  is a parameter introduced to improve our odds of making a correct guess. We’ll figure out the best value for  later.
To further improve our odds, let’s neglect the boundary conditions,  and , for now. Plugging this guess into

n

n

n−1 n−2
n−1

n−2

f(0)

f(1)

f(n)

= 1

= 1

= f(n−1) +f(n−2) for n ≥ 2.

f(n) n

Tn fn

f(n) = f(n−1) + f(n−2) +⋯ + f(n−d)a1 a2 ad

, , … ,a1 a2 ad d d f

d = 2
= = 1a1 a2 g(n) = 0 f(0) = 1 f(1) = 1

f(n) = xn

x x

f(0) = 0 f(1) = 1
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the recurrence  gives

Dividing both sides by  leaves a quadratic equation:

Solving this equation gives two plausible values for the parameter :

This suggests that there are at least two different solutions to the recurrence, neglecting the boundary conditions.

A charming features of homogeneous linear recurrences is that any linear combination of solutions is another solution.

If  and  are both solutions to a homogeneous linear recurrence, then  is also a solution
for all .

Proof

The first step uses the definition of the function , and the second uses the fact that  and  are solutions to the
recurrence. In the last two steps, we rearrange terms and use the definition of  again. Since the first expression is
equal to the last, h is also a solution to the recurrence. 

The phenomenon described in this theorem—a linear combination of solutions is another solution—also holds for many
differential equations and physical systems. In fact, linear recurrences are so similar to linear differential equations that you
can safely snooze through that topic in some future math class.

Returning to the Fibonacci recurrence, this theorem implies that

is a solution for all real numbers  and . The theorem expanded two solutions to a whole spectrum of possibilities! Now,
given all these options to choose from, we can find one solution that satisfies the boundary conditions,  and 

. Each boundary condition puts some constraints on the parameters  and . In particular, the first boundary condition
implies that

Similarly, the second boundary condition implies that

Now we have two linear equations in two unknowns. The system is not degenerate, so there is a unique solution:

f(n) = f(n−1) +f(n−2)

= + .xn xn−1 xn−2

xn−2

= x+1.x2

x

x = .
1 ± 5

–
√

2

f(n) =  or f(n) =( )
1 + 5

–
√

2

n

( )
1 − 5

–
√

2

n

Theorem 21.3.1

f(n) g(n) h(n) = sf(n) + tg(n)
s, t ∈ R

h(n) = sf(n) + tg(n)

= s( f(n−1) +⋯ + f(n−d)) + t( g(n−1) +⋯ + g(n−d))a1 ad a1 ad

= (sf(n−1) + tg(n−1)) +⋯ (sf(n−d) + tg(n−d))a1 ad

= h(n−1) +⋯ + h(n−d)a1 ad

h f g

h

■

f(n) = s + t( )
1 + 5

–
√

2

n

( )
1 − 5

–
√

2

n

s t

f(0) = 1
f(1) = 1 s t

f(0) = s + t = s+ t = 1.( )
1 + 5

–
√

2

0

( )
1 − 5

–
√

2

0

f(1) = s + t = 1.( )
1 + 5

–
√

2

1

( )
1 − 5

–
√
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1
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These values of  and  identify a solution to the Fibonacci recurrence that also satisfies the boundary conditions:

It is easy to see why no one stumbled across this solution for almost six centuries. All Fibonacci numbers are integers, but this
expression is full of square roots of five! Amazingly, the square roots always cancel out. This expression really does give the
Fibonacci numbers if we plug in  etc.

This closed form for Fibonacci numbers is known as Binet’s formula and has some interesting corollaries. p The first term
tends to infinity because the base of the exponential,  is greater than one. This value is often denoted 

 and called the “golden ratio.” The second term tends to zero, because  has absolute value
less than 1. This implies that the th Fibonacci number is:

Remarkably, this expression involving irrational numbers is actually very close to an integer for all large —namely, a
Fibonacci number! For example:

This also implies that the ratio of consecutive Fibonacci numbers rapidly approaches the golden ratio. For example:

Solving Homogeneous Linear Recurrences
The method we used to solve the Fibonacci recurrence can be extended to solve any homogeneous linear recurrence; that is, a
recurrence of the form

where  and  are constants. Substituting the guess , as with the Fibonacci recurrence, gives

Dividing by  gives

This is called the characteristic equation of the recurrence. The characteristic equation can be read off quickly since the
coefficients of the equation are the same as the coefficients of the recurrence.

The solutions to a linear recurrence are defined by the roots of the characteristic equation. Neglecting boundary conditions for
the moment:

If  is a nonrepeated root of the characteristic equation, then  is a solution to the recurrence.

If  is a repeated root with multiplicity  then  are all solutions to the recurrence.

Theorem 21.3.1 implies that every linear combination of these solutions is also a solution.

For example, suppose that the characteristic equation of a recurrence has roots  and  twice. These four roots imply four
distinct solutions:

s = ⋅ s = − ⋅ .
1

5
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1 + 5
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5
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–√
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s t
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√
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–
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√

2

n
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–

√
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√

2
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–

√

2

n
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√
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Furthermore, every linear combination

is also a solution.

All that remains is to select a solution consistent with the boundary conditions by choosing the constants appropriately. Each
boundary condition implies a linear equation involving these constants. So we can determine the constants by solving a system
of linear equations. For example, suppose our boundary conditions were , , , and . Then
we would obtain four equations in four unknowns:

This looks nasty, but remember that  and  are just constants. Solving this system gives values for  and  that define
a solution to the recurrence consistent with the boundary conditions.

Solving General Linear Recurrences
We can now solve all linear homogeneous recurrences, which have the form

Many recurrences that arise in practice do not quite fit this mold. For example, the Towers of Hanoi problem led to this
recurrence:

The problem is the extra ; that is not allowed in a homogeneous linear recurrence. In general, adding an extra function 
to the right side of a linear recurrence gives an inhomogeneous linear recurrence:

Solving inhomogeneous linear recurrences is neither very different nor very difficult. We can divide the whole job into five
steps:

1. Replace  by 0, leaving a homogeneous recurrence. As before, find roots of the characteristic equation.
2. Write down the solution to the homogeneous recurrence, but do not yet use the boundary conditions to determine

coefficients. This is called the homogeneous solution.
3. Now restore  and find a single solution to the recurrence, ignoring boundary conditions. This is called a particular

solution. We’ll explain how to find a particular solution shortly.
4. Add the homogeneous and particular solutions together to obtain the general solution.
5. Now use the boundary conditions to determine constants by the usual method of generating and solving a system of linear

equations.

As an example, let’s consider a variation of the Towers of Hanoi problem. Suppose that moving a disk takes time proportional
to its size. Specifically, moving the smallest disk takes 1 second, the next-smallest takes 2 seconds, and moving the th disk
then requires  seconds instead of 1. So, in this variation, the time to complete the job is given by a recurrence with 
term instead of :

Clearly, this will take longer, but how much longer? Let’s solve the recurrence with the method described above.

f(n) = f(n) = f(n) = f(n) = n .sn tn un un

f(n) = a ⋅ +b ⋅ +c ⋅ +d ⋅nsn tn un un (21.3.1)

f(0) = 0 f(1) = 1 f(2) = 4 f(3) = 9

f(0)

f(1)

f(2)

f(3)

= 0 implies a ⋅ +b ⋅ +c ⋅ +d ⋅ 0 = 0s0 t0 u0 u0

= 1 implies a ⋅ +b ⋅ +c ⋅ +d ⋅ 0 = 1s1 t1 u1 u1

= 4 implies a ⋅ +b ⋅ +c ⋅ +d ⋅ 0 = 4s2 t2 u2 u2

= 9 implies a ⋅ +b ⋅ +c ⋅ +d ⋅ 0 = 9s3 t3 u3 u3

s, t, u a, b, c, d

f(n) = f(n−1) + f(n−2) +⋯ f(n−d).a1 a2 ad

f(1)

f(n)

= 1

= 2f(n−1) +1 (for n ≥ 2).

+1 g(n)

f(n) = f(n−1) + f(n−2) +⋯ f(n−d) +g(n).a1 a2 ad

g(n)

g(n)

n

n a+n

a+1

f(1)

f(n)

= 1

= 2f(n−1) +n (for n ≥ 2).
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In Steps 1 and 2, dropping the  leaves the homogeneous recurrence . The characteristic equation is 
. So the homogeneous solution is .

In Step 3, we must find a solution to the full recurrence , without regard to the boundary condition.
Let’s guess that there is a solution of the form  for some constants  and . Substituting this guess into the
recurrence gives

The second equation is a simplification of the first. The second equation holds for all  if both  (which implies 
) and  (which implies that ). So  is a particular solution.

In the Step 4, we add the homogeneous and particular solutions to obtain the general solution

Finally, in step 5, we use the boundary condition, , determine the value of the constant :

Therefore, the function  solves this variant of the Towers of Hanoi recurrence. For comparison, the
solution to the original Towers of Hanoi problem was . So if moving disks takes time proportional to their size, then the
monks will need about twice as much time to solve the whole puzzle.

How to Guess a Particular Solution
Finding a particular solution can be the hardest part of solving inhomogeneous recurrences. This involves guessing, and you
might guess wrong.  However, some rules of thumb make this job fairly easy most of the time.

Generally, look for a particular solution with the same form as the inhomogeneous term .
If  is a constant, then guess a particular solution . If this doesn’t work, try polynomials of progressively
higher degree: , then , etc.
More generally, if  is a polynomial, try a polynomial of the same degree, then a polynomial of degree one higher, then
two higher, etc. For example, if , then try  and then .
If  is an exponential, such as , then first guess that . Failing that, try  and then 

, etc.

The entire process is summarized on the following page.

Chapter 15 explains how to solve linear recurrences with generating functions—it’s a little more complicated, but it does not
require guessing.

+n f(n) = 2f(n−1)
x = 2 f(n) = c2n

f(n) = 2f(n−1) +n

f(n) = an+b a b

an+b

0

= 2(a(n−1) +b) +n

= (a+1)n+(b−2a).

n a+1 = 0
a = −1 b−2a = 0 b = −2 f(n) = an+b = n−2

f(n) = c −n−2.2n

f(1) = 1 c

f(1) = 1 IMPLIES c −1 −2 = 121
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f(n) = 2 ⋅ −n−22n

−12n

1

g(n)
g(n) f(n) = c
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g(n)
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21.4: Divide-and-Conquer Recurrences
We now have a recipe for solving general linear recurrences. But the Merge Sort recurrence, which we encountered earlier, is
not linear:

In particular,  is not a linear combination of a fixed number of immediately preceding terms; rather,  is a function of
, a term halfway back in the sequence.

Short Guide to Solving Linear Recurrences

A linear recurrence is an equation

together with boundary conditions such as , etc. Linear recurrences are solved as follows:

1. Find the roots of the characteristic equation

2. Write down the homogeneous solution. Each root generates one term and the homogeneous solution is their sum. A
nonrepeated root  generates the term , where  is a constant to be determined later. A root  with multiplicity  generates
the terms

where  are constants to be determined later.

3. Find a particular solution. This is a solution to the full recurrence that need not be consistent with the boundary conditions.
Use guess-and-verify. If  is a constant or a polynomial, try a polynomial of the same degree, then of one higher degree,
then two higher. For example, if , then try  and then . If  is an exponential, such as 

, then first guess . Failing that, try  and then , etc.

4. Form the general solution, which is the sum of the homogeneous solution and the particular solution. Here is a typical
general solution:

5. Substitute the boundary conditions into the general solution. Each boundary condition gives a linear equation in the
unknown constants. For example, substituting  into the general solution above gives

Determine the values of these constants by solving the resulting system of linear equations.

Merge Sort is an example of a divide-and-conquer algorithm: it divides the input, “conquers” the pieces, and combines the
results. Analysis of such algorithms commonly leads to divide-and-conquer recurrences, which have this form:

Here  are positive constants,  are constants between 0 and 1, and  is a nonnegative function. For
example, setting , and  gives the Merge Sort recurrence.

T (1)

T (n)

= 0

= 2T (n/2) +n−1 (for n ≥ 2).

T (n) T (n)

T (n/2)
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= + +⋅ + .xn a1x
n−1 a2x
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r crn c r k
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n d2 rn d2n
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3n f(n) = c3n f(n) = (bn+c)3n (a +bn+c)n2 3n
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3n+1
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The Akra-Bazzi Formula
The solution to virtually all divide and conquer solutions is given by the amazing Akra-Bazzi formula. Quite simply, the
asymptotic solution to the general divideand-conquer recurrence

is

where  satisfies

A rarely-troublesome requirement is that the function  must not grow or oscillate too quickly. Specifically,  must
be bounded by some polynomial. So, for example, the Akra-Bazzi formula is valid when , but not when 

.

Let’s solve the Merge Sort recurrence again, using the Akra-Bazzi formula instead of plug-and-chug. First, we find the value 
that satisfies

Looks like  does the job. Then we compute the integral:

The first step is integration and the second is simplification. We can drop the  term in the last step, because the  term
dominates. We’re done!

Let’s try a scary-looking recurrence:

Here,  and . So we find the value  that satisfies

Equations of this form don’t always have closed-form solutions, so you may need to approximate  numerically sometimes.
But in this case the solution is simple: . Then we integrate:

That was easy!

Two Technical Issues

T (n) = T ( n) +g(n)∑
i=1

k

ai bi

T (n) = Θ( (1 + du))np ∫
n

1

g(u)

up+1
(21.4.1)

p

= 1.∑
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k

aib
p

i (21.4.2)
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Until now, we’ve swept a couple issues related to divide-and-conquer recurrences under the rug. Let’s address those issues
now.

First, the Akra-Bazzi formula makes no use of boundary conditions. To see why, let’s go back to Merge Sort. During the plug-
and-chug analysis, we found that

This expresses the nth term as a function of the first term, whose value is specified in a boundary condition. But notice that 
 for every value of . The boundary condition doesn’t matter!

This is the typical situation: the asymptotic solution to a divide-and-conquer recurrence is independent of the boundary
conditions. Intuitively, if the bottomlevel operation in a recursive algorithm takes, say, twice as long, then the overall running
time will at most double. This matters in practice, but the factor of 2 is concealed by asymptotic notation. There are corner-
case exceptions. For example, the solution to  is either  or zero, depending on whether  is zero.
These cases are of little practical interest, so we won’t consider them further.

There is a second nagging issue with divide-and-conquer recurrences that does not arise with linear recurrences. Specifically,
dividing a problem of size  may create subproblems of non-integer size. For example, the Merge Sort recurrence contains the
term . So what if  is 15? How long does it take to sort sevenand-a-half items? Previously, we dodged this issue by
analyzing Merge Sort only when the size of the input was a power of 2. But then we don’t know what happens for an input of
size, say, 100.

Of course, a practical implementation of Merge Sort would split the input approximately in half, sort the halves recursively,
and merge the results. For example, a list of 15 numbers would be split into lists of 7 and 8. More generally, a list of n numbers
would be split into approximate halves of size  and . So the maximum number of comparisons is actually given by
this recurrence:

This may be rigorously correct, but the ceiling and floor operations make the recurrence hard to solve exactly.

Fortunately, the asymptotic solution to a divide and conquer recurrence is unaffected by floors and ceilings. More precisely,
the solution is not changed by replacing a term  with either  or . So leaving floors and ceilings out of
divide-and-conquer recurrences makes sense in many contexts; those are complications that make no difference.

The Akra-Bazzi Theorem
The Akra-Bazzi formula together with our assertions about boundary conditions and integrality all follow from the Akra-Bazzi
Theorem, which is stated below.

(Akra-Bazzi). Suppose that the function  is nonnegative and bounded for  and satisfies the
recurrence

where:

1.  is large enough so that  is well-defined,
2.  are positive constants,
3.  are constants between 0 and 1,
4.  is a nonnegative function such that  is bounded by a polynomial,
5. .

Then

= n +n logn−n+1.Tn T1

= Θ(n logn)Tn T1

T (n) = 2T (n/2) Θ(n) T (1)

n

T (n/2) n
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T (n)

= 0

= T (⌈n/2⌉) +T (⌊n/2⌋) +n−1 (for n ≥ 2).

T ( n)bi T (⌈ n⌉)bi T (⌊ n⌋)bi

Theorem 21.4.1

T : R → R 0 ≤ x ≤ x0

T (x) T ( x+ (x)) +g(x) for x > ,∑
i=1
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ai bi hi x0 (21.4.3)

x0 T

, … ,a1 ak
, … ,b1 bk

g(x) | (x)|g′

| (x)| = O(x/ x)hi log2

https://libretexts.org/
https://eng.libretexts.org/
https://eng.libretexts.org/@go/page/54601?pdf


6/29/2021 21.4.4 https://eng.libretexts.org/@go/page/54601

where  satisfies

The Akra-Bazzi theorem can be proved using a complicated induction argument, though we won’t do that here. But let’s
at least go over the statement of the theorem.

All the recurrences we’ve considered were defined over the integers, and that is the common case. But the Akra-Bazzi
theorem applies more generally to functions defined over the real numbers.

The Akra-Bazzi formula is lifted directed from the theorem statement, except that the recurrence in the theorem includes
extra functions, . These functions extend the theorem to address floors, ceilings, and other small adjustments to the
sizes of subproblems. The trick is illustrated by this combination of parameters

which corresponds the recurrence

This is the rigorously correct Merge Sort recurrence valid for all input sizes, complete with floor and ceiling operators. In this
case, the functions  and  are both at most 1, which is easily  as required by the theorem statement.
These functions  do not affect—or even appear in—the asymptotic solution to the recurrence. This justifies our earlier claim
that applying floor and ceiling operators to the size of a subproblem does not alter the asymptotic solution to a divide-and-
conquer recurrence.

The Master Theorem
There is a special case of the Akra-Bazzi formula known as the Master Theorem that handles some of the recurrences that
commonly arise in computer science. It is called the Master Theorem because it was proved long before Akra and Bazzi
arrived on the scene and, for many years, it was the final word on solving divideand-conquer recurrences. We include the
Master Theorem here because it is still widely referenced in algorithms courses and you can use it without having to know
anything about integration.

(Master Theorem). Let  be a recurrence of the form

Case 1: If  for some constant , then

Case 2: If  for some constant , then

T (x) = Θ( (1 + du))xp ∫
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aib
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Theorem 21.4.1

T

T (n) = aT ( )+g(n).
n
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g(n) = O ( )n (a)−ϵlogb ϵ > 0
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Case 3: If  for some constant  and  for some constant  and sufficiently
large , then

The Master Theorem can be proved by induction on  or, more easily, as a corollary of Theorem 21.4.1. We will not include
the details here.

g(n) =� Ω ( )n (a)+ϵlogb ϵ > 0 ag(n/b) < cg(n) c < 1

n

T (n) = Θ(g(n)).

n
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21.5: A Feel for Recurrences
We’ve guessed and verified, plugged and chugged, found roots, computed integrals, and solved linear systems and exponential
equations. Now let’s step back and look for some rules of thumb. What kinds of recurrences have what sorts of solutions?

Here are some recurrences we solved earlier:

Notice that the recurrence equations for Towers of Hanoi and Merge Sort are somewhat similar, but the solutions are radically
different. Merge Sorting  items takes a few hundred comparisons, while moving  disks takes more than 
steps!

Each recurrence has one strength and one weakness. In the Towers of Hanoi, we broke a problem of size  into two
subproblem of size  (which is large), but needed only 1 additional step (which is small). In Merge Sort, we divided the
problem of size  into two subproblems of size  (which is small), but needed  additional steps (which is large). Yet,
Merge Sort is faster by a mile!

This suggests that generating smaller subproblems is far more important to algorithmic speed than reducing the additional
steps per recursive call. For example, shifting to the variation of Towers of Hanoi increased the last term from  to , but
the solution only doubled. And one of the two subproblems in the Fibonacci recurrence is just slightly smaller than in Towers
of Hanoi (size  instead of ). Yet the solution is exponentially smaller! More generally, linear recurrences (which
have big subproblems) typically have exponential solutions, while divideand-conquer recurrences (which have small
subproblems) usually have solutions bounded above by a polynomial.

All the examples listed above break a problem of size  into two smaller problems. How does the number of subproblems
affect the solution? For example, suppose we increased the number of subproblems in Towers of Hanoi from 2 to 3, giving this
recurrence:

This increases the root of the characteristic equation from 2 to 3, which raises the solution exponentially, from  to 
.

Divide-and-conquer recurrences are also sensitive to the number of subproblems. For example, for this generalization of the
Merge Sort recurrence:

the Akra-Bazzi formula gives:

So the solution takes on three completely different forms as  goes from 1.99 to 2.01!

How do boundary conditions affect the solution to a recurrence? We’ve seen that they are almost irrelevant for divide-and-
conquer recurrences. For linear recurrences, the solution is usually dominated by an exponential whose base is determined by
the number and size of subproblems. Boundary conditions matter greatly only when they give the dominant term a zero
coefficient, which changes the asymptotic solution.
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Fibonacci
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So now we have a rule of thumb! The performance of a recursive procedure is usually dictated by the size and number of
subproblems, rather than the amount of work per recursive call or time spent at the base of the recursion. In particular, if
subproblems are smaller than the original by an additive factor, the solution is most often exponential. But if the subproblems
are only a fraction the size of the original, then the solution is typically bounded by a polynomial.
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