Problem Set 4 – Due Tuesday, October 19, at 5pm

1. Complete the following table, answering whether the statement is true (T) or false (F) when the intended universe \mathcal{U} is as indicated (the set of reals or the set of integers).

	\mathbb{R}	\mathbb{Z}
$\forall x \exists y (2x - y = 0)$		
$\exists y \forall x (2x - y = 0)$		
$\forall x \exists y (x - 2y = 0)$		
$\forall x(x < 10 \rightarrow \forall y(y < x \rightarrow y < 9)) $		
$\exists y \exists z(y+z=100)$		
$\forall x \exists y (y > x \land \exists z (y + z = 100))$		

- 2. Translate the negation of the following statements into formulas of first-order logic, introducing predicates as needed.
 - (a) There is someone in the freshman class who doesn't have a roommate.
 - (b) Everyone likes someone, but no one likes everyone.
 - (c) $(\forall a \in A)(\exists b \in B)(a \in C \leftrightarrow b \in C)$
 - (d) $(\forall y > 0)(\exists x)(ax^2 + bx + c = y)$
- 3. Suppose that A, B and C are sets. For each of the following statements either prove it is true or give a counterexample to show that it is not.
 - (a) $A \in B \land B \in C \implies A \in C$
 - (b) $A \subseteq B \land B \subseteq C \implies A \subseteq C$
 - (c) $A \subsetneqq B \land B \subsetneqq C \implies A \subsetneqq C$
 - (d) $A \in B \land B \subseteq C \implies A \in C$
 - (e) $C \in \mathcal{P}(A) \iff C \subseteq A$
 - (f) $A = \emptyset \iff \mathcal{P}(A) = \emptyset$
- 4. Which of the following conditions imply that B = C? In each case, either prove or give a counterexample.
 - (a) $A \cup B = A \cup C$
 - (b) $A \cap B = A \cap C$
 - (c) $A \oplus B = A \oplus C$
 - (d) $A \times B = A \times C$
- 5. Suppose that A, B and C are sets. For each of the following statements either prove it is true or give a counterexample to show that it is not.
 - (a) $A \smallsetminus (B \cup C) = (A \smallsetminus B) \cup (A \smallsetminus C)$
 - (b) $(A \smallsetminus B) \times C = (A \times C) \smallsetminus (B \times C)$
 - (c) $(A \oplus B) \times C = (A \times C) \oplus (B \times C)$
 - (d) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$