## Problem Set 4 - Due Tuesday, October 19, at 5pm

1. Complete the following table, answering whether the statement is true ( $T$ ) or false ( $F$ ) when the intended universe $\mathcal{U}$ is as indicated (the set of reals or the set of integers).

|  | $\mathbb{R}$ | $\mathbb{Z}$ |
| :---: | :---: | :---: |
| $\forall x \exists y(2 x-y=0)$ |  |  |
| $\exists y \forall x(2 x-y=0)$ |  |  |
| $\forall x \exists y(x-2 y=0)$ |  |  |
| $\forall x(x<10 \rightarrow \forall y(y<x \rightarrow y<9))$ |  |  |
| $\exists y \exists z(y+z=100)$ |  |  |
| $\forall x \exists y(y>x \wedge \exists z(y+z=100))$ |  |  |

2. Translate the negation of the following statements into formulas of first-order logic, introducing predicates as needed.
(a) There is someone in the freshman class who doesn't have a roommate.
(b) Everyone likes someone, but no one likes everyone.
(c) $(\forall a \in A)(\exists b \in B)(a \in C \leftrightarrow b \in C)$
(d) $(\forall y>0)(\exists x)\left(a x^{2}+b x+c=y\right)$
3. Suppose that $A, B$ and $C$ are sets. For each of the following statements either prove it is true or give a counterexample to show that it is not.
(a) $A \in B \wedge B \in C \Longrightarrow A \in C$
(b) $A \subseteq B \wedge B \subseteq C \Longrightarrow A \subseteq C$
(c) $A \varsubsetneqq B \wedge B \varsubsetneqq C \Longrightarrow A \varsubsetneqq C$
(d) $A \in B \wedge B \subseteq C \Longrightarrow A \in C$
(e) $C \in \mathcal{P}(A) \Longleftrightarrow C \subseteq A$
(f) $A=\emptyset \Longleftrightarrow \mathcal{P}(A)=\emptyset$
4. Which of the following conditions imply that $B=C$ ? In each case, either prove or give a counterexample.
(a) $A \cup B=A \cup C$
(b) $A \cap B=A \cap C$
(c) $A \oplus B=A \oplus C$
(d) $A \times B=A \times C$
5. Suppose that $A, B$ and $C$ are sets. For each of the following statements either prove it is true or give a counterexample to show that it is not.
(a) $A \backslash(B \cup C)=(A \backslash B) \cup(A \backslash C)$
(b) $(A \backslash B) \times C=(A \times C) \backslash(B \times C)$
(c) $(A \oplus B) \times C=(A \times C) \oplus(B \times C)$
(d) $(A \cup B) \times(C \cup D)=(A \times C) \cup(B \times D)$
