Problem Set 7 - Due Wednesday, November 10, at 5pm

1. Express the twin-prime conjecture in the minimalistic language, NT, that we used for Peano arithmetic. NT (for number theory) is first-order logic, with equality, that supports a constant 0 , the unary function S, binary functions,$+ \cdot$, and E, and a binary operator $<$. (Everything else should be defined from these basic elements.) The twin-prime conjecture is the following: that there are infinitely many pairs of primes $p, p+2$.
2. Recall that a number n is divisible by d, written $d \mid n$, if there exists an integer k such that $k d=n$. Prove that $n^{3}+2 n$ is divisible by 3 for every $n \geq 1$.
3. Prove that for any integer $n \geq 1$, if x_{1}, \ldots, x_{n} are distinct real numbers, then, no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is $n-1$.
4. Considered a lucky number, the Thai government decides to issue coins of 9 baht. Show that, for all sufficiently large numbers N (just how large?), you can dispense N baht using only 9 baht and 10 baht coins.
5. Prove or disprove: for every $N \geq 2$ (not just for powers of 2 , like we did in class), there is a punctured $N \times N$ grid (that is, an N by N grid with one cell removed) that can be tiled by triominoes. (A triominoe, you will recall, are three adjacent squares in the shape of an L.)
