ECS-20 Section A (MWF) – Fall 2021

First name:		LAST NAME:		
	Ro	om #	Seat #	
"I attest that I have in no manner cheated on this exam."				
Signature:		SII	D:	

Instructions

- (1) The exam has five numbered pages, not including this one.
- (2) You may not sit next to anyone you know.
- (3) No calculators, phones, or smartwatches. Devices must be powered off and put in your bag.
- (4) You may have one page of notes, 8.5×11 , printed on one-side. Put your name on it and turn it in with your exam.
- (5) Read each question *carefully* and write each answer *neatly*.
- (6) If you don't understand some question or notation, you can ask.
- (7) On the True/False, if you don't know, guess. Your score, prior to rounding to the nearest natural number, will be linearly proportional to the number of correct answers.
- (8) When an answer is a number, you can name it explicitly or provide an expression involving basic arithmetic, factorials, C(n, k), or P(n, k).

On page	you got	out of
1 - 2		120
3		60
4		60
5		60
\sum		300

1 True / False

Darken the correct answer. If you don't know, guess.

1. If P is False then $P \to Q$ is True.	True	False
2. The XOR of 80 Boolean variables will be 1 if half of them are 1.	True	False
3. $P \to (Q \to R) \equiv (P \to Q) \to R$	True	False
4. $\models (X_1 \leftrightarrow X_2)(X_2 \leftrightarrow X_3) \rightarrow (X_1 \leftrightarrow X_3).$	True	False
5. It is possible to realize a NOR gate using only XOR gates.	True	False
6. If a, b , and x are bits and $a \oplus x = b$ then $x = a \oplus b$.	True	False
7. If ϕ is a CNF formula then $(\neg \phi)$ is a DNF formula.	True	False
8. $\overline{(\exists n)(P(n) \land P(n+1) \land n > 2)} \equiv (\forall n)(\overline{P(n)} \lor \overline{P(n+1)} \lor n \le 2)$	True	False
9. For any sets A, B, and C, if $A \times B = A \times C$ then $B = C$.	True	False
10. The two's complement representation of -2 as an 8-bit number is 1111	L1110.	
	True	False
11. $A \subseteq \mathcal{P}(A)$ for any set A .	True	False
12. The set of 32-bit numbers forms a group under addition mod 2^{32} .	True	False
13. The group S_{10} of permutations on $\{1, 2, \ldots, 10\}$ has 2^{10} points.	True	False
14. For any relation $\sim \subseteq X \times X$, if $a \sim b$ and $b \sim c$ then $a \sim c$.	True	False
15. There is an injective function $f : \mathbb{N} \to \mathbb{R}$.	True	False
16. There is an injective function $f : \mathbb{R} \to \mathbb{N}$.	True	False
17. If $f: A \to B$ and $g: B \to C$ are bijective then $g \circ f: A \to C$ is bijective	•	
	True	False

120 points

ECS 20 Final: ECS-20 Section A (MWF) – Fall 2021

18. If A is a finite set then $ A \times A = A ^2$	True	False
19. $f(n) = 2n \mod 5$ is a bijection on $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$	True	False
20. Every language $L \subseteq \{0,1\}^*$ can be decided by some computer program.		
	True	False
21. If L is a finite language then $ L \circ L = L ^2$.	True	False
22. If a language L contains a string of length 5 then L^* is infinite.	True	False
23. $\{00, 01, 10, 11\}^* = \{0, 1\}^*$	True	False
24. There is a BNF^1 description of any finite language.	True	False
25. Algorithm D runs in 2 ⁸⁰ steps, each taking 1 machine cycle. You need day. Doing so should be feasible on a fast, recent computer.	l to run i True	t once a False
26. If $f(n) \in O(n)$ and $g(n) \in O(n)$ then $(f(n) + g(n) + \log(n)) \in O(n)$.	True	False
27. $\sum_{i=1}^{n} i^2 \in \Theta(n^2).$	True	False
28. $C(n,2) \in \Theta(n^2)$.	True	False
29. $P(n,k) = P(n,n-k)$ for all $1 \le k \le n$.	True	False
30. There are more than 100 ways to rearrange the letters of zebra.	True	False
31. To talk about the probability of being dealt various poker hands we use a (S, μ) with a sample space S consisting of $ S = 52$ cards.	probabil True	ity space False
32. For any blockcipher $E: \{0,1\}^{256} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}, E(K,X) = (K,X) = (K',X').$	E(K', X') True) implies False
33. Graph K_{10} , the clique of size 10, is Eulerian. ²	True	False
34. Graph K_{10} , the clique of size 10, is 2-colorable (bipartite).	True	False

¹ Backus Normal form, as in PS #3, problem 5. ² Recall that K_n has n vertices and an edge between each pair of them; and that a graph is **Eulerian** if there is a cycle that passes through each of its edges once and only once.

2 Short Answer

180 points - 10 points each

If you see a box, make sure your final answer lives in it. Don't worry; it won't feel claustrophobic.

5. Neatly write a **truth table** for the Boolean function $A \to (B \to C)$. Order the rows in the conventional way. Use 0 and 1 to represent false and true.

6. Draw a **circuit** that computes the XOR function, $y = a \oplus b$, limiting yourself to only AND, OR, and NOT gates. Don't use more gates than necessary. Note: If you forgot the symbol for a gate just draw a box and label it AND, OR, or NOT.

7. Suppose I've defined a function $f : \mathbb{N} \to \mathbb{N}$ and I want to show that $f(n) \leq 10n$ for all $n \geq 5$. To do this by induction it suffices to prove that

(the basis) and that
1
(the inductive step).

- 8. A woman has ten close friends. In how many ways can she invite five of them to dinner if two of them are inseparable and must either both be invited, or neither one invited?
- 9. An urn contains 15 red balls and 10 white balls. Five random balls are removed. What is the probability that all of them are red?
- 10. What **exactly** would you enter in LaTeX to typeset the follow: Let $f(n) = n^2 \log B_n$
- 11. Consider the recurrence: T(n) = T(n/2) + 1. Assume T(n) = 1 when $n \le 1$. Solve the recurrence to within a $\Theta(\cdot)$ bound: $T(n) \in$
- 12. Define the equivalence relation $\sim \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ by: $a \sim b$ if a and b, written as decimal numbers, have the same first (leftmost) digit. This equivalence relation has equivalence classes and the three smallest elements in one of them are: Note: $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$.

- 13. How many ways can you paint the **edges** of K_{10} with each edge red or blue?
- 14. Where did you encounter the following?

Twenty random cards are placed in a row, all face-down. A *move* consists of turning a face-down card face-up, and turning over the card immediately to the right. Show that no matter what the choice of cards to turn, this sequence of moves **must** terminate.

15. Diagonalization. A superstring is an infinite sequence of bits $A = A[1] A[2] A[3] \cdots$ of bits. (Write A[i] for the *i*th bit of a superstring A.) Let's prove that the set S of all superstrings is uncountable.

Suppose for contradiction that S were countable. Then there would be some enumeration of it, a list X_1, X_2, X_3, \ldots that includes all the superstrings. Consider the superstring $B = B[1] B[2] B[3] \cdots$ defined by saying that that

B[i] =

Is B in the list $X_1, X_2, X_3, \ldots, ?$ If so then $B = X_j$ for some particular $j \in \mathbb{N}$. Yet it can't be the case that $B = X_j$ because

That B is **not** in X_1, X_2, X_3, \ldots contradicts that list containing all superstrings.

- 16. How many strings can you get by rearranging the characters of aardwolf? Note: if you flip the first two letters, say, it's not a new string.
- 17. In the "Monty Hall" ("Let's Make a Deal") problem from our final lecture, what is a contestant's probability to select the correct door assuming she always does switch doors

when the host offers her the opportunity?

18. Complete the following proof that some positive multiple of 159 has digits that are all 0s and 1s. Be succinct.

For $i \in [1..160]$, let $A_i = \overbrace{111\cdots 111}^{i}$ and let $a_i = A_i \mod 159$. By the