Midterm

Firstname LASTNAME (Points deducted if not legible) Seat\#

page 1	page 2	page 3	page 4	Σ

For the following questions, please darken the correct box. No justification is required.

1. The formula $\phi=(P \vee Q \vee R)$ has exactly seven satisfying assignments. (Assume a universe of variables of $\mathcal{U}=\{P, Q, R\}$).

True False
2. It is possible to realize a NAND gate using OR and AND gates. (Recall that the NAND of P and Q is $\neg(P \wedge Q)$.) True False
3. It is possible to realize an XOR gate using NAND gates. \quad True False
4. We described in class how every formula ϕ is either complete or sound. True False
5. There is a formula ϕ such that ϕ is satisfiable and $\neg \phi$ is satisfiable. \quad True False
6. If A, B, and X are bits, and $X \oplus A=B$, then $X=A \oplus B . \quad$ True False
7. For sets X, Y, and C, if $X \cup C=Y \cup C$ then $X=Y . \quad$ True False
8. For every set A it is the case that $\emptyset \subseteq A$.

True False
9. Regular expressions $(a \cup b)^{*}$ and $\left(a a^{*} \cup b\right)^{*}$ denote the same language. True False

10. Strings under concatenation form a group.	True	False

11. Let A and B be sets of strings. Then $A \times B=B \times A . \quad$ True False
12. Let A and B be finite sets. Then $|A B|=|A| \cdot|B|$

True	False

13. Remember the Towers of Hanoi problem, where we have n rings on one of three pegs. Using the recursive algorithm described in class, the number of moves T_{n} needed to transfer these n rings to a different peg is given by the recurrence relation:

$$
T_{0}=\square \quad \text { and } \quad T_{n}=\square \text { for all } n \geq 1
$$

14. Starting at 0 , count in binary (base-2): \square
\square
\square
Represent your numbers without leading zeros.
15. A truth table for $Y=(A \leftrightarrow B) \wedge(B \leftrightarrow C) \wedge(C \leftrightarrow D)$ has 16 rows. It has four columns to specify the input (A, B, C, D) and one column to specify the output (Y). Of the 16 bits that occur in the output, \square are zero (0) and \square are one (1).
16. Write a disjunctive normal form (DNF) formula whose truth table is given below. Your formula should be the or of terms where each term is the and of variables or their complements:
\square

p	q	r	$F(p, q, r)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

17. Negate and simplify the following formula. Your answer should only use addition, exponentiation, $\{\wedge, \vee\}$, and $\{<, \leq,=, \neq,>, \geq\}$.

$$
(\exists n)(\exists a)(\exists b)(\exists c)\left(a^{n}+b^{n}=c^{n} \wedge n \geq 3\right)
$$

Who is this guy?
18. Translate the following English sentence into a logical formula:

Some cats can dance - but no such cat can also fetch the morning paper.
The universe \mathcal{U} is "animals." Use predicates of: $C(x)$ for x is cat; $D(x)$ for x can dance; and $F(x)$ for x can fetch the morning paper.
\square
19. Express the following equality in compact mathematical notation: Don't use any ellipses (dot-dot-dots, ". . ").

The sum of the first 100 positive integers is 5050 .
\square
20. Express the following as a sentential formula (no quantifiers) in compact mathematical notation. Don't use any ellipses. (Hint: You'll want to use a big-V and/or a big- \wedge symbol.)

At least two of the boolean variables X_{1}, \ldots, X_{100} are true.
\square
21. We used the compactness theorem of sentential logic to show that what is true about tiling the plane using a specified set of tile types?
22. To use mathematical induction to prove that a proposition $B(n)$ is true for all numbers $n \geq 72$, show that \square
\square
23. Explicitly specify the power set of the given set:
\square
24. Let BYTES be the set of 8 -bit strings. We defined two addition operations on BYTES that made this set into a group: bitwise-XOR (\oplus) (below left) and (carryless) computer addition $(+)$ (below right). Add the numbers using each operation.

	1	1	0	1	1	0	1	1
\oplus	1	1	1	0	1	1	1	0

| 11 | 0 | 1 | 0 | 1 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| + | 1110111 | 1 | 0 | | |

25. Let $R \subseteq\{a, b\}^{*} \times\{a, b\}^{*}$ be the equivalence relation defined by $x R y$ iff the string $|x|=|y|$. Explicitly list the elements of $[a a]$, the block (equivalence class) containing $a a$.

$$
[a a]=\square
$$

26. In the Kingdom of Konfusion, coins come in nimes (9ϕ) and dimes (10ϕ). Prove that it's possible to make any integral number $n \geq 72$ of cents using only nimes and dimes.
27. If you use the UNION/FIND data structure with union-by-rank and collapsing-find, what do you return - and what side effects do you cause - if you call $\operatorname{FIND}(h)$ with the following data structure?

28. Write a shortest regular expression for the language L that is the set of all binary strings $x \in\{0,1\}^{*}$ whose length is divisible by three.
\square
29. Extra credit. What's an aardwolf's favorite food?
\square

