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ECS 20 – Winter 2022 – P. Rogaway 
 
Lecture 19:  Graphs 
 
Today 

1. Basic definitions     
2. Isomorphic graphs 
3. Representation of graphs 
4. Paths 
5. Eulerian and Hamiltonian graphs 
6. Longest and shortest paths 
7. Colorability 

 
1. Basic Definitions 
 
Def:   A (finite, simple) graph is an ordered pair G = (V, E) where 
       - V is a nonempty finite set (the vertices or nodes) 
       - E is a set of two-elements subsets of V (the edges) 
 
There are many other “kinds” of graphs—for example, in a directed graph 
(digraph), the edges (now often called arcs) are ordered pairs, instead of 
unordered pairs. We sometimes allow graphs with self-loops (and edge 
between a vertex and itself) or multiple edges (two or more different edges 
connecting a pair of nodes). In a network, each edge (or arcs) has a real-
valued weight. People also consider infinite graphs. We even have graphs 
where an edge can be incident (touch) touch more than two vertices (these 
are called hypergraphs). None of these variants are not allowed in simple 
graphs. 
  
Conventional representation: a picture. (Draw some.) But be clear: the 
picture is NOT the graph, it is a representation of the graph. The graph is 
the pair (V, E). 
 
          B--- C 
        /  \    / 
      A     D 
 
          B--- D 
        /  \   / 
      A     C 
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are the SAME graph.    
 
Not a graph:  draw a self-loop, multiple loops, empty set. 
 
Graphs are interesting in part for there versatility to model other phenomena. 
Often the vertices represent “things” and an edge between them means that 
they stand in relation to one another.  So graphs directly model symmetric, 
anti-reflexive relations.   Things like V for a set of People and E for the 
binary relation is-friends-with.  Or:  V for buildings and E for is-adjacent-to. 
Or V for countries and E for shares-a-border.  And so on… 
 
Some “special” graphs – a clique of size n, Kn .    The complete bipartite 
graphs on n “boys” and m “girls”, Kn,m. 
 
 

K1 K2 K3 K4
K5

K3,3K2,3  
 

The Peterson graph  
 
 
 
Def: Vertices v, w of a graph G=(V, E) are adjacent if {v,w} ∈ E. 
The neighbor set of a vertex v, N(v), is {w ∈ V: {v,w} ∈ E }. 
The degree of a vertex, deg(v), is its number of neighbors. 
So deg(v) = |N(v)|. 
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Question: what is the maximal and minimal degrees that one might have in 
an n-vertex graph?   
 
I like e={x,y} for an edge, emphasizing that the vertices incident to an edge 
are unordered.  But one will sometimes see xy or (x,y). Such notation is 
potentially misleading because it looks like the order matters, which, in a 
simple graph, is not the case. 
 
Usually we use n=|V| and m=|E|; alternatively, ν = |V| and ε = |E|.  
 
Proposition: In a graph G=(V,E) with m edges, Σv deg(v) = 2m.    
 
We don't usually care about the names of points in V, only how they’re 
connected up. That’s because the properties of the graphs that matter are 
those that are invariant under isomorphism.  
 
 
2. Isomorphic graphs 
 
Def:  Graphs G=(V, E) and G’=(V’, E’) are isomorphic if there is a 
permutation π: V → V’ such that {v,w}∈E iff {π(v),π(w)} ∈ E’.  
 
Claim: Isomorphism is an equivalence relation. 
 
Give examples of properties that are and are not preserved under 
isomorphism. 
 
Graphs are usually considered “the same” if they are isomorphic.  One 
consequence of this is that there is usually no significance ascribed to the 
names of the vertices—the actual values in the set V. But the number of 
vertices matters, of course. So we can often just assume that V={1,...,n} for 
some number n.   
 
Amazing fact: there is no efficient algorithm known to decide if two graphs 
are isomorphic. Most computer scientists believe that no such algorithm 
exists. But this is one of the biggest open questions in theoretical computer 
science. 
 
How many different graphs are there on V={1,...,n}?     2C(n,2)  = 2n(n-1)/2 
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It is harder to count how many non-isomorphic graphs there are. Maybe do 
this for n=3, n=4. 
 
 
3. Representation of graphs 
 
There are two common ways to represent a graph in a computer: an 
adjacency matrix and an adjacency list. 
 
Adjacency matrix: An n x n matrix binary matric where Ai j = 1 if {i, j}∈E  
and Ai j = 1 otherwise.   
 
Adjacency list: An n-element list of lists, each of which is itself a list having 
at most n-1 elements. The i-th entry in the list is the list of all vertices 
adjacent to vertex i.  
 
This will have been covered in many students second programming class. 
 
 
4. Paths 
 
Def: A path  p = (v1, ..., vn) in G = (V,E) is a sequence of vertices s.t. 
{vi,vi+1}∈E  for all i in {1,..., n−1}. 
 
A path is said to contain the vertices and to contain the edges {vi,vi+1}.  
 
The length of a path is the number of edges on it.  
 
A cycle is a path of length three or more that starts and ends at the same 
vertex and includes no repeated edges. 
 
A graph is acyclic if it contains no cycle. 
 
A graph G = (V,E) is connected if, for all x,y ∈ V, there is a path from x to y. 
 
Graph G’ = (V’,E’) is a subgraph of graph G = (V,E) if V' ⊆V and E’ ⊆ E.) 
 
The components  of a graph are the maximal connected subgraphs. 
 



5 
 

Alternative definition of components:  Say that x ~ y (these vertices are in 
the same component) if there is a path from x to y. Prop: this is an 
equivalence relation.  Its blocks (equivalence classes) are the components. 
 
Alternative definition of a component: the component containing v is all 
vertices connected to v by paths of any lengths; and all the induced edges 
(the edges of the original graph that span vertices in the component). 
 
Describe an algorithm, based on DFS, for counting the number of 
components of a graph and identifying them.  
 
Def:     A tree is a connected acyclic graph. 
 
Proposition: In any tree with n vertices and m edges, m = n – 1 
 
Proof: By induction on n. True when n=1.   Now suppose G is an n-vertex 
tree, n>1.   Claim that there is some node of degree 1 in G.  
              If any node of degree 0: contradicts connected. 
              If all nodes of degree ≥ 2, contradict acyclicity. 
Take your node of degree 1 and remove it, along with the adjoining edge. 
What remains is connected and acyclic, so (m-1) = (n-1) -1 for it. 
Took away one edge and one vertex, so m=n-1. 
 
5. Eulerian and Hamiltonian graphs 
 
Def: A graph G is Eulerian   if it there is a cycle C in G that goes through 
every edge exactly once.     A graph G is Hamiltonian if there is a cycle that 
goes through every vertex exactly once. 
 
Theorem: (Euler) A connected graph G = (V,E) on n≥3 vertices is Eulerian 
Iff  every vertex of G is of even degree. 
 
Proof:     Choose s. Graph is Eulerian mean there is a path that starts at 
s and eventually ends at s, hitting every edge.   Put a label of 0 on 
every vertex.  Now, follow the path. Every time we exit a vertex, increment 
the label. Every time we enter a vertex, increment the label. 
At end of traversing the graph, label(v) = deg(v) and this is even. 
   (sketch) If every vertex is of even degree, at least three vertices. Start at 
s and grow a cycle C of unexplored edges until you wind up back at s. 
You never “get stuck” by even-degree constraint.  If every edge explored: 
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Done.  Otherwise, find contact point of C and an unexplored edge (exists 
by connectedness) and grow out from there.  Splice together the paths.  END 
 
So there is a trivial algorithm to decide if G is Eulerian: just check if all its 
vertices are of even degree. 
 
Amazing fact: There is no “reasonable” algorithm known to decide if a 
graph is Hamiltonian. 
 
(Most computer scientists believe that no such algorithm exists.) 
 
Lots of graph problems are this way: some problem is computationally easy 
to solve, but some problem that might sound very similar to it is, apparently, 
computationally intractable.  Here are a few more examples: 
 
 
6. Longest and shortest paths 
 
Def: A shortest path between two vertices x and y is a path from x to y such 
that there is no shorter (=fewer edges) path from x to y. 
 
A longest path between two vertices x and y is a simple path (= no repeated 
vertices) from x to y. 
 
Claim: There is an efficient algorithm to identify a shortest path between 
two designated vertices in a graph.  (You will learn one in ecs122A or 
ecs60) 
 
Amazing fact: There is no efficient algorithm known to find a longest path 
from x to y. (Most computer scientists believe that no such algorithm exists.) 
 
Diameter of a graph = the length of a longest shortest path. 
Explain how an inability to efficiently decide if a graph is Hamiltonian 
implies an inability to find a longest path between a designated pair of 
vertices: namely, there is a simple path (=no repeated vertices) of length n 
−1 between x and y (where n = |V|) iff G ∪ {x, y} has a HC. 
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7. Colorability 
 
Def: A graph  G = (V, E) is k-colorable  if we can paint the vertices using 
“colors” {1,...,k} such that no adjacent vertices have the same color.   
Formally, G = (V, E) is k-colorable if there exists a function c: V→{1,...,k} 
such that for all {v,w}∈ E implies c(v) ≠ c(w). 
 
Def: A graph is bipartite if it is 2-colorable.   Equivalently, a graph is 
bipartite if we can partition V into (V1, V2) such that all edges go between a 
vertex in V1 and a vertex in V2. 
 
Proposition: A graph is bipartite iff it contains no odd-length cycle. 
 
Proposition: There is a simple and efficient algorithm to decide if a graph G 
is 2-colorable / bipartite. 
 
Proof:  Initially, all vertices are uncolored.   Now choose an uncolored 
vertex and color it 1.  Color each all of it’s neighbors 2. Color their 
neighbors 1.  And so on.  If one ever encounters adjacent vertices with the 
same color then output that the graph is not bipartite.  I the process halts and 
there are more uncolored vertices, color one of them 1 and repeat.  Continue 
until all vertices colored.  I claim that this 2-colors all and only the bipartite 
graphs.  
 
Complementary fact: There is no computationally reasonable algorithm 
known to decide if a graph is 3-colorable.   Most computer scientists believe 
that no such algorithm exists. 
 
 
 
 
 


