
ECS 20: Discrete Mathematics for Computer Science Lecture 13 (7T)
UC Davis — Phillip Rogaway February 15, 2022

Induction and Recursion 2

Today:

� More induction

� Recursion

1 Recursion on Definitions

When we’ve defined something recursively, you can induct on the number of steps used
in that definition. Let’s do an example.

Recall the definition of a boolean formula over a set of predicate symbols P : First we
said (1) that each variable P ∈ P was a well-formed formula. Then we said (2) that if
α and β were well formed formulas over P , then so were (2a) (α ∨ β), (2b) (α ∧ β), and
(2c) (¬α).

Now supposed I’d like to make the simple claim that any boolean formula has the same
number of left-parentheses as right-parentheses. Easy. What I do is to induct on the
number of applications of steps (2a), (2b), or (2c) used to derive the formula φ. For
the base cases—0 steps—our formula φ must have been derived by rule 1, meaning that
is a predicate symbol, meaning that it has no parentheses. Well, actually this isn’t
vacuous—I better explicitly demand that predicate symbols not include either left or
right parentheses, else we’ll be hosed! Alternatively, our formula φ is derived by rule (2a),
(2b), or (2c). In the first case, φ = (α ∨ β) and, by inductive hypothesis, α has an equal
number of left and right parentheses, and so φ does too, having added one of each. Same
if φ = (α ∧ β) or φ = (¬α). And we are done. ♦
Inductions on definitions are common in theoretical computer science. It’s really the
natural way to prove things when one has defined things inductively.

2 Fundamental Theorem of Arithmetic

Let’s prove the following:

Theorem 1 Ever number n ≥ can be written uniquely as the product of increasing prime
powers:

n = pα1
1 p

α2
2 · · · p

αk
k

where p1 < p2 < · · · < pk are primes, α1, . . . , αk ≥ 1.

ECS 20 Lecture 13 (7T): Induction and Recursion 2 2

Proof. By strong induction on n. When n = 2 the result is immediately true; that is our
basis. Otherwise, suppose the theorem is true for all numbers less than n. We wish to
show that the theorem holds for n.

Suppose the number n is prime. Then it can immediately be written as the product of
primes.

Otherwise n is not prime, meaning that it is composite and n can written as the product of
numbers a and b where 2 ≤ a < n and 2 ≤ b < n. By inductive assumption, a = pα1

1 · · · pαa
a

can be written as the product of primes and b = qβ11 · · · q
βb
b can be written as the product of

primes, and therefore ab = pα1
1 · · · pαa

a qβ11 · · · q
βb
b can be written as the product of primes.

This establishes the result without the adverb uniquely.

To show show uniqueness I am going to assume the following lemma, which I will not
prove. It says that if p | ab where p is a prime, then p | a or p | b. By repeatedly applying
this lemma we can say that if p | qβ11 · · · q

βb
b then p = qj for some j.

Now to business. To show uniqueness suppose for contradiction that there is some number
that can be written as a product of increasing primes in two different way. Let n be the
smallest such number. (Note: we are using well-ordering for this to be well-defined!) So
n = pα1

1 · · · pαa
a and n = qβ11 · · · q

βb
b . Is it possible that pi = qj for some i, j? It is not,

for if we had that condition then we could divide n by pi and get a smaller number that
has two decompositions as the product of increasing primes. We conclude, then, that
n = pα1

1 · · · pαa
a = qβ11 · · · q

βb
b where all of the p1, . . . , pa, q1, . . . , qj are distinct. Now p1 | n

and so, in particular, p1 | qβ11 · · · q
βb
b . By the lemma from a paragraph back, this means

that p1 = qj for some j. But this contradicts our finding that the pi values are distinct
from the qj values, finishing the proof. ♦

3 Well-Ordering Principle

Not covered to save time, but left in the notes.

The following well-ordering principle often provides an alternative to induction. In some
settings, it gives more direct and elegant proofs. An example is the division theorem.

Well-ordering principle. Any nonempty set of natural numbers has a least
element: S ⊆ N implies that s = minS is well-defined.

Note: if you change N to Z, it isn’t true.

Envelope problem with well-ordering. For example, let’s reprove the envelope prob-
lem using well-ordering. Last time: You can dispense any number n ≥ 44 of envelopes in
packages of 5 and 12. That is, (∀n ≥ 44)(∃a, b ∈ N)(n = 5a+ 12b).

ECS 20 Lecture 13 (7T): Induction and Recursion 2 3

Proof. Assume for contradiction that the claim is false. Let C be the set of counter-
examples to the claim: c ∈ C means that c ≥ 44 and c 6= 5a + 12b for any a, b ≥ 0. By
well-ordering, C has a least element. Call it c. How big is c? We know c ≥ 44. By the
chart we did last time, we know that c ≥ 60. Now c− 5 is not a counterexample (because
c was the smallest counter-example), so c − 5 = 5a + 12b for some a, b ≥ 0. But then
c = 5(a+ 1) + 12b. ♦

Many proofs done by induction can be done by well-ordering. Some authors go so far as
to say that well-ordering and induction are equivalent—in the sense that PA with one as
the final axiom implies all other. But this isn’t true. Induction (in the context of PA) is
enough to prove well-ordering, but not the other way around.

Unnoticed well-ordering in a previous proof. We actually used well-ordering with-
out comment in the proof of

√
2 being irrational. Remember how that went? We said:

assume for contradiction that
√

2 is rational. That is, there exists integers p, q, q 6= 0,
such that

√
2 = p/q and p and q have no common divisors bigger than 1. But wait!

Why can we assume that p and q have no common divisors greater 1? We are effectively
considering the set of all numbers P such that for each p ∈ ¶ there is an integer q such
that

√
2 = p/q. Of course P is an infinite set of natural numbers. To find the p/q that is

reduced, I am selecting the least element p ∈ P and then the corresponding q ∈ N such
that

√
2 = p/q. Why does such a p exist? It would not if we were allowing real-valued p

and q. But with P ⊆ N, well ordering gives us the least p, from which we continue with
our proof.

4 Recursion

Recursion entails solving a problem by solving the same problem, but on smaller instances.
Those smaller problems are solved how? By solving the same problem, but on smaller
instances. And so on, until problems are so small that you just know the answer.

Expressed mechanistically, in the language of programming, recursive algorithms call
themselves. Or they call algorithms in call graphs that are otherwise cyclic.

Recursion is closely tied to induction (at least it feels close to me). There one proves some
result by virtue of having proven related, smaller results.

The key to thinking recursively is this: don’t let your mind “descend” into the recursion;
instead, think of the smaller solutions as being solved as if by magic. Thinking inductively
and thinking recursively are highly similar.

ECS 20 Lecture 13 (7T): Induction and Recursion 2 4

5 Example 1: Counting Tic-tac-toe Games

Let’s count N0 =the total number of possible tic-tac-toe games, where X moves first. I’m
going to assume I have a computer to help me out with the work; my job is to write the
equation that we can plug in.

It’s good to first get a ballpark figure and use this to ascertain if our recursive decompo-
sition is going to give a number, in a reasonable amount of time, when programmed up.
For this we would note that N < 9! = 362880 ≈ 218.5. If you think back to the comments
I made on what is practical, this is well on the side of practical Way less than 230, which
is where I said you needed to start to take some care.

How to represent a board? We can regard tic-tac-toes position as encoded by a string
w from {X, O, -}9. That is, we regard a board as a 9-character string. Not all of the 39

possible strings can arise. But it’s still a good way to represent a board.

Let S(x) be the set of all possible (immediate) successor positions from x. E.g., Ex:

S(--- -X- ---) = {O-- -X- ---, -O- -X- ---, --O -X- ---,
--- -O- ---, --- -XO ---, --- -X- O--,

--- -X- -O-, --- -X- --O}.

On the other hand, S(OO-XXX---) = ∅, as X has already won this game, whence there are
no successor positions. Note that either |S(w)| is either 0 (when a player has won) or the
number of dashes in the string w.

Let N(w) =number of games that can continue from board w, including w. So we want
to know N0 = N(--- --- ---).

It is easy to compute N recursively. It’s

N(w) =

{
1 if S(w) = ∅, and∑

y∈S(w)N(y) otherwise

For example, N(--- --- ---) = N(X-- ---) + · · ·+N(--- --- --X).

We can code it up!! The answer is N0 = 255 168 possible games. Took me 22 lines of
code. See Figure 1.

6 Towers of Hanoi

For this problem n rings of increasing diameter are placed on peg A. The rings must be
moved from peg A to peg C in a way that respects the following rules. First, only the
topmost ring on a peg can be moved to another peg, where it again becomes the topmost
ring. Second, a bigger ring cannot be placed atop a smaller one. See Figure 2

ECS 20 Lecture 13 (7T): Induction and Recursion 2 5

Counts the number of possible tic-tac-toe games

Uses recursively defined N(w) = number of continuations of board w.

Board represented as a 10-element list of ’X’, ’O’, ’-’ chars, element 0 unused.

X,O,EMPTY,UNUSED= ’X’,’O’,’-’,’.’

Wins = [[1,2,3],[4,5,6],[7,8,9], [1,4,7],[2,5,8],[3,6,9], [1,5,9],[3,5,7]]

def win(w,P): # return true if player P has won. P==X or P==O

for [a,b,c] in Wins:

if w[a] == w[b] == w[c] == P: return True

return False

def whose_move(w): # Return X or O depending on whose move it is

if w.count(EMPTY)%2: return X

return O

def game_over(w): # True after a win or nowhere left to go

return win(w,X) or win(w,O) or w.count(EMPTY)==0

def N(w): # Calculate number of games that elaborate board

if game_over(w): return 1

sum = 0

for i in range(1,10):

if w[i]!=EMPTY: continue

y = w[:]

y[i] = whose_move(w)

sum += N(y)

return sum

w = [UNUSED] + [EMPTY]*9 ### MAIN PROGRAM ###

print(’Number of possible games is’, N(w))

Figure 1: Recursive program to compute the number of possible tic-tac-toe games.

ECS 20 Lecture 13 (7T): Induction and Recursion 2 6

| | |

-|- | |

--|-- | |

---|--- | |

----|---- | |

===========|===============|===============|==========

A B C

Figure 2: Towers of Hanoi problem.

The recursive way to solve the problem requires us to generalize it: move any number of
increasing-diameter rings from a first peg to a second using a third as an intermediate
peg. Here’s an algorithm:

// Transfer n pegs from A to C using B as intermediate

algorithm TH (n, A,B, C) // Alternative convention A,B,C ?

if n = 1 then Move(A,C)

TH(n-1, A,B, C)

Move(A,C)

TH(n-1, B,C, A)

Thinking recursively, we are assuming some “black box” algorithm to move the first n−1
rings from A to C; then we move the big ring to C; and then we use our black-box method
to pile of n− 1 rings from B to C.

How many moves T (n) does our algorithm take to move n rings to a new peg? Clearly
T (1) = 1 and T (n) = 2T (n−1)+1 for n ≥ 1. It is easy to guess the solution if one makes
a table and looks at it:

1 2 3 4 5 6 7
1 3 7 16 31 63 127

from which one can guess that T (n) = 2n − 1 for all n ≥ 1. This can be proven by
induction. Do it!

We can also show that the result is optimal. Let S(n) be the minimal number of moves
to move n rings from one peg to another in a way that abides the the given rules. In order
to move n pegs from A to C there must be a first time when the largest ring moves from
A to an unoccupied peg. How many moves does that take? At least S(n−1). The largest
ring must eventually moves for the last time to peg C. How many moves does that take?
Exactly one. Now the n−1 rings must migrate from their current location to peg C. How

ECS 20 Lecture 13 (7T): Induction and Recursion 2 7

long will that take? At least S(n− 1). All together, then, any solution must take at least
2S(n− 1) moves:

S(n) ≥ 2S(n)− 1.

By induction as before S(n) ≥ 2n − 1. Thus our former solution is optimal.

According to Wikipedia:

The puzzle was introduced to the West by the French mathematician Édouard
Lucas in 1883. Numerous myths regarding the ancient and mystical nature
of the puzzle popped up almost immediately, including one about an Indian
temple in Kashi Vishwanath containing a large room with three time-worn
posts in it, surrounded by 64 golden disks. Acting out the command of an
ancient prophecy, Brahmin priests have been moving these disks in accordance
with the immutable rules of Brahma since that time. The puzzle is therefore
also known as the Tower of Brahma. According to the legend, when the last
move of the puzzle is completed, the world will end.

Fortunately, even if the priests move a ring each second, 2n−1 seconds is about 600 billion
years, so we should be safe for a while.

	Recursion on Definitions
	Fundamental Theorem of Arithmetic
	Well-Ordering Principle
	Recursion
	Example 1: Counting Tic-tac-toe Games
	Towers of Hanoi

