ECS 20: Discrete Mathematics for Computer Science Lecture 14 (7R)
UC Davis — Phillip Rogaway February 17, 2022

Induction and Recursion 3

Today:
[J Applications of the Fundamental Theorem of Arithmetic
[0 More recursion examples

[J Solving recurrence relations

1 Applications of the Fundamental Theorem of Arithmetic

e How many (positive) divisors does n = 2450250000 = 243*5%11% have? Why, 5-5 -
7 -3 = 525, as the divisors of n are the numbers of the for form 2°3°5°11¢ where
a,b € [0.4], c €]0..6], and d € [0..2].

e Is 1657728200 a square? No, because you can divide it by 10 - 10 = 22 - 52 to get
16577282, which, if you divide it by two once more, will give you the odd number
8288641. So the number powers of 2 in our original number is 3. But a number is
going to be a square iff all the powers of primes in its prime factorization are even.
Can you see both directions of this?? Prove it!

2 Karatsuba Multiplication (1960/62)

Suppose we want to multiply two decimal numbers (binary numbers would work the same
way). We write one number as = z1||zy and the other as y = y; ||yo with each half having
m digits (let’s not worry about what to do if m is odd; no significant complications are

added). So

r = 2110 + 29

= 10"+ 1y

The product is then

xy = (x1-10™ 4+ 20)(y1 - 10™ + yo)
29 - 10%™ 4 21 - 10™ + 2,

ECS 20 Lecture 14 (7R): Induction and Recursion 3 2

where
22 = 11
z1 = T1Yo + ToY1
20 = ZToYo-

Computing these values require four multiplications. Thus one way to multiply decom-
poses our size-n problem into four problems of size n/2, plus some added overhead that
is O(n):

T(n) =4T(n/2) + n.

We will see shortly that decomposition does no better than grade-school multiplication.

Karatsuba observed that xy can be computed in only three multiplications of m-digit
values: With 2y and 29 as before we can calculate z; by way of

21 = (21 + 20) (Y1 + ¥o) — 22 — 20 = (21 4+ T0) (Y1 + Yo) — T1Y1 — ToYo = T1Yo + ToY1-
This give rise to the recurrence
T(n) =3T(n/2) + n.

We will solve this recurrence in just a moment. For now, here is an example of how this
works:

Example:
Let’s compute
98 76
* b6 78
5928
7644 These two numbers sum
4256 to 11900, which we can also get as
5488 = (98+76) (66+78) - 5928 - 5488
————————— = 174%134 - 5928 - 5488
56075928 = 23316 - 5928 - 5488

11900

3 Solving Recurrence Relations

Recurrence relations have the form 7'(n) = an expressions involving values T'(k) where
k < n; along with T'(k) =constant for sufficiently small k.

ECS 20 Lecture 14 (7R): Induction and Recursion 3 3

Let’s figure out the running time 7'(n) of Karatsuba multiply by the method of repeated
substitution. Let T(n) be the number of steps needed to multiply two n-bit (or n-digit)
strings. We are only going to be seeking an answer that describes T'(n) within a constant,
so we won’t worry about exactly what we are counting, and we won’t worry about ceilings
and floors, either. Now

T(n) = 3T(n/2)+n
= 3(3T(n/4) +n/2)+n
3*T(n/4) +3n/2+n
32(3T(n/8 +n/4) +3n/2 +n
33T (n/8) +3*n/4 +3n/2 +n
3'T(n/16) + n(1+3/2 + (3/2)* + (3/2)*)

= 3*T(n/2%) +n(1+3/2+(3/2)% +(3/2)3 +--- +(2/3)F 1

At this point it seems like it would be good to know what is

S = 1+p+p*+---+p™ and so
Sp = p+p°+--+p™+p""". Subtracting,
S—Sp = 1—p™! giving
S(1—p) = 1—p™ andso

1 — m+1
s = —F o
I-p
m+1_1
s = L _—=
p—1

In particular, with p = 3/2 we have
1+3/24-+(3/2)" 1 =2((3/2)* - 1)
Going back to our goal of computing T'(n), we select k = lgn to conclude that

T(n) = 3%"4+2n(3%"/n—1)
3'en 4 2(3'™ — 2
n'e3 4 onle3 —op
@(nlg3>

O(n1.585)

(N m

ECS 20 Lecture 14 (7R): Induction and Recursion 3 4

Fastest known algorithm for this problem. It is possible to multiply two n-bit
numbers in time O(nlgn). This is due to Harvey and van der Hoeven (2019). It follows a
steady improvement in running times that begin with Karatsuba, continues with a famous
result of Schonhage-Strassen (1971) that takes O(nlognloglogn). The new O(nlogn)
multiplication algorithm is described at https://tinyurl.com/3zhk24xe.

In the remainder of these notes we’ll look at other algorithms giving rise to such “divide-
and-conquer” recurrence relations.

4 Binary Search

No doubt many of you have encountered this algorithm before. It is meant to determine if
an element x is in an n-element list A of sorted elements—Ilet’s say in increasing (meaning
non-decreasing) order. Like: A =[-5,-2,1,3,3,7,7,12].

We first compare = with the element at the middle position p. When there is not mid-
dlemost position, go just to the left, say, of where the non-existent middle would be. If
x = Alp] you answer that, yes, = is in A. Otherwise, if < A[p] you should continue
your search to the left of p. Otherwise, you should continue your search to the right of
position p. You could write pseudocode like this:

algorithm BS(A,1, j, z)

if 7+ > j then return F

p < [(i+7)/2]

if A[p] =z then return T

if © < A[p] then return BS(A,i,p — 1,)
if x > A[p|] then return BS(A,p + 1,7,)

Now to analyze its running time:

T(n)=T(n/2)+1

Use repeated substitution, as before, to get that T'(n) € ©(lgn).

5 Mergesort

This simple algorithm takes in a list A of n elements, indexed A[l..n]. The elements are
drawn from a totally ordered universe—e.g., integers, reals, or strings. But they’re in an
arbitrary order. The algorithm returns a list with all of the same items but in increasing
(meaning non-decreasing) order.

https://tinyurl.com/3zhk24xe

ECS 20 Lecture 14 (7R): Induction and Recursion 3 5

We employ a procedure Merge that takes in increasing-ordered lists L and R and returns
a single list of |L| 4+ |R| whose elements are the elements appearing in L and R, but now
in increasing order.

algorithm MS(A)

n <« |A]

if n <1 then return A
L+ MS(A[l..|n/2]])

R < MS(A[|n/2] + 1..n])
return Merge(L,R)

Analysis: Let T'(n) be the worst-case number of comparisons to sort n items using the
algorithm above. Then T'(n) = 27'(n/2) +n — 1. Show how to bound it by replacing the
n — 1 with n and then using repeated substitution, as before, to get T'(n) € O(nlgn).

Also show the recursion-tree view of solving the recurrence relation.

	Applications of the Fundamental Theorem of Arithmetic
	Karatsuba Multiplication (1960/62)
	Solving Recurrence Relations
	Binary Search
	Mergesort

