
ECS 20: Discrete Mathematics for Computer Science Lecture 14 (7R)
UC Davis — Phillip Rogaway February 17, 2022

Induction and Recursion 3

Today:

� Applications of the Fundamental Theorem of Arithmetic

� More recursion examples

� Solving recurrence relations

1 Applications of the Fundamental Theorem of Arithmetic

• How many (positive) divisors does n = 2450250000 = 243456112 have? Why, 5 · 5 ·
7 · 3 = 525, as the divisors of n are the numbers of the for form 2a3b5c11d where
a, b ∈ [0..4], c ∈ [0..6], and d ∈ [0..2].

• Is 1657728200 a square? No, because you can divide it by 10 · 10 = 22 · 52 to get
16577282, which, if you divide it by two once more, will give you the odd number
8288641. So the number powers of 2 in our original number is 3. But a number is
going to be a square iff all the powers of primes in its prime factorization are even.
Can you see both directions of this?? Prove it!

2 Karatsuba Multiplication (1960/62)

Suppose we want to multiply two decimal numbers (binary numbers would work the same
way). We write one number as x = x1‖x0 and the other as y = y1‖y0 with each half having
m digits (let’s not worry about what to do if m is odd; no significant complications are
added). So

x = x110m + x0

y = y110m + y0

The product is then

xy = (x1 · 10m + x0)(y1 · 10m + y0)

= z2 · 102m + z1 · 10m + z0

ECS 20 Lecture 14 (7R): Induction and Recursion 3 2

where

z2 = x1y1

z1 = x1y0 + x0y1

z0 = x0y0.

Computing these values require four multiplications. Thus one way to multiply decom-
poses our size-n problem into four problems of size n/2, plus some added overhead that
is O(n):

T (n) = 4T (n/2) + n.

We will see shortly that decomposition does no better than grade-school multiplication.

Karatsuba observed that xy can be computed in only three multiplications of m-digit
values: With z0 and z2 as before we can calculate z1 by way of

z1 = (x1 + x0)(y1 + y0)− z2 − z0 = (x1 + x0)(y1 + y0)− x1y1 − x0y0 = x1y0 + x0y1.

This give rise to the recurrence

T (n) = 3T (n/2) + n.

We will solve this recurrence in just a moment. For now, here is an example of how this
works:

Example:

Let’s compute

98 76

* 56 78

5928

7644 These two numbers sum

4256 to 11900, which we can also get as

5488 = (98+76)(56+78) - 5928 - 5488

--------- = 174*134 - 5928 - 5488

56075928 = 23316 - 5928 - 5488

= 11900

3 Solving Recurrence Relations

Recurrence relations have the form T (n) = an expressions involving values T (k) where
k < n; along with T (k) =constant for sufficiently small k.

ECS 20 Lecture 14 (7R): Induction and Recursion 3 3

Let’s figure out the running time T (n) of Karatsuba multiply by the method of repeated
substitution. Let T (n) be the number of steps needed to multiply two n-bit (or n-digit)
strings. We are only going to be seeking an answer that describes T (n) within a constant,
so we won’t worry about exactly what we are counting, and we won’t worry about ceilings
and floors, either. Now

T (n) = 3T (n/2) + n

= 3(3T (n/4) + n/2) + n

= 32T (n/4) + 3n/2 + n

= 32(3T (n/8 + n/4) + 3n/2 + n

= 33T (n/8) + 32n/4 + 3n/2 + n

= 34T (n/16) + n(1 + 3/2 + (3/2)2 + (3/2)3)

= · · ·
= 3kT (n/2k) + n(1 + 3/2 + (3/2)2 + (3/2)3 + · · ·+ (2/3)k−1)

At this point it seems like it would be good to know what is

S = 1 + p + p2 + · · ·+ pm and so

Sp = p + p2 + · · ·+ pm + pm+1. Subtracting,

S − Sp = 1− pm+1 giving

S(1− p) = 1− pm+1 and so

S =
1− pm+1

1− p
or

S =
pm+1 − 1

p− 1
.

In particular, with p = 3/2 we have

1 + 3/2 + · · ·+ (3/2)k−1 = 2((3/2)k − 1)

Going back to our goal of computing T (n), we select k = lg n to conclude that

T (n) = 3lgn + 2n(3lgn/n− 1)

= 3lgn + 2(3lgn − 2n

= nlg 3 + 2nlg 3 − 2n

∈ Θ(nlg 3)

⊆ O(n1.585)

ECS 20 Lecture 14 (7R): Induction and Recursion 3 4

Fastest known algorithm for this problem. It is possible to multiply two n-bit
numbers in time O(n lg n). This is due to Harvey and van der Hoeven (2019). It follows a
steady improvement in running times that begin with Karatsuba, continues with a famous
result of Schönhage-Strassen (1971) that takes O(n log n log log n). The new O(n log n)
multiplication algorithm is described at https://tinyurl.com/3zhk24xe.

In the remainder of these notes we’ll look at other algorithms giving rise to such “divide-
and-conquer” recurrence relations.

4 Binary Search

No doubt many of you have encountered this algorithm before. It is meant to determine if
an element x is in an n-element list A of sorted elements—let’s say in increasing (meaning
non-decreasing) order. Like: A = [−5,−2, 1, 3, 3, 7, 7, 12].

We first compare x with the element at the middle position p. When there is not mid-
dlemost position, go just to the left, say, of where the non-existent middle would be. If
x = A[p] you answer that, yes, x is in A. Otherwise, if x < A[p] you should continue
your search to the left of p. Otherwise, you should continue your search to the right of
position p. You could write pseudocode like this:

algorithm BS(A, i, j, x)
if i > j then return F
p← b(i + j)/2c
if A[p] = x then return T
if x < A[p] then return BS(A, i, p− 1, x)
if x > A[p] then return BS(A, p + 1, j, x)

Now to analyze its running time:

T (n) = T (n/2) + 1

Use repeated substitution, as before, to get that T (n) ∈ Θ(lg n).

5 Mergesort

This simple algorithm takes in a list A of n elements, indexed A[1..n]. The elements are
drawn from a totally ordered universe—e.g., integers, reals, or strings. But they’re in an
arbitrary order. The algorithm returns a list with all of the same items but in increasing
(meaning non-decreasing) order.

https://tinyurl.com/3zhk24xe

ECS 20 Lecture 14 (7R): Induction and Recursion 3 5

We employ a procedure Merge that takes in increasing-ordered lists L and R and returns
a single list of |L|+ |R| whose elements are the elements appearing in L and R, but now
in increasing order.

algorithm MS(A)
n← |A|
if n ≤ 1 then return A
L← MS(A[1..bn/2c])
R← MS(A[bn/2c+ 1..n])
return Merge(L,R)

Analysis: Let T (n) be the worst-case number of comparisons to sort n items using the
algorithm above. Then T (n) = 2T (n/2) + n− 1. Show how to bound it by replacing the
n− 1 with n and then using repeated substitution, as before, to get T (n) ∈ Θ(n lg n).

Also show the recursion-tree view of solving the recurrence relation.

	Applications of the Fundamental Theorem of Arithmetic
	Karatsuba Multiplication (1960/62)
	Solving Recurrence Relations
	Binary Search
	Mergesort

