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ECS 20 – Winter 2022 – P. Rogaway 
 
Integers and the Pigeonhole Principle 
 
 
Today: 

• The pigeonhole principle 
• A bit more number theory 
• A touch of cryptography  

 
 
PHP: statements 
 
Pigeonhole Principle (v1): If N pigeons roost in n holes, with n< N, 
then some two pigeons roost in the same hole. 
 
Pigeonhole Principle (v2): If   f : A → B where A and B are finite sets and 
|A| > |B|, then f is not injective: there are points a, a’ ∈ A such that a ≠ a’ 
and  f (a) = f (a’). 
 
Ex 1.  Any room with 3 or more people has some two of the same gender. 
Assume for this statement that each person identifies as either “male” or 
“female” but not both. 
 
Ex 2.  20 people at a party, some two have the same number of friends. 
 
Proof idea: two cases: no person knows everyone; some person knows 
everyone.  Then there will be 0..18 possible # of friends in the first case, and 
1..19 number of friends in the second case.  Apply PHP in each case. 
 
Pigeonhole Principle (v3): If  f : A → B where A and B are finite sets, 
then some point y ∈ B must have at least ⌈  |A| / |B|  ⌉ preimages under f.  
 
Eg 3: if 100 pigeons roost in 30 holes, some hole has at least 4 pigeons 
roosting therein. 
 
More examples: 
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Ex 4: Given five points inside the square whose side is of length 2 feet, 
prove that two are less than 1.5 feet apart. 
 
Proof idea: divide square into four 1 x 1 cells.  The diameter of each cell is 
20.5  which is less than 1.5. 
 
 
Ex 5.  Prove that for any five points on a sphere, some four must lie on the 
same hemisphere.  Assume that the boundary of the hemisphere is on both 
hemispheres. 
 
Proof: choose any two of them and draw the great circle route that connects 
them (take a plane cutting through those two points and the center of the 
sphere, and see where it intersects the sphere).  Three points remain. Two 
must be on one side of the sphere; one will be on the other.   The two points 
on one side of the sphere, together with the two equatorial points on the 
great circle, are four points within the same hemisphere. 
 
Ex 6: In any list of 10 integers  a1, ..., a10   there’s a subsequence of 
consecutive numbers whose sum is divisible by 10. 
 
      Consider the ten sums 
               s1 = a1 
               s2 = a1 + a2 
               ... 
               s10 = a1 + a2  +  … +  a10 
 
numbers in the list.  If any of these divisible by 10, then we are  done. 
Otherwise, each is congruent to a number between 1 and 9   mod 10.   So 
two of these values are congruent to the same number (mod 10):  ai = aj  
(mod 10) with i < j.   Eg, maybe 
          s3 = a1 + a2  + a3    
and 
          s5 = a1 + a2  + a3 + a4  + a5      
are both congruent to 7 (mod 10).  But then s5 - s3= 0 (mod 10), 
which would mean that a4 + a5 = 0 (mod 10) . Generalizing,  
           ai+1 + … + a j   =  0    (mod 10)      
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Ex 7: Devon picks 7 different numbers from {1, 2, 3, . . . , 10, 11}. Prove 
some pair adds up to 12. 
 
Proof. Consider the following partition of Devon’s available numbers: 
     {1, 11}, {2, 10}, {3, 9}, {4, 8}, {5, 7}, {6}.  
Since there are only 6 sets in this partition, two of Devon’s 7 numbers must 
be in the same set, hence that set is not {6}. But all the sets with two 
numbers have elements summing to 12. 
 
Ex 8.   (repeated from beginning of term)  In any room of 6 people, there are 
3 mutual friends or 3 mutual strangers (Ramsey theorem, R(3,3)=6) 
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Consider person #1.  Five people are either friends or non-friends with 
person #1.  At least one of those sets has 3 people. 

- 3 people are non-friends with 1.  If two of them don’t know one 
another, we are done.  If all three know one another, we are done. 

- 3 people are friends with 1.  If two of them know one another, we are 
done.  If all three don’t know one another, we are done.       

 
 R(4,4) = 18  (1955) 
 R(5,5)    open!   
 
 
 
The Division Theorem. If n is any integer and d is a positive integer, there 
exist unique integers q and r such that   n = dq + r and 0 ≤ r < d. 
 
One can prove the Division Theorem from the well-ordering principle. The 
trick is to define R  = {n – iq: i ∈ N and n – iq > 0}.  Then R is a nonempty 
subset of the natural, so it has a least element.  That least element is the r, 
and the i that goes with it is the d, and you can establish that they’re unique. 
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The integral quotient q when you divide n by d has a nice notation in Python 
3 – it’s q = n // d (the “s”).  The remainder r has a nice notation in lots of 
languages – it’s  r = n % d   or   r = n mod d.  
 
3 // 2 = 1     -3//2 = -2      3%2 = 1    -3%2 = 1 
2 // 3  = 0    -2//3 = -1      2%3 = 0    -2%3 = 1   
 
The name “floor division” provides an easy way to understand (and to 
compute) stuff like -3/2.   Think of computing the quotient in the reals, and 
then go to the left—take the floor—until you hit an integer.   
 
Notation:   d | n  if there exists i such that di = n.   
                            Alternative, if as n mod d = 0  
 
ℤn = {0,1,…n-1} with an operation of addition modulo n. 
This is called “the group of integers modulo n” 
 
There are variant notations for mod that actually correspond to different 
ways of thinking about it.   Recall the circle of n points, moving right for 
increment and left for decrement, as a way of thinking of arithmetic in the 
world mod n.  Conceptualizations: 
 
23 mod 5 = 3         as a binary operator 
23 ≡ 3   (mod 5)    23 is in the same equivalence class as 3 with respect to 
                              a ≡ b true when 5|a - b  
1+4 = 0  in ℤ5       Forget the integers, forget thinking of mod as an operator: 
                             we are working in the group ℤ5 .  I like this way. 
 
 
Greatest common divisors 
 
For a and b positive numbers, let’s define 
gcd(a, b) = the largest integer d such that d | a and d | b. 
 
Well defined because d is at most min(a, b) 
 
Define gcd(a,0) = gcd(0, a) = a  for any nonzero a. 
 
Can you figure out the gcd of a and b when they’re in factored form?  Sure. 
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It’s the product of pi values where p occurs in the factorization of both a and 
b and i is the smaller of the two exponents.  It is 1 if there are no common 
primes. 
 
Of course gcd(a, b) = gcd(b, a) 
 
Claim:  gcd(a, b) = gcd(a – b, b) = gcd(a mod b, b) 
This gives rise to an efficient algorithm to find the gcd.   
It’s called Euclid’s algorithm. 
 
Let’s prove Euclid’s algorithm. 
If d | a (so a =i d) and d | b (so b = j d ) then  
a – b = i d – j d = d (i – j) whence  d | a – b. 
So all the divisors of a and b are divisors of a – b and b. 
Similarly, all the divisors of a – b and b are divisors of a and b. 
Since they have the exact same set of divisors, their gcd’s are the same. 
 
Example:  Compute gcd(360, 1000). 
gcd(1000,360) = gcd(360,280) = gcd(280,80) = gcd(80,40) = gcd(40,0)=40. 
 
If you do some extra bookkeeping when you compute the gcd you can find, 
when you compute gcd(a, b), two numbers x and y such that  
     ax + by = gcd(a, b) 
 
That the algorithm finds them tell you that they always exist ;-) 
 
Theorem:  Given numbers a and b, not both 0, we can find integers 
                  x and y such that  ax + by = gcd(a ,b). 
 
This is useful! 
 
Numbers a and b are said to be relatively prime if gcd(a, b) = 1. This is the 
same as saying that they have no common prime factor.   
 
Note that if p is prime and a is in [1 .. p-1] then gcd(a, p) =1.  That is, a 
prime is relatively prime to any positive number less than then itself. 
 
Suppose gcd(a, n) = 1. 
Then the theorem above promises an x, y such that ax + ny = 1.  Suppose 
we’re doing this is ℤn (that is, take “mod n” of both sides).    In that group, 
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n=0,  so ny=0, so ax = 1.  In other words, x is the inverse to a.  That is, a has 
a multiplicative inverse mod n. 
 
Thus we have:   Every element relatively prime to n has a multiplicative 
inverse in ℤn  . 
 
Eg: In ℤ10   the numbers 1, 3, 7, 9 have multiplicative inverses.  Make a 
multiplication table for them.   Note closure: if a and b are both relatively to 
n then so is their product. 
 
Eg:  In the world of integer operations mod 232, all the odd numbers have 
multiplicative inverses. 
 
ℤn

*
   =  {a ∈ [1..n]:   gcd(n, a)=1}  is a group. 

 
Example:   Make a multiplication table for ℤ10

*
    

 
A general fact about finite groups is that, for any group G,  a |G| = 1.   
This is called Lagrange’s Theorem.  I’m not going to prove this, but you 
will certainly prove it if you take a class that spends some time on group 
theory. 
 
A particularly interesting group is ℤp

* 
   = [1..p-1] where p is a prime.  By 

Lagrange’s theorem, a p - 1 = 1. 
This actually provides a test for primality. 
If a p - 1 ≠ 1 (mod p) then you know that p is not prime. This is “Fermat’s 
test for primality”. 
 
We don’t know for sure that p is prime just because a p - 1 = 1. Yet composite 
numbers for which  2 p - 1 = 1 (mod p)  are rare (although there are infinitely 
many). There are even nasty number, Fermat pseudoprimes, where a p - 1 = 
1 (mod p)  for all a ≠ 1. 
 
Another interesting fact about ℤp

* 
   is that it’s cyclic: there will be an 

element g in this group such that ℤp
* 

 = {g0, g1, …, g p-2}. In words, you can 
create the entire group from g by just starting with 1 and repeatedly 
multiplying by g.  
 
Do an example to figure out what are the generators of ℤ5

* 
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If you have g and p and i,  it is easy to efficiently compute g i - 2 . You don’t 
have to repeatedly multiply g by itself i-1 times: you can do much better.  
For an efficient algorithm, try “powering up”, computing g, g2, g4, g8, … 
 
While it is easy to compute gi mod p from g, i, and p, nobody knows an 
efficient algorithm for computing i from g, p, and gi mod p .  Computing it is 
known as the discrete log problem. There is a discrete log problem for any 
finite cyclic group.   In the group we’ve been talking about, we think it is 
hard.  That is, we think there is no efficient way to solve this problem. It is 
an example of supposed one-way-function. Something that is easy to 
compute in one direction, but apparently hard to compute in the other 
direction. 
  
We are now ready to do a little cryptography! 
 
Alice wants to communicate with Bob.  They first meet and agree on a great 
big prime number p and a generator g for ℤp

* 
   . To generate a big prime 

number they can generate a random big number and test if it is prime.  
Testing if 2 p - 1 = 1 (mod p) is actually enough to give high confidence that 
the random p is prime.   It is also easy to test if a given value, say g=2, is a 
generator. If its not, Alice and Bob could just choose a different prime.  The 
number 2 will often be a generator for a random large prime p. 
 
Alice computes a random a in [0..p-2] and send Bob A = g a.  Bob compute a 
random b in [0..p-2] and send Bob B = gb.   Everything is done mod p. 
                                           A = ga.   
              Alice  ---------------------------------> Bob 
 
                                           B = gb 

                        <-------------------------------- 
At this point Alice can compute Ba = (gb)a = gab  
At this point Bob can compute Ab = (ga)b = gab  
So they share the same “secret”. 
On the other hand, the adversary E watching all of this knows g, p, A, and B, 
but, try as it may, there is no clear way for it to compute from this gab . 
It can try computing AB, for example, but that’s ga+b, not gab. 
It could try to compute a and b, but that’s the discrete log problem, which 
we think to be computationally intractable. 
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Now that Alice and Bob share a secret K = gab they can use it to send 
messages to one another.  For example, if Alice and Bob have only a bit m 
they want to communicate, they could try something like c = m xor lsb(K), 
where lsb(x) denotes the rightmost (least-significant) bit of K, as a way to 
communicate m.   If the message M is long, Alice could send a message M 
by transmitting M xor H(K) for some (non-secret) “hash function” H. 
 
 
 


