
ECS 20: Discrete Mathematics for Computer Science Lecture 2 (1R)
UC Davis — Phillip Rogaway January 6, 2022

Logic 1

Today:

� Boolean values and some operations on them

� Representing natural numbers in binary—or in other bases

� The boolean-modeling thesis

1 Boolean Values

Propositional logic deals with a universe having just two points:

• B = {0, 1} — the set of boolean (or logical) values

� The customary convention is to capitalize the word Boolean. But I think it odd
that this capital hasn’t faded out of existence by now. I am going to decapitalize it.
The term honors the English logician George Boole (1816–1864). But it is actually a
greater honor when something becomes so central in our thought that we no longer
associate it to a person, but regard it as a basic conceptual category. That change,
it seems to me, is marked by dropping the capital. Congratulations, Prof. Boole!

There are other common names for the points 0 and 1. The point 0 also goes by the name F,
False, and false. The point 1 also goes by the name T, True, and true. In one of several fonts,
like F instead of F, or true instead of true.

� When you are doing math, differentiating case and font is helpful. It can add to
readability. Teach your eyes and mind to see an N , n, N, and n as different things.
Really look at what you are seeing on the page. A forward quote is not a backward
quote; a short dash is not a long dash; and so on.

The names “false” and “true” for points in B reflect their intended meaning. But intent—not
to mention truth—is a slippery things. We will imbue the point 1 (or T, True, true) with the
character of truth only through what we do with that point. We will imbue 0 (or F, False, false)
with the character of falsity only through what we do with it. That is, through our choices—our
definitions—in how we may manipulate the points in B.

In most of your mathematical career you have dealt with sets that are way bigger and more
complicated than our little set B. You know quite well the infinite sets:

• Z+ = {1, 2, 3, . . .} — the set of positive integers

ECS 20 Lecture 2 (1R): Logic 1 2

• N = {0, 1, 2, . . .} — the set of natural numbers — I will always include 0

• Z = {. . . ,−2,−1, 0, 1, 2, . . .} — the set of integers

• Q = {p/q : p, q ∈ Z, q �= 0} — the set of rational numbers

• R — the set of real numbers

But there is a lot of math that deals with finite sets. And to a computer scientist, the set of
booleans B feels like the most important finite set of all.

� It is wonderful thing having a universe of only two points—a way simpler place to
live than the natural numbers, the integers, or the reals. I can’t for the life of me
understand why school children start their studies with the positive integers, Z+.
This is a terribly complicated thing compared to B. Maybe you can go back and
teach all the young people in your life to love B, and let them them see it as a great
place to play.

Given the importance of boolean values, it might be a strange to have to admit that there
isn’t really a widely-used symbol for it. I’m calling it B, but that’s not so common. Words
and notation for basic concepts in discrete math are not well standardized. And I don’t want
you memorizing lots of words or symbols, which is the antithesis of doing math. Still, I like to
comment on it when genuinely basic things go by lots of different names.

And even the name for the topic we are now studying is not exactly standardized! It is variously
called propositional logic, propositional calculus, sentential logic, or sentential calculus. I think
you can also call it boolean algebra or boolean logic. As far as I can tell, they’re all the same
thing. Namely, thinking about the two-element sets we’re calling B.

It is common to introduce propositional logic by telling the students not that we are study-
ing operations on B, but to tell them that we are representing the veracity of English lan-
guage propositions—statements like “it is raining today,” or “William Shakespeare was born in
France.” I think this is nonsense. There is a fundamental mismatch, I would claim, between
the nature of our subject and what is routinely going on in making and interpreting declarative
English statements. But let’s come back to that complaint in a little bit. For now, I would
prefer that you get comfortable taking an abstract view of mathematical concepts. It is actually
much simpler to study abstract operations on B than to try to ground in mathematics some
fragment of English or philosophy.

2 Unary and Binary Operators

Before speaking of operations on B, let’s think about operations on other, more familiar sets.
In fact, you know many operations on N, Z, and R.

As a first example, given a natural number n, there is an operator (or an operation or a function—
I will use the words synonymously) that gives its successor. Call this function S. It’s probably

ECS 20 Lecture 2 (1R): Logic 1 3

the simplest thing you can do to a natural number. It takes a natural number n and returns
the natural number S(n) that is one more. For example, S(13) = 14 and S(S(0)) = 2.

As a second example, given a pair of natural numbers a and b, there is an operator that gives
their sum, which is another natural number. Denoting this operator +, it takes in two natural
numbers, a and b, and returns a third, a+ b. For example, 3 + 4 = 7.

The successor function is a unary operator. We could write its signature as

S : N → N .

We will be exploring functions later in the term, but we can explain the notation now. First
comes the name of the function, followed by a colon. Functions deserve names. Then comes
the domain of the function, followed by a right arrow. The domain is the set of all the values
that you can feed to the function. Following that is the codomain of the function, which is a
set big enough to contain all the possible return values from the function. Thus here we have a
function named S that takes in (“maps”) a point in the domain N to a point that is again in N.
Every point in N must get mapped to something; no point can be left out. We call the successor
function unary because it takes in only one input.

On the other hand, the addition operator, which we denoted “+”, would have a signature that
looks like

+ : N× N → N .

What this means is that + is a function (that is its name) that takes in a pair of integers (a, b).
That’s the meaning of N × N; it’s a new set whose elements are pairs of points from N. Such
pairs are the domain of our function +. Given such a pair (a, b), our operator + will return a
natural number a + b. We call + a binary operator because it takes in two points rather than
one. The addition function returns a single number, just as the successor function did.

We could keep going; we could have operators (functions) that take in 3, 4, or more inputs. The
number of inputs to an operator can be anything.

You’ll notice some major notational differences between S and +. First, we wrote the value
that S operated on after we wrote its name, and we surrounded that value with parentheses:
S(something) = something-else. Because we wrote S before the thing we were operating on, we
could call it prefix notation.

In contrast, with addition, we didn’t write +(3, 5), but 3 + 5. Why? There is no real reason;
it is just tradition. This notation is called infix, where you put the operator between the two
arguments it is operating on.

Infix notation works fine for binary operators, but if you had three or more inputs, it wouldn’t
be clear what to do. (Well, can you suggest something?)

� If the domain of + is pairs of numbers (a, b), and if we elect to write our + operator
in prefix, then ought not the notation have been +((a, b)), not +(a, b)? The outer
parentheses would signify an argument to the named function; the inner parentheses
would be used in denoting the pair. But nobody does this. In writing F (a, b), for
some function F , it is understood that the value being operated on by the function
F is the pair (a, b).

ECS 20 Lecture 2 (1R): Logic 1 4

There is a second difference between our notations involving for S and +: one used a letter of
English and one used a special symbol. In fact, mathematicians and computer scientists use a
wide variety of letters, words, and symbols to denote functions and operators. They write them
in functional notation (like F (a, b)), prefix notation (like −a), infix notation (like a+ b), suffix
notation (like n!), and in weirder ways still. Don’t allow the notational peculiarities to hide the
mathematical substance. Notation is something to read “through,” a sort of necessary evil to
support communication. Maybe it changes so much because we are forever trying to push it
towards invisibility.

Examples of binary operators on integers and reals include addition (a+ b), subtraction (a− b),
and multiplication (a · b). Examples of unary operators on integers and reals include negation
(−x, confusingly employing the same symbol as subtraction), absolute value (with the excep-
tional notation |a|), and squaring (with the exceptional notation a2).

3 Some Operators on Booleans

Let’s return now to our boolean domain B. It supports a collection of unary and binary operators,
too. If we had plenty of time, and if you were school children never before exposed to this stuff,
I’d let you invent all these operators on your own, and decide for yourself which were interesting,
and why.

The first binary operator I’ll name is the OR operator. If p and q are boolean variables (p, q ∈ B)
then p∨ q is true if either p is true or q is true, while it is false if both p and q are false. We can
represent this with a truth table:

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

Another way to write p ∨ q is p or q. Or you could write it as p OR q. Or even p + q. In the
context or boolean logic, they all mean the same thing.

The four rows of our truth table exhaust the four possible settings of truth values to p and q. The
first two columns indicate which setting of truth values we are considering. The corresponding
third column then indicates the result.

You could just as well write the truth table above with one of our other ways to denote the
points in B, or with one of the alternative symbols for the disjunction operation—a fancy word
for or.

p q p ∨ q

F F F
F T T
T F T
T T T

ECS 20 Lecture 2 (1R): Logic 1 5

The table above represents the exact same information as the previous one. I’m writing it in a
different way for no reason beyond that fact that I want you to try to see through notation. To
see into the meaning. I myself struggle with this; my mind wants to attend to all those glyphs
on the page. There is a captivating aesthetic in them, when they are chosen well, when they
are elegant and minimal. And if those glyphs are ugly or incorrectly used, then I myself have
no chance at seeing through them, to their intended meaning.

Another binary operator on booleans is AND. If p, q ∈ B then p ∧ q is true when both p and q
are true, but is otherwise false:

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

Another way to write p ∧ q is p and q, or as p AND q. And you can write it as just p q. That
is, when no explicit operator is written between the boolean variables, one assumes that logical
conjunction—AND—is what’s meant. This is exactly analogous to ab meaning a · b in the world
of integer or real multiplication; no written operator implicitly means to multiply.

The boolean AND and integer multiply have a lot of commonalities. As does boolean OR and
integer addition. Can you find parallels on your own, pushing this analogy as far as makes sense?

An important unary operator is NOT, or negation. If p ∈ B then ¬p is the true when p is false,
and false when p is true:

p ¬ p

0 1
1 0

Alternative ways to write ¬p are: not p, NOT p, and p. The overline notation is quite convenient
for negation, saving on parenthesis and enhancing readability. The length of the overline indi-
cates the scope of what is negated. For example, you can write pq instead of ¬(pq) or ¬(p ∧ q);
they all mean the same thing.

In all of the above I’ve been using lower case letters p, q for boolean variables. Other choices
look fine, too, like P ∨ ¬P , A(B ∨ C), (X1 ∨X2 ∨X4)(X1 ∨X4 ∨X5).

You can make long boolean formulas using ANDs, ORs, and NOTs. For example, the formula
S(a, b, c) = ca ∨ cb involves two ANDs, one OR, and one negation. What does the formula do?
Or the formula T (a, b, c) = (ab ∨ bc ∨ ac) ∧ abc. What does it do?

Truth tables aren’t limited to two input variables and four resulting rows; they can describe
boolean function with a finite number of boolean inputs. Here’s a truth table for the function
function T (a, b, c) that I just named:

ECS 20 Lecture 2 (1R): Logic 1 6

a b c T (a, b, c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

To describe a boolean function P (x1, . . . , xn) you will need a truth table with 2n rows, one row
for each possible setting of its arguments.

How should we list the rows of a truth table? I’d like to make an important aside for that. Our
aside will actually help motivate why boolean values are so cool.

4 Representing Numbers in Binary and Other Bases

There is a natural order for enumerating the rows of a truth table or, equivalently, for enumerat-
ing all the possible n-tuples of binary values (xn−1, . . . , x1, x0), xi ∈ {0, 1}. The ordering of which
I speak is the one where the 2n rows of the truth table represent the numbers 0, 1, . . . , 2n − 1,
written as n-bit binary strings in the way that we now describe.

You all know the usual way to write a number a in decimal notation, writing a sequence of digits
ak−1ak−2 . . . a2a1a0, each digit being a character (a formal symbol) from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Each of those ten characters represents a corresponding number. The sequence of characters
above represents the number

ak−1 · 10k−1 + ak−2 · 10k−2 + · · ·+ a2 · 102 + a1 · 101 + a0 · 100.

For example, 385 = 3·102+8·101+5·100 = 300+80+5. We call this way of writing numbers the
decimal (or base-10 or radix-10) representation of the number because we are using 10 different
symbols to represent the number, with each position, as you move to the left from the right-hand
edge, representing the next higher power of 10. To emphasize that we are writing a number in
decimal we can write the base as a subscript of the parenthesized value, as in 385 = (385)10.

The binary (or base-2 or radix-2) representation of a number works in the exactly analogous way.
Now the digits are drawn from {0, 1} and these symbols, called bits, represent the numbers 0
and 1. A sequence of bits represents a numbers where each position you move to the left
represents the next higher power of 2. Thus 10110 in base-2, which we might write as (10101)2,
would represent the number 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 16 + 4 + 2 = 22 = (22)10.

� What’s the difference between a boolean value and a bit? None. They’re the same
thing.

ECS 20 Lecture 2 (1R): Logic 1 7

� Powers of 2 come up so often in computer science that you might want to learn by
heart at least the first ten: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 = 210. Also, it’s
good to keep in mind that 220 is about a million (106), while 230 is about a billion
(109).

� Try to distinguish between a thing and a representation of the thing. Is 385 a
number or a sequence of digits that represent a number? It is both, and they are
different. We are explaining different ways to represent numbers as sequences of
symbols.

Most things of interest will have lots of representations—maybe infinitely many. For
example, I might choose to represent 385 as 5 · 7 · 11, or as the binary number
110000001. It’s the same number regardless of representation. On the other hand,
the sequence of symbols “385” will represent the integer 901 if I tell you to interpret
the sequence of digits in “hexadecimal.” In math you get to declare or invent the
context, which will determine what things mean.

I have seen students assume that “decimal notation” has something to do with writing a decimal
point—the period symbol in 3.0 or 3.14. This is not the intended meaning. When we speak of
binary or decimal notation we usually have in mind that we are representing natural numbers,
so there are no decimal points in sight. That said, what rational number do you think that the
binary number 101.1101 should represent?

You can represent numbers in any base b ≥ 2 you like. If you were working base-3 (I have no
idea why), the digits would be {0, 1, 2} and we’d have, for example, (20121)3 = 2 · 34 + 0 · 33 +
1 · 32 + 2 · 31 + 1 · 30 = 2 · 81 + 9 + 2 · 3 + 1 = 162 + 9 + 6 + 1 = 178.

There is a difficulty with representing numbers in a radix exceeding 10: what symbols should
you use for digits exceeding 9? There is a standard answer for the next six digits: we use A (or a)
for 10, B (or b) for 11, C (or c) for 12, D (or d) for 13, E (or e) for 14, and F (or f) for 15. So
(3B9F)16 = 3 · 163 + 11 · 162 + 9 · 161 + 15 = (15263)10.

For making truth tables with the rows pleasantly ordered, count in binary. How do you count
in binary? When you are incrementing a number that ends with a run of ones and then a zero,
or nothing at all, just to their left, then you change all of those ones to zeros, make the next
digit to the left a one, and leave alone any further digits to the left. For example, the successor
of 1000111 is 1001000; the successor of 1111 is 10000. This is the natural generalization of
incrementing a number represented in decimal. Make sure you can do it, understand it, and
understand how to generalize the idea to other bases.

� Practice counting. In binary: 0, 1, 10, 11, 100, 101, 110, In radix-3: 0, 1, 2,
10, 11, 12, 20, 21, 22, 100, 101, . . .

Let’s return now to making a truth table for an arbitrary function F with three boolean inputs.
The eight rows are counting from 0 to 7 = 23 − 1 in binary, but where we now pad on the left

ECS 20 Lecture 2 (1R): Logic 1 8

with leading zeros so as to make each binary value three bits long. As with decimal numbers,
prefixing a binary number with an arbitrary number of zeros doesn’t change its value.

a b c F (a, b, c)

0 0 0 F (0, 0, 0)
0 0 1 F (0, 0, 1)
0 1 0 F (0, 1, 0)
0 1 1 F (0, 1, 1)
1 0 0 F (1, 0, 0)
1 0 1 F (1, 0, 1)
1 1 0 F (1, 1, 0)
1 1 1 F (1, 1, 1)

5 Logical Completeness

Can you express any boolean-valued function you like with just AND, OR, and NOTs? Suppose,
say,you have the following boolean-valued function:

a b c f(a, b, c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Can you see a way to “read off” a boolean formula f(a, b, c) that has the truth table above?
How about

f(a, b, c) = abc ∨ abc ∨ abc.

In general, suppose we have a truth for n variables and where there are c ≥ 1 rows where the
function value takes on 1. Then we can write this formula as the OR of c “terms,” where each
term is the AND of n literals, and each literal is either a variable or its complement. It means
that AND, OR, NOT, taken together, are rich enough to encode anything.

Well, be careful about the truth table that is identically 0—the constant function that is every-
where false. How can you write it as a formula with only ANDs, OR, and NOTs.

The fact that you can represent any truth table with just AND, OR, and NOT says something
interesting about those three functionalities, taken together. That they’re super powerful. That
you don’t need anything else. We say that, taken together, they are functionally complete. A set
of operators is functionally complete if they can be used to express arbitrary logical functionality.

We can try to find other functionally complete sets of operators, if we want.

ECS 20 Lecture 2 (1R): Logic 1 9

6 Equivalence

Recall the function I named earlier, T (a, b, c) = (ab ∨ bc ∨ ac) ∧ abc. If you make a truth table
for it, you will find that it is identical to the truth table for f above. Said differently, the two
formulas are equivalent : they capture the exact same logical condition. You can write it like
this:

abc ∨ abc ∨ abc ≡ (ab ∨ bc ∨ ac) ∧ abc.

In general, if f(x1, . . . , xn) and g(x1, . . . , xm) are boolean formulas, then we say that f and g
are equivalent, written f ≡ g, if n = m and f(x1, . . . , xn) = g(x1, . . . , xn) for all x1, . . . , xn ∈ B.
Which is the exact same thing as saying that f and g have identical truth tables.

A host of interesting questions present themselves. If you are given two formulas, can you test
if they are logically equivalent? How long will this take? Can you find the shortest formula φ
that is logically equivalent to some arbitrary formula φ? All wonderful questions.

7 Representing Almost Anything

We have seen how, using nothing but bits (boolean values), you can represent any natural
number N . It’s pretty efficient, too; try to convince yourself that the representation of a number
N in binary will never take more than four times the number of symbols (bits) as representing
the same number in decimal.

If we had used unary notation, writing N 1’s for the number N , this wouldn’t have been true:
the unary representation would be more than a multiplicative factor longer than the decimal
representation. Unary representation is exponentially more verbose, you could say, than using
any other radix.

And if you can represent numbers, it seems like you can represent virtually anything. What I
type into my computer is a sequence of characters, each character given a one-bit (8-bit) code
according to a convention known as ASCII. Every text file I make is such. Everything in my
computer. Everything in all the computers of the world.

Where does our real interest in logic come? Not so much from trying to translate arguments
from English to logic,

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

That’s not what anyone cares about. The interest in logic springs more from the viewpoint that
a fragment like the one above is but 560 boolean values, each of which is happy to be bent to
human will. Homo logicus, we increasingly imagine ourselves to be; man as the manipulator of
a gazillion passive, subservient bits.

ECS 20 Lecture 2 (1R): Logic 1 10

I think there is actually an implicit thesis that has taken hold of our collective imagination. It
is a belief so widely held that I have never seen mention of it made in any paper or book. Like
the water in which the fish swims, that which is total and environmental may go unnoticed. So
let me explicitly say what this thesis I see is:

Boolean-modeling thesis. Everything we are interested in can be adequately
represented as a finite sequence of bits. Once so represented, the bits can be logically
manipulated, using our machines and our ingenuity, to achieve desirable ends.

A “thesis” is something that one believes—perhaps—but cannot prove. In this case, I would
call myself a skeptic. Yet I think the boolean-modeling thesis has come to hold a hegemonic
grip over our collective imagination. Beware: a thesis might be widely held, yet fundamentally
wrong.

	Boolean Values
	Unary and Binary Operators
	Some Operators on Booleans
	Representing Numbers in Binary and Other Bases
	Logical Completeness
	Equivalence
	Representing Almost Anything

