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Logic 3

Today:

� Doing stuff with circuits

� Tautologies

� Formalizing proofs — an important theorem

� Adding quantifiers — first-order logic

� The math/English gap

� Negating quantified formulas

1 Doing Stuff with Circuits

We already know that an arbitrary boolean function f : Bn → B can be realized with a limitless
supply of two-input gates—indeed we know that just having AND, OR, and NOT gates would
suffice. So would having just NAND gates. It follows that an arbitrary boolean function F :
Bn → Bm can likewise be realized with a limitless supply two-input gates, as long as you start
with a set that’s functionally complete. Yet the generic way of realizing an arbitrary boolean
function F : Bn → Bm might be totally impractical, because our generic method—to transform
the truth table into DNF—could use more than mn2n gates. If we have a practical design
problem, we may need to do way better than that. Here is an example showing how we often
can.

Suppose you are given two 64-bit binary numbers, a63a62 . . . a1a0 and b63b62 . . . b1b0, which we
would like to add to get a 65-bit sum, s64s63s62 . . . s1s0. The DNF approach would ask us to
make 65 circuits (one for each output bit), each of size about 2128. You can forget doing that!

We can do far better by following grade-school arithmetic, adapted to base-2. This is a stan-
dard example, which I will work out in class. See zyBook 1.10, the Wikipedia page “adders
(electronics)”, or the PowerPoint pictures I just drew.

2 Tautologies

Now for a different problem. Suppose I give you a formula φ(x1, . . . , xn) and I ask you: is it
true? The customary answer would be: it depends! Namely, it depends on the truth assignment.
For most formulas, some truth assignments will make them true and some will make them false.

But not every formula is really a mixture like that. Some formulas φ are always true. Some are
always false. And some are sometimes true and sometimes false.

A boolean formula that is always true—it is true for every truth assignment—is called a tautol-
ogy. We write |= φ to indicate that φ is a tautology. I’ve heard the |= symbol called a “double
turnstile.”
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Figure 1: A possible list of axioms that, together with modus ponens, suffice to establish com-
pleteness: that which is true will admit a proof.

A boolean formula that is sometimes true—it is true for some truth assignment—is called a
satisfiable formula. There’s no special symbol for it that I know.

Can you look at a formula φ and figure out if it’s a tautology? The natural approach is to make
a truth table for it. If you get a 1 (true) for each and every row, the formula is a tautology. If
you see even one 0 (false), then it’s not.

The same approach works to figure out if a formula φ is satisfiable: make a truth table and
check if there’s at least one “true”.

The methods above are very inefficient. If the formula has 100 variables than your truth table
will have 2100 rows to check out, which is not remotely practical. But maybe there is a way to
prove that a formula is true without having to construct a huge truth table.

Before taking up proofs, let me relate tautologies to equivalence. When we write that φ ≡ ψ we
are asserting that φ ↔ ψ is a tautology, which we could write as |= φ ↔ ψ. Be careful not to
say that φ ≡ ψ mean φ↔ ψ. The latter formula can be true or false, but what we are trying to
say is that φ ≡ ψ when φ↔ ψ is always true—that is, when it is a tautology.

3 Formalizing Proofs — Two Famous Theorems

A proof system is a formalized way to prove statements in logic. There are numerous proof
systems, but let’s just sketch how one of them looks. The proof itself is a formal object—just a
sequence of lines, each of which is a string. You might want to number them. Each line may be
one of three things:

1. You can write an assumption, which is an arbitrary boolean formula.
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2. You can write an axiom from a given list of axioms. The list of Figure 1 is an example.
The list will be described using symbols such as φ or ψ. These represent arbitrary boolean
formulas. When you copy an axiom from the list you are welcome to substitute in any
boolean formula you like in place of each of those variables.

3. Finally, if a line above you in the proof has a formula φ, and another line above you has a
formula φ→ ψ, then you are welcome to enter into the current line the formula ψ. If you
like, you may whisper the magic incantation modus ponens when you do this.

At some point you declare your proof to be done. Suppose it’s final line is the boolean for-
mula ψ. Then we would say that you have just proven ψ from assumptions φ1, . . . , φn, where
φ1, . . . , φn are all the formulas you entered into your proof as assumptions. We would write this
as {φ1, . . . , φn} ` ψ. You may alternatively write ` (φ1 ∧ · · · ∧ φn)→ ψ.

In class I will work out an example. But I don’t actually expect you to do any example of formal
proofs. Because, honestly, they are extremely tedious.

It was a dream of 19th century mathematics that complex mathematical claims be produced, or
at least verified, with some sort of formal proof. A famous book, Principia Mathematica, was
published in 1910–1913 by Alfred Whitehead and Bertrand Russell. It spanned three volumes
and only managed to prove some basic facts in arithmetic. And even there there were errors,
I understand. Formal proofs—at least before the age of machine-assisted ones—are not what
mathematicians routinely do.

All the same, the idea of a formal proof is fundamental in mathematics, as in the following
theorem, first established by Kurt Gödel for a specific proof system.

Theorem 1 Let φ be a boolean formula. Then

• Soundness: If ` φ then |= φ.

• Completeness: If |= φ then ` φ.

It is often stated more generally as follows. Let φ be a boolean formula and let Γ be a set of
boolean formulas. Then

• Soundness: If Γ ` φ then Γ |= φ.

• Completeness: If Γ |= φ then Γ ` φ.

When we write Γ ` φ it means that φ can be proven from assumptions in Γ. When we write
Γ |= φ it means that every truth assignment that makes every formula in Γ true also makes φ
true. The first form is a special case of the second, where the Γ = ∅.

This is a deep theorem. It is saying that we can come up with simple proof systems that are so
powerful that everything that is true about sentential logical can be proven, while nothing that
is untrue can be proven. And, in fact, its not only for sentential logic. The statement holds for
first-order logic, which we are about to introduce.
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I remember learning this theorem as an undergraduate at UCB in a class by a famous logician,
Leon Henkin (1921–2006). I don’t remember the proof, but I remember that it felt extremely
tedious, and took several lectures. In fact, proving the theorem was pretty much the main goal of
the class. I think I didn’t appreciate the project back then—and maybe how ambitious Henkin
was being to do this in a lower-division philosophy class. I suspect that I didn’t give Henkin’s
program the respect it deserved.

4 Adding Quantifiers — First Order Logic

Our predicate calculus is rather limited, incapable of capturing things like “the sum of odd
numbers is even” or “there are an infinite number of primes.” To encode such statements we
need to substantially embellish our propositional logic.

We start by imagining some universe U of points—the things we are discussing. The points
in the universe U might be sets, integers, real numbers, people, animals, colors, lions named
“Tony”—we don’t much care.

We will have variables: things like x or y3 that represent arbitrary points from our universe.

We will have predicates: things that take in some number of points from our universe and return
true or false. Like: PRIME(n), perhaps to mean that n is a prime. Or n < m, perhaps meaning
that the number n is less than the number m.

We will have functions: things that take in some number of points from our universe and return
a new point in our universe. Things like + or square-root.

We will have constant : symbols that represent specific points in our universe. Like 0 or ∅ or
BILLY.

We will have two spacial symbol, ∀ and ∃, which are the universal quantifier and the existential
quantifier. When we write (∀x)(·) we will be asserting that the claim in the parentheses holds
for any x in our universe U . When we write (∃x)(·) we will be asserting that the claim in the
parentheses holds for some x in our universe U .

Let us give some fanciful example.

1. “All apples are bad.” We might render this as

(∀x)(A(x)→ B(x)).

Here A(x) is supposed to mean that x is an apple, while B(x) is supposed to mean that x
is something bad. What is our universe U? Who knows. Maybe all fruit. Maybe all
objects. It’s not something that the symbols tell us.

2. “Billy has beat up every boy at Caesar-Chavez elementary school.” (Billy should not have
done that.) Perhaps we would render this as something like

(∀x)((CCstudent(x) ∧ Boy(x) ∧ (x 6= BILLY))→ HasBeatenUp(BILLY, x)).
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Here we have a constant symbol BILLY and predicates CCstudent, Boy, and HasBeatenUp,
the first two being unary predicates and the last being a binary predicate. Perhaps the
universe of discourse is Davis school children. People it is people living on Earth. Who
knows.

3. “All lions are fierce.” This might be translated to (∀x)(L(x)→ F (x)). “Some lions do not
drink coffee.” This might be translated to (∃x)(L(x) ∧ ¬C(x)). “Some fierce creatures do
not drink coffee.” We might write this as (∃x)(F (x) ∧ ¬C(x)). Does the conjunct of the
first two statements imply the third? In answering something like this, you do not want to
rely on your knowledge of lions and coffee. It should hold regardless of our universe and
the meaning of predicates L, F , and C.

4. Last non-mathematical example: “Nobody like a sore loser.” Perhaps our universe of
discourse is all human beings. Perhaps we have a predicate L(x, y) if person x likes
person y. And another predicate S(x) if x is a sore loser. In such a case, we might try
translating our English sentence into (∀x)(S(x)→ (∀y)(¬L(y, x))). In this translation the
sore loser doesn’t even like himself.

We are not going to formally define the syntax for first-order logic, but doing it wouldn’t be so
different from how we defined the syntax for boolean formulas. We would have logical connectives
consisting of (, ), ¬, ∧, ∨, and maybe other logical connectives like→ and↔. It is customary to
include the equality symbol, =, treating it differently from other binary predicates. We would
have the symbols ∀ and ∃. There would be a set of variables, such as x1, x2, . . .; a finite set of
constant symbols; a finite set of function symbols; and a finite set of predicate symbols. You
get to fix all of these choices when you are working in first-order logic.

We can do some really interesting things with first order logic, like defining group theory or set
theory. Before we get there, though, a couple things I’d like to do. One is to call out the fiction
that logic is good for dealing with “logical” English-language utterance. I’d also like to talk
about how to negate quantified assertions.

5 The Math/English Gap

It is common to introduce propositional logic by telling students that we are formalizing a way
to capture and then reason about the veracity of English language proposition—statements like
“it is raining today,” or “all politicians are crooks.” From “All men are mortal” and “Socrates
is a man” we will be concluding that “Socrates is mortal.” That sort of thing. But I think that
this desire to meld logic and natural language is misguided. And not just for the reasons usually
cited, but because natural-language utterances are almost never used to communicate logical
claims.

The usual complaints begin by noting that the English language or and if . . . then often don’t
translate to the mathematical OR and IMPLIES. For example, if you go to a wedding and the
host asks if you would like the vegetarian or the meat entrée, you ought not to answer yes unless
you are trying to be cute. Because the or was asking for you to select one of those alternatives.
Sometimes it is said that this particular “or” was really VEG xor MEAT. But that’s not true,
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either. If the host had offered meal choices that were vegetarian, beef, of fish, you would still
have been cheeky to select all three (after all, the xor of three ones is also one). The intent for
this “or” would seem to be to select exactly one from the list, regardless of the list’s length.
That’s unlike a logical-or and unlike a logical-xor.

And the problems really run deeper. Propositions, many books teach, are factual assertions
about the world, like “it is raining,” or “lions are fierce”. But do such statements actually have
clear, incontestable truth value? They do not. It is raining where? It is raining when? And how
specific is this place and time to be? If we shrink Alice to a micrometer in height then it may
pour within a foot of her, yet not a drop will fall upon her pretty little head. If we shrink Alice’s
lifespan to a microsecond, then it could be pouring from the point of view of my timescale, but
highly unlikely to bother Alice within hers. And even if we do not play with the scale of time
or space, surely rainfall happens within a continuum, from a scorchingly hot and sunny day to
a robust Indian monsoon. I have no idea where a wet-fog ends and a light rain begins. Not just
because I am limited, but because such distinctions are invariably artificial.

You could argue that these are specious complaints because people generally agree as to when
and where it is and is not raining. But math isn’t about what people do or don’t agree to. And
if the only English-language statements that we are comfortable to assign truth values to are the
mathematical ones, then we have relinquished any claim that logic is meaningfully connected to
human discourse.

In natural languages, logical connectives like or and if . . . then are usually structural claims
about our social reality. If I tell you

Either Facebook lives or liberal democracy dies.

then I am expressing a belief (a valid one, I think) that a certain pair of things are incompatible
not for logical reasons but because of the social, political, structural reality that surrounds them.
Were I to instead say

Either Facebook lives or the square root of ten exceeds three.

then you would not be wrong to brand me as a lunatic, although the logical truth of this
statement should be less contestable than before. Similarly, the sentence

If the forecast calls for rain then I will grab my umbrella.

would seem to most people to make sense, while

If the forecast calls for rain then I am older than my son.

seems ludicrous.

There was a time when philosophers imagined logic to be entwined with language and human
reasoning. I think we have outgrew such views. But I’m not sure that textbook authors, or
professors, got the memo.

If a book you are reading makes claims or connections that seem suspect, don’t allow the
authority of authorship—or professorship!—to blunt your skepticism or your critical thinking.
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6 Negating Quantified Formulas

A simple point: if you want to negate a quantified logical expression, how do you do this? It is
quite simple:

¬(∀x)φ ≡ (∃x)(¬φ)

and
¬(∃x)φ ≡ (∀x)(¬φ).

Combine this with De Morgan’s laws, and rules like P → Q ≡ ¬P ∨ Q, and you can negate
anything you like. I’ll do some examples in class, or a TA will do some examples in discussion
section.
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