
ECS 20: Discrete Mathematics for Computer Science Lecture 10 (5R)
UC Davis — Phillip Rogaway February 3, 2022

Relations and Functions 2

Today:

� Properties of functions (1-to-1, onto, bijective)

� Sets of Functions

� Transforming functions into permutations (some modern crypto!)

� Comparing the sizes of sets (some infinites are bigger than others)

1 Properties of Functions

Last time we introduced functions, which we defined as relations f ⊆ A× B where each
point a ∈ A was related to one and only one point in B. We called A the domain of f and
we called B its target (or codomain). We wrote f : A→ B to denote a function named f
with domain A and target B. We wrote f(a) = b to indicate that (a, b) ∈ f .

Another word for a function is a map. If f(x) = y we might say that x maps to y. We
could also say that y is the image under f of x. And we could say that x is a preimage
under f of y.

I emphasized that our functions are total, meaning that they are defined on every single
point in the domain. Sometimes computer scientists like to consider partial functions,
which have “holes” in their domains. But we won’t do that.

I emphasized that functions needn’t have “simple” domains, or targets, and they needn’t
have simple descriptions. How about a function that takes in a list of strings and sorts
them in alphabetical order? So something like s : (Σ∗)∗ → (Σ∗)∗.

How about a function that takes in an arbitrary square matrix and returns its inverse? It
might have a signature that looks like

∞⋃
n=1

Rn×n →
∞⋃
n=1

Rn×n ∪ {⊥}.

How about the function that takes in all the sensory input of a cat and tells that cat what
to do? Is it a function, too? For philosophical questions in this direction I love the essay
“Why Philosophers Should Care About Computational Complexity” by Scott Aaronson.

ECS 20 Lecture 10 (5R): Relations and Functions 2 2

Onto. I’d like to start looking at key properties of a function. Let’s begin with this
one. Let’s call the range of a function f : A → B all the points that are the image of
something : Range(f) = f(A) = {f(a) : a ∈ A}. (Note the “abuse” of notation when
writing something like f(A). I like to do that, as though extending the domain from
points in A to sets of points in A—but you need to be clear that you’re not literally
applying f to A.) Is the range the target?

Definition. Let f : A → B be a function. If the range of f is exactly the target of f ,
{f(x) : x ∈ A} = B then we say that f is onto, or surjective.

Let’s make up some more functions. How about the function that maps everyone to their
birthday, b : P → [1..12]× [1..31]. So b(phil) = (7, 31), b(son) = (5, 8). Is b onto? Not the
way we described it, because nobody has a birthday of (2, 31). Could we “clean up” the
target to make it only have the 366 “valid” days? Sure.

How about the function that squares a number? Again, specify the domain and target to
get a well-defined function. If we decide that that domain and target are Z10, say, then
squaring is a function s : Z10 → Z10. What do the different points map to? Well, 0 7→ 0,
1 7→ 1, 2 7→ 4, 3 7→ 9, 4 7→ 6, 5 7→ 5, 6 7→ 6, 7 7→ 9, 8 7→ 4, and 9 7→ 1. Notice that I used
a different kind of arrow to show the image of a point under f . It’s → for indicating the
domain and target of a function—f : A→ B, but it’s this 7→ arrow to tell me what some
specific point mapped to, x 7→ y, with the function itself anonymous.

I see lots of “ad hoc” notation when it comes to function. Don’t. If you’re writing
f(x = a) : b or whatever, don’t expect any credit. To be understood in English you need
to speak in fairly grammatical sentences. To be understood in math you need to write or
speak in grammatical ways, too.

I’ve told you one important property of a function—whether or not it’s surjective (onto).
You can express a function f : A→ B as being surjective as the condition:

(∀b ∈ B)(∃a ∈ A)(f(a) = b).

I tend to think of the target of a function almost as a matter of opinion. If you’ve got a
function f : A→ B you can prune B down to the range of f and it doesn’t really change
the character of f . In the other direction, you can add in anything you like to B and
it doesn’t really change anything about the character of f , as you never even hit those
points.

1-to-1. A second key property of a function f : A→ B is whether or not it is injective
(also called 1-to-1). An injective function is one without collisions, which are distinct
points a, a′ ∈ A such that f(a) = f(a′). In directed graph that represents a function, it’s
a target value y that has two preimages—points that map to it. Here’s a logical definition
for when a function f : A→ B is injective:

(∀a ∈ A)(∀a′ ∈ A)(f(a) = f(a′)→ a = a′)

ECS 20 Lecture 10 (5R): Relations and Functions 2 3

Another word for a function being injective is it being one-to-one Let’s memorialize all
this:

Definition. A function f : A → B is injective (or one-to-one) if f(a) = f(a′) implies
a = a′.

Here are some more examples. Let f : N → N be defined by f(x) = x2. Is it injective?
Yes. Is it onto? No.

Let f : Z→ Z be defined by f(x) = x2. Is it injective? No. Is it onto? No.

Let f : R+ → R+, where R+ denotes the positive real numbers, defined by f(x) = x2. Is
it injective? Yes. Is it onto? Yes.

Whether or not a function is injective has nothing to do with whether or not it is onto.
All four possibilities can easily occur (of being one-to-one or not; of being onto or not).

Sometimes it can be tricky to figure out if a function is one-to-one or onto. Let f(x) =
3x mod 10 on Z10. Not one-to-one and not onto. But how about g(x) = 3x mod 11 on
Z11. Now it is both one-to-one and onto.

Bijections, permutations. Let us combine the two notions we’ve just given.

Definition. A function f : A→ B that is both one-to-one and onto is called bijective.

You can also call the function a bijection. You can think of a bijection as a renaming of
things: every point in domain has an alternative name in the target; every point in the
target gets an alternative name in the domain.

A bijection f : A → A is called a permutation. It’s again a renaming, but now you are
renaming points within a set by points within that same set.

Here is a bijection. Points {A,B,C,D,E, F} and {10, 11, 12, 13, 14, 15} where f(A) = 10,
f(B) = 11, f(C) = 12, f(D) = 13, f(E) = 14, f(F) = 15. Or: Even numbers and odd
numbers by way of f(n) = n+ 1.

I like to use π for permutations. How about πc : {0, 1}8 → {0, 1}8 by way of π(x) = x⊕ c
where the xor is done bitwise. (Do an example.) A nice bijection! How do you go
backwards?

Similarly, in Zn, the function fc(a) = a + c (meaning (a + b) mod n). How do you go
backwards now?

Inverses. This idea of going backwards is important in math.

Definition. Let f : A → B. Then a function g : B → A is said to be an inverse of f if
for all x ∈ A we have that g(f(x)) = x

When will a function have an inverse? First, it has to be 1-to-1. Otherwise, you wouldn’t
know which inverse to use for some point b ∈ B. Second, it’s got to be onto. Otherwise,

ECS 20 Lecture 10 (5R): Relations and Functions 2 4

some point in B wouldn’t have anywhere to go to. In other words, the function f : A→ B
has an inverse if and only if f is bijective.

Or you could first throw out points outside of the range of f , so that f : A → C where
C = Range(f). Now f will have an inverse exactly when A is 1-to-1.

Let’s think of more examples. Does the increment function in Zn have an inverse? What
is it.

How about adding two numbers in the integers? No way; lots of preimages.

What about “interleave the digits of two real numbers in [0, 1]”? If we’re careful about it!

What about boolean negation? The function is its own inverse. And boolean conjunction?
No, that’s a map from B2 to B, so the domain is bigger then the range and the function is
not injective. For functions with a finite domain and range, you can only have a bijection
between them if they have the same cardinality. That’s important!

Composition Given a function f : A→ B and a function g : B → C there is a function
g ◦ f : A→ C defined by (g ◦ f)(x) = g(f(x)).

2 Sets of Functions

I sometimes like to think about the set of all functions from A to B. I denote this
Func(A,B). It comes up a lot in cryptography. Can we count |Func(A,B)| when A =
B = {0, 1}128. Thinking about the truth table, it’s 2128·2128 = 22135 .

Similarly, let’s write Perm(A) for the set of all permutation onA. How big is Perm({0, 1}128)?
Again thinking about the truth table, that will be 2128!.

You can have other sets of functions. For example, how about

Poly = {p : p is a polynomial with integer coefficients}.

Or
L = {x 7→ ax+ b : a ∈ R, b ∈ R}.

Does every f ∈ L have an inverse? What would you do to modify L so ensure that it
did?

3 Transforming Functions into Permutations.

Permutations have some structure that functions lack. I mean, when filling out the truth
table for a random permutation you have to observe some rule—that every answer is
distinct. That structure is what lets you invert. Is it possible to convert a random
function to a random permutation, giving the function the needed structure?

ECS 20 Lecture 10 (5R): Relations and Functions 2 5

Fisher-Yates Shuffle, 1938/1964 Traditionally called the Knuth Shuffle. To shuffle
an array a of n elements indexed 0 to n− 1:

for i from n− 1 downto 1 do
j � [0..i]
swap a[j] and a[i]

The notation j � S means to choose an element uniformly at random from the finite
set S and assign that value to the variable named j.

Can you see why this construction gives a uniformly random permutation (just using an
informal understanding of that term)?

Very pretty, that shuffle. Now seen as the natural way to implement a card-shuffle on a
computer. But not obivious, if you had to invent it on your own.

Swap-or-not shuffle, Morris-Rogaway, 2012 The following algorithm, known as
swap-or-not, shuffles an array a of n elements indexed 0 to n− 1:

for r from 1 to R do
K � [0..n− 1]
for each {i, j} s.t. i+ j = K do

if b� {0, 1} then swap a[i] and a[j]

A cool thing about this shuffle is that it is oblivious : you can track the trajectory of each
card without worrying about the trajectory of all the rest. Also, Morris and I prove that
it mixes the deck of cards very quickly. While you need to spend n rounds to (perfectly)
mix the cards with the first shuffle, it only takes about c lg n round to mix the cards well
in the second shuffle. It makes a pretty good way to shuffle a deck of cards that has, say,
109 cards, and where you just want to know where some particular card goes to. And this
problem is actually quite proactical. I mean, if you wanted anonymize someone’s social
security number, which is a 9-decimal-digit string, doin this in a way that you can reverse
if you need to, is that not shuffling a deck of 109 cards where you only aim to follow some
particular one of them?

4 Comparing the sizes of sets

Are there more integers or even integers?

It’s tempting to say that there are more integers because the even integers are a proper
subset of the integers. But this isn’t a very “robust” view of size—in particular, it’s not

ECS 20 Lecture 10 (5R): Relations and Functions 2 6

the view of size that extends when you would say that two finite sets have the same size.
There, it is natural to say that two sets A and B have the same size, or are equinumerous,
if there is a bijection π : A→ B.

Example: {A,B,C,D,E} and {1, 2, 3, 4, 5} are equinumerous. But so are N and 2N =
{2i : i ∈ N}. The bijection from N → 2N is just x 7→ 2x.

Are there more strings over {0, 1} or natural numbers? Again, there are the same. Enu-
merate them in lexicographic order, {ε, 0, 1, 00, 01, 10, 11, 000, . . .}. The bijection from N
to {0, 1}∗ maps the number n to the nth string that would list in lexicographic order.

Are there more real numbers in [0, 1] or pairs of real numbers in [0, 1]× [0, 1]? Again the
are the same. Each real number x ∈ [0, 1] can specify a pair of real numbers by taking
the odd and even digits. But there is a technicality insofar as some real numbers have
two representations. So always used the “smaller” representation (according to the first
digit of difference). Can we really specify any pair (x1, x2)?

Definition. Sets A and B are said to be equinumerous, written |A| = |B|, if there exists
a bijection π : A→ B. We say that |A| ≤ |B| if there exists an injection f : A→ B.

Proposition. Equicardinality is an equivalence relation. (Well, maybe better not ask ∼
is a subset of!).

Definition. A set A is countable if it is finite or equicardinal with N. A set is uncountable
otherwise.

Proposition. Z× Z is countable. So is Q. So is Σ∗.

Theorem. [Cantor-Schröder-Bernstein, circa 1896.] If |A| ≤ |B| and |B| ≤ |A| then
|A| = |B|. We won’t prove this, but I encourage you to read a proof of it!

Theorem. There are uncountable sets. In particular, the set of all languages over the
alphabet Σ = {0, 1} is uncountable.

Proof: Suppose for contradiction that the languages over Σ were countable. Let L1, L2, . . .
be an enumeration of them. Let x1, x2, . . . , be an enumeration of the strings in Σ∗. Define
a new language D ⊆ {0, 1}∗ by asserting that

D = {xi : xi 6∈ Li}.

I claim that D 6∈ {L1, L2, . . .}. After all, if D = Lk for some particular k, then is xk in D
or is it not? By definition, xk ∈ D if and only if xi 6∈ Lk = D, a contradiction.

	Properties of Functions
	Sets of Functions
	Transforming Functions into Permutations.
	Comparing the sizes of sets

