
ECS 20: Discrete Mathematics for Computer Science Lecture 11 (6T)
UC Davis — Phillip Rogaway February 8, 2022

Relations and Functions 3

Today:

� The size of infinite sets

� Practical and impractical algorithms

� Asymptotics: O, Ω, and Θ

1 The Size of Sets

A beautiful definition describes when we would like to say that |A| = |B| or |A| ≤ |B|
even for infinite A, B.

Definition. We say that |A| = |B| (the sets are equinumerous) if there exists a bijection
π : A→ B. We say that |A| ≤ |B| if there exists an injective function f : A→ B. We say
that |A| < |B| if |A| ≤ |B| but |A| 6= |B| (meaning ¬(|A| = |B|)).

We earlier spoke of a set being countably infinite: a set A is countably infinite if there
exists a permutation π : N→ A. In other words, A is countably infinite if |N| = |A|. A set
is countable if it is finite or countably infinite. A set is uncountable if it is not countable.

Note that we haven’t actually given a meaning to |A|, we only gave a meaning to predicates
eqCard(A,B) and leCard(A,B) and ltCard(A,B), which went by notational idioms |A| =
|B| and |A| ≤ |B| and |A| < |B|.

Proposition. eqCard is an equivalence relation, while leCard and ltCard are reflexive
and transitive.

Well, we had better not ask what these are relations on, as that sounds problematic.

Propositions. Z× Z is countable. So is Q. So is Σ∗. So is the set of all valid programs
over some specified programming language.

Theorem. [Cantor-Schröder-Bernstein, circa 1896.] If |A| ≤ |B| and |B| ≤ |A| then
|A| = |B|.

We won’t prove this, but I encourage you to read a proof of it. It’s a very cool theorem!

The theorem above is that makes the | · | “work” and seem familiar.

ECS 20 Lecture 11 (6T): Relations and Functions 3 2

Uncountable sets. A fascinating theorem establishes that some infinites are bigger
than others.

Theorem. There are uncountable sets. In particular, the set of all languages over the
alphabet Σ = {0, 1} is uncountable.

Proof: Suppose for contradiction that the languages over Σ were countable. Let L1, L2, . . .
be an enumeration of them. Let x1, x2, . . . , be an enumeration of the strings in Σ∗. Define
a new language D ⊆ {0, 1}∗ by asserting that

D = {xi : xi 6∈ Li}.

I claim that D 6∈ {L1, L2, . . .}. After all, if D = Lk for some particular k, then is xk in
D or is it not? By definition, xk ∈ D if and only if xk 6∈ Lk = D, a contradiction. ♦

There are several other sets equinumerous to (0) the set of all languages over {0, 1}. These
would include: (1) the set of all functions from N to {0, 1}; (2) the set of all functions
from N to N; (3) the set of all real numbers; (4) reals on the interval [0, 1]; and (5) P(N).
One can prove all of the uncountable as with our former proof, and you can also find
bijections between them.

How about proving that two of these sets are equinumerous? Let’s say (0) and (5), for
example, as an easy pair.

One sometimes refers to the cardinality (size) of the sets above as c, “the cardinality of
the continuum.” This contrasts with the cardinality of the natural numbers, which is
denoted ℵ0.

Example (5) is an interesting example because it points to a way of making sets with ever
bigger cardinality. Just go: N; P(N); P(P(N)); and so on. We won’t prove it, but we will
always have that |X| < |P(X)|.

There is a fascinating immediate consequence to the uncountability of (0) coupled with
programs being countable:

Corollary. Some languages can’t be decided by any computer program. In fact, most
languages can’t be decided by any computer program.

The continuum hypothesis. A natural question is whether or not there exists a set
A with cardinality that is strictly between that of the naturals and that of the reals: a
set A such that |N| < |A| < |R|. There is no loss of generality to assume A ⊆ R.

The the continuum hypothesis (CH) is the presumed inexistence of such a set. The
conjecture was advanced by Georg Cantor in 1878. But he could neither prove nor disprove
it. In 1963, building on earlier work of Kurt Gödel, Paul Cohen proved that there is, in
some sense, no answer to this question. He showed that the CH is independent of the
axioms of ZFC.

ECS 20 Lecture 11 (6T): Relations and Functions 3 3

To pluralists, like Paul Cohen, showing CH to be independent of ZFC settled the question:
it shows that it has no answer, and so you are done. You could make CH an axiom; you
could make ¬CH an axiom; and you could, if you wanted, develop further either system of
axioms. But to non-pluralists, like Kurt Gödel, the result meant that ZFC wasn’t strong
enough of a foundation for set theory: we needed better foundations.

2 Practical and Impractical Algorithms

We have sometimes sketched how to do things—given algorithms—like how to figure out
if a boolean formula is satisfiable, or is a tautology. Some of our suggested mechanisms
have not been practical. Where does practicality end and impracticality begin?

We could take a concrete approach. Nowadays a digital computer can do a handful of
simple computations each nanosecond, which is about 10−9 seconds. So a single computer
can do a little more than 230 basic operations a second. So if a task you want to perform
is going to take less than ∼ 230 operations, it’s probably easy to perform.

If your task takes more like 240 basic operations, it should still be practical, but you
might need to be a bit more careful or patient. Or you might need to throw quite a few
computers at the problem.

Around 250–260 basic operations and you’re looking at a major effort. You might need to
develop specialized hardware. You might need millions of dollars. But you still have a
good chance to get the task solved.

By 280 basic operations the task is going to get infeasible. It’s not going to matter how
many people or dollars you throw at the problem, you’re not going to be able to get there.
Our time is limited, and the earth’s resources are limited.

By 2100 basic operations the task is totally infeasible. Now and for decades to come.

Of course if you can change the computation in some fundamental way, then all bets are
off. If you can find a way that turns your 2100-time computation into a 250-time operation,
all has changed.

Cryptographic shared keys are usually 128–256 bits, so that “brute force” attack will take
2128–2256 time. The latter, and perhaps the former, is not only impractical now, but will
remain so forever. The universe is less than 260 seconds old, and the earth has fewer than
2170 atoms.

While it’s good to have these sort of waypoints in mind, it’s more useful to develop a
theory that that doesn’t care about technology or constant. The traditional approach is
to look at growth rates. One assumes there to be a parameter n that measure how big
problems are.

Often there is a natural parameter n in the problem. If you’re talking about a boolean
formula, for example, you might speak of the number of variables, assuming grows in size

ECS 20 Lecture 11 (6T): Relations and Functions 3 4

roughly with this. Or you might speak of the length of the formula—the total number of
characters to write it down.

Quite broadly, it has become tradition to differentiate polynomial and exponential growth
rates; or polynomial and super-polynomial.

Poly: The set of all polynomials p with natural (say) coefficients.

Exp: In one way of defining this, the set of all functions of the form cp(n) where c > 0 is
a constant and p ∈ Poly.

One then equates growth rates that are bounded above by an element in Poly with things
that are practical to do. And one equates growth rates that are bounded below by an
element of Exp with things that are impractical to do.

Imperfect, but often useful, for a great deal seems to fall in one camp or the other. And
the differences in behavior can be marked.

n n lg n n2 n3 2n

10 30 ns 100 ns 1 µs 1 µs
100 700 ns 10 µs 1 ms 1013 years
1000 10 µs 1 ms 1 sec 10284 years
10000 100 µs 0.1 sec 17 mins 103000 years
105 2 ms 10 sec 1 day —
106 20 ms 17 min 32 years —
109 30 sec 31 years 1010years —

Figure 1: How long things take when 1 computational step takes 1 ns (=10−9 sec)

3 Asymptotics: O, Ω, and Θ

Motivate the notion, then introduce the following definition, starting with O (the most
common), then Θ, then Ω (the least common).

Ω(g) = {f : N→ R : ∃c,N0 s.t. c · g(n) ≤ f(n) for all n ≥ N0}
O(g) = {f : N→ R : ∃C,N0 s.t. f(n) ≤ C · g(n) for all n ≥ N0}
Θ(g) = {f : N→ R : ∃c, C,N0 s.t. c · g(n) ≤ f(n) ≤ C · g(n) for all n ≥ N0}

It’s fine to replace OK to replace N by some arbitrary infinite subset of R+.

People often use “is” or “=” for is an element of.” I myself don’t like this.

Do a bunch of examples.

Simple propositions/manipulations:

ECS 20 Lecture 11 (6T): Relations and Functions 3 5

• If f ∈ O(n2) and g ∈ O(n2) then f + g ∈ O(n2).

• If f ∈ O(n2) and g ∈ O(n3) then f + g ∈ O(n3).

• If f ∈ O(n lg n) and g ∈ O(n) then fg ∈ O(n2 lg n).

True/False: If f ∈ Θ(n2) then f ∈ O(n2). True.

True/False: n! ∈ O(nn). True.

etc..

Arguments for:

• Simplicity — makes arithmetic simpler, makes analysis easier

• When applied to running times, routinely good enough, in practice, to get a feel for
efficiency and to compare candidate solutions.

• When applied to running times, facilitates greater model-independence

Arguments for:

• Hidden constants can matter

• Might make you fail to see things you should see

• Not everything has an “n” value to grow

List of common/typical growth rates:

Θ(n!)

Θ(2n)

Θ(n3)

Θ(n2 log n)

Θ(n2)

Θ(n log n log log n)

Θ(nlgn)

Θ(n)

Θ(
√
n).

Θ(log n)

Θ(1)

ECS 20 Lecture 11 (6T): Relations and Functions 3 6

The highest degree term in a polynomial is the term that determines the asymptotic
growth rate of that polynomial.

General rule: characterize functions in simplest and tightest terms that you can.

In general we should use the big-O notation to characterize a function as closely as possi-
ble. For example, while it is true that f(n) = 4n3 + 3n2 is O(n5) or O(n4), it is “better”
to say that f(n) is O(n3).

It is correct yet inappropriate to include constant factors and lower order terms in the big-
O notation. For example, it is poor usage to say that the function 2n3 is O(4n3+8n log n),
although it is technically correct. The “4” has no place in the expression, and the 8n log n
term doesn’t belong there, either.

“Rules” of using big-O:

• If f(n) is a polynomial of degree d, then f(n) is O(nd). We can drop the lower order
terms and constant factors.

• Use the smallest/closest possible class of functions, for example, “2n is O(n)” instead
of “2n is O(n2).”

• Use the simplest expression of the class, for example, “3n + 5 is O(n)” instead of
“3n+ 5 is O(3n)”.

Intertwine examples with the analysis of the resulting recurrence relation

1. How long will the following fragment of code take [nested loops, second loop a
nontrivial function of the first] – something O(n2)

2. How long will a computer program take, in the worst case, to run binary search, in
the worst case? T (n) = T (n/2) + 1

3. T (n) = 3T (n/2) + 1. Solution (repeated substitution) nlg 3 = n1.5849.... What about
T (n) = 3T (n/2) + n ? Or T (n) = 3T (n/2) + n2 ? [recursion tree]

4. How many gates do you need to multiply two n-bit numbers using grade-school
multiplication?

5. How many comparisons to “selection sort” a list of n elements? T (n) = 1+T (n−1).

6. How many comparisons to “merge sort” a list of n elements? T (n) = T (n/2) + n.

7. What’s the running time of deciding SAT using the obvious algorithm? Careful.

Warning: Don’t think that asymptotic notation is only for talking about the running time
or work of algorithms; it is a convenient way of dealing with functions in many settings.

	The Size of Sets
	Practical and Impractical Algorithms
	Asymptotics: O, , and

