ECS 20: Discrete Mathematics for Computer Science Lecture 6 (3R)
UC Davis — Phillip Rogaway January 20, 2022

Sets 1

Today:

L] Basics

O Set theory in first-order logic
[0 Operations on sets

0] Identities

[0 Paradoxes of naive set theory

1 Basics

You’ve seen sets before, probably since grade school, often introduced with examples like:

S = {apples, oranges, bananas}

This is a set with three elements, a fact which we would denote |S| = 3. What exactly are
those three elements? Well, I really don’t know. Maybe apples is itself a set—the set of all
things presently on earth that you might like to call an apple. Or maybe apples is an abstract
concept, and this set S is a set containing three concepts. A set of concepts. Interesting. Or
maybe apples is just supposed to be a sequence of six letters, what we call a string—here, the
letter a, then p, then another p, then 1, then e, then s. In that case apples has nothing to do
with any physical apple, and nothing to do with he concept of an apple—it is just a sequence
of characters. Maybe.

One thing I do know is that
apples € S,

which we read as the point “apples” being in the set S, or an element of the set S. We can call
the things in set its elements, or its members, or its points. We might represent it by a diagram,
a circle or a box where we make a point, perhaps label it, one point for each item in our set.

What about the set
S’ = {oranges, apples, oranges, bananas }?

This is the same set as before: S = S’. That’s because there’s no notion of a set containing an
item multiple times; rather, something is in the set or it is not. Well, I shouldn’t say that there
no such notion—just that it’s not the notion of a set. It’s a different notion, which is called a
multiset.

Also, there is no notion for the order of items in a set; it doesn’t matter what order you list
things inside the curly brackets. It’ll just give you a different way of writing the same set.
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Here are some other sets you know and love.

B = {0,1} The boolean domain

Digits = {0,1,2,3,4,5,6,7,8,9} The set of decimal digits
N = {0,1,2,...} The set of natural numbers

Primes = {2,3,5,7,11,13,...} The set of prime numbers
zZ = {..,-2,-1,0,1,2,...} The set of integers
Q = {p/q:p€eZ,qeZ,q+#0} The set of rationals

R = The set of real numbers

There are lots of ways to specify any given set. All the following mean the same thing:
P = {n:nisa prime number}
= {2,3,5,7,11,13,...}
= neN:MaeN)WeN)(a-b=n—a=1Vb=1}
Or you could just as well say it in English, “Let P be the set of all primes.”

The following notation might be familiar from calculus: writing [a, b], [a,b), (a,b], and (a,b) for
intervals of real numbers, a,b € R, a < b. A bracket indicates that you include that endpoint; a
parenthesis means that you don’t.

I'm also fond of the notation [a..b] for the set of integers between a and b, inclusive (assume
again that a <b).

I like the set Z, = [n] = [0.n — 1] ={0,1,...,n — 1}. We will learn more about this set later.
We will also ascribe operations to it. But don’t think that the operations somehow come with
the set. If we are thinking of N as a set of integers, then this thing, as a set, knows nothing of
successor, addition, multiplication, or whatever.

2 Set Theory in First-Order Logic

We can treat set theory in first order logic. We will only need two things:

e A binary predicate that we denote €

e A constant symbol that we denote (.

That’s it! It is very spare. All the rest of the things we do to sets or say about sets—we can
actually write them using only the vocabulary above.

A very sensible alternative notation for () would be { }. But it is rarely used.

We write the € predicate in infix, but don’t let that fool you. It takes in two values, which are
sets, and it returns a boolean value.
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Wait—what do you mean that € takes two arguments, which are sets? Surely the second input
is a set, but the first?

There is no problem with sets containing other sets. The set {N, (), 4, apple, {2,4}} is a perfectly
valid set, some of whose elements happen to be sets.

Don’t confuse () with, say {@}. The first is a set with no elements. The second is a set with
one element. We can even define natural numbers in such a manner, letting 0 = 0, 1 = {0},
2={0,1} = {0,{0}}, and so on, with n = {0,1,...,n — 1}.

In naive set theory—which is what we will study—we let things be in sets that are not themselves
sets. So it’s alright for apples to be in sets, where apples, whatever you regard them as, are not
sets. In formal treatments of set theory, however, we develop azioms to understand set theory
and, at least in most famous of these axiom systems, nothing will ever reside in a set that is not
itself a set.

3 Operations on Sets

Introduce the following operations, defining each with first-order logic and illustrating each
diagrammatically, using a Venn Diagram.

1. AU B — the union of sets A and B.

2. AN B — the intersection of sets A and B.

3. A alternatively written A — the (set-theoretic) complement of A, which is always relative
to some universe, call it U.

4. A® B — the symmetric difference between two sets — all the points that are in one but
not the other. How does this generalize to the symmetric difference of three or more sets?

5. A — B, alternatively written A\ B — the set difference between two sets

Try relating these notions to our first-order logic. For example, how would you say:

For any pair of sets  and y there is a set x Uy that contains all of the elements of
x and y?

You would write it as:

(Vz)(Vy)(Fz)(Vu)(u € z > (u € x V u € y)).

Next introduce the subset binary relation, A C B. Again, defined logically: A C B is defined as
(Vx)(z € A — x € B).

And the superset binary relation, A O B, defined by A D B if B C A.
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We can do infinite unions and intersections, too. For example, what is
U {2n} 7
neN
It’s the set of all even natural numbers. Or
() [0,a] 7
a€R*

It’s just {0}. Here [a,b] is all real numbers between a and b, inclusive. We also have interval
notation [a,b), (a,b], and (a,b) where we do not include the endpoint with the parenthesis.

Another important operation on sets is the powerset of a set:
P(S) = {A: AC S}

That is, P(.5) is the set of all subsets of S.

We have already met the cardinality of a set, which, for a finite set, tells you the number of
elements in it. We denote this function |- |. Looks like absolute value, but has a totally different
meaning.

If A is a finite set, what is [P(A)|? Tt is easily seen to be 2/4l. In fact, an alternative notation
for P(A) is 24, which you might think of as suggestive of the fact just stated.

4 Identities

Lots of simple identities can be proven directly from the definition and by using facts of logic
(which, in turn, can invariably be established with truth tables). Like the following:

AUA=A ANA=A

AUB=BUA ANB=BNA
AU(BUC)=(AUB)UC AN(BNC)=(ANB)NC
AU(BNC)=(AUB)N(BUC) AN(BUC)=(ANB)U(ANC)

Aup=A ANBP=10

AulUd=U ANU=A

(A = A

AUA“=U ANAS =10

U =10 0°=u

(AUB) = A°NB° (AN B) = A°UB° De Morgan’s laws
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Let’s prove one of these, say the first listed of De Morgan’s laws. To show that, we note that

x € (AUB)° iff -(x € AUB) Definition of the complement of a set
iff «(xre Avze B) Definition of the union of two sets
iff =(z € A) A—=(x € B) De Morgan’s law in the logical setting
iff x € A°Nx € B Definition of the complement of a set
iff x € A°N B° Definition of the intersection of two sets

and we are done.

5 Paradoxes of Naive Set Theory

Naive set theory, where we describe sets with natural language, where we write things like
{z: ---} with it being implicit the universe U from which z is drawn, can sometimes run into
trouble. Here are some examples:

e We've already set that sets can contains sets. But can a set contain itself? If we casually
allow stuff like that, we encounter Russell’s paradoz. Let S = {x: = ¢ x}. The problem is:
is S itself in S7 We are saying that S € S iff S ¢ S. But this makes no sense! Somehow,
there must be something illegitimate with our definition of S.

e Consider this example: let BIG be the largest natural number that can be described with
fewer than 200 characters of English text. 1 have used 92 characters of English text to
define the number BIG. Well, what is wrong with this? Let me try: Let BIGGER be one
more than BIG, where BIG is the largest natural number that can be described with fewer
than 200 characters of English text. 1 have just used 142 characters. With them, I have
defined a number that is bigger than BIG. But BIG was supposed to be the biggest number
that I could describe with fewer than 200 characters of text.

What’s wrong here is very subtle. It really has to do with English being too imprecise to
do what we are expecting it to do. If you're more careful about your descriptive language,
you can define huge numbers like BIG with this approach. In fact, it’s called the “busy
beaver function,” and you might learn about it in ECS120 or ECS220.

6 Power set

We ended class with a quick definition of the power set of a set, but it was too rushed, so I will
go over that again on Tuesday.
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