
ECS 20: Discrete Mathematics for Computer Science Lecture 7 (4T)
UC Davis — Phillip Rogaway January 25, 2022

Sets 2

Today:

� Powerset

� Cross product (= Cartesian product)

� Axiomatic set theory — ZFC

� Languages (sets of strings)

Announcements:

• Quiz 2 on Friday

• In-person instruction resumes next week. Please come wearing a well-fitting N95 mask.
If you don’t want to come back to in-person instruction, or you can’t currently come
because you’re sick or tested positive, there shouldn’t be any big problem with remote
attendance until the final. I fully expect the final to be in-person, and I won’t be making
accommodations for people wanting to take it remotely.

• Poll results

Review Last time I described various operations on sets, like union, intersection, complement,
set difference, and symmetric difference. We looked at a few identities, like De Morgan’s law
(but now for sets). I told you a cool paradox, Russell’s paradox, which follows if we let you
“define” the set R = {x : x 6∈ x}. I ended by describing another operation on sets, the powerset
(which I’ve decided to spell solid today!). That last part rushed, so I’m going to start there for
today.

1 Powerset

You can regard powerset as a unary operator on sets, like complement. It takes in a set and it
spits out a set.

For S an arbitrary set, we define P(S) = {A : A ⊆ S}, the powerset of S. In English: the
powerset of a set S is the set of all subsets of S.

Practice: What is P({a, b})? P({∅, 4, fig}? What is P(∅)? What is P(N)?

If S is a finite set, say |S| = n, what is |P(S)|, the cardinality (size) of the powerset of S. It
is always 2n. In this case, you could arbitrarily order the elements of S and then each element
of P(S) could be named by an n-bit binary number. In this way, P([1..N ]) is in one-to-one
correspondence with n-bit binary strings, which is a good way of thinking of P(·), at least when
it’s applied to finite sets.
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2 Cross Products

You can regard the cross product as a binary operator on sets, just as union and intersection
are. The cross-product operator take in a pair of sets and it spits out a set. We use a × symbol,
in infix notation, to represent the cross product. It’s defined by saying that

A×B = {(a, b) : a ∈ A and b ∈ B}.

Practice: What is {a, b} × {c, d, e}? Z× Z? R× R? ∅ × N? B× B?

What about a something like R × R × R. We do not regard R × R × R as a shorthand for
R × (R × R) or (R × R) × R). If we did, then we’d see things like (3, (2.1, 4)) ∈ R × R × R.
Instead, A×B ×C is actually a different operator than X × Y done twice. It’s the 3-fold cross
product, defined by

A×B × C = {(a, b, c) : a ∈ A and b ∈ B and c ∈ C}.

And you can keep going. Regard A×B, A×B×C, and A×B×C×D, as some sort of funky nota-
tion that is actually capturing different operators: CrossProduct2(A,B), CrossProduct3(A,B,C),
CrossProduct4(A,B,C,D).

Another word for cross product is Cartesian product

Cross products of a set with itself come up so often that we have a shorthand for it: A2 = A×A,
A3 = A×A×A, and so on. So when we write something like B2 we really mean B× B, the set
of ordered pairs of bits. I’ve been used that notation, because when I speak of a binary operator
like AND or OR, I think of its input as a point in B2 = B × B. Similarly, points in the plane
live in R2, those in space have coordinates in R3, grid points of the plane are Z2, and so on.

3 Axiomatic set theory

In the early 20th century problems like Russell’s paradox were driving logicians to develop firm
mathematical foundations for set theory. As a way to do this, logicians developed axioms to try
to capture all of set theory. Axioms (or axiom schemas) are lists of logical statements whose
consequences we investigate and whose models define a realm of study.

The following text and list is lightly edited from Wolfram MathWorld: Zermelo-Fraenkel Axiom:

The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel set theory. In the
following (Jech 1997, p. 1), ∃ stands for exists, ∀ means for all, ∈ stands for “is an
element of,” ∅ for the empty set, → for implies, ∧ for AND, ∨ for OR, and ↔ for “is
equivalent to.”

https://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html
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1. Axiom of Extensionality: If X and Y have the same elements, then X = Y .

∀u(u ∈ X ↔ u ∈ Y )→ X = Y.

2. Axiom of Pairing: For any a and b there exists a set {a, b} that contains
exactly a and b.

∀a∀b∃c∀x(x ∈ c↔ (x = a ∨ x = b)).

3. Axiom of Subsets: If φ is a property (with parameter p), then for any X and
p there exists a set Y = {u ∈ X : φ(u, p)} that contains all those u in X that
have property φ.

∀X∀p∃Y ∀u(u ∈ Y ≡ (u ∈ X ∧ φ(u, p))).

4. Axiom of Union: For any X there exists a set Y =
⋃
X, the union of all

elements of X.
∀X∃Y ∀u(u ∈ Y ↔ ∃z(z ∈ X ∧ u ∈ z)).

5. Axiom of the Power Set: For any X there exists a set Y = P(X), the set of
all subsets of X.

∀X∃Y ∀u(u ∈ Y ↔ u ⊆ X).

6. Axiom of Infinity: There exists an infinite set.

∃S[∅ ∈ S ∧ (∧∀x ∈ S)(x ∪ {x} ∈ S)).

7. Axiom of Replacement: If F is a function, then for any X there exists a set
Y = F [X] = {F (x) : x ∈ X}.

∀x∀y∀z(φ(x, y, p)∧φ(x, z, p)→ y = z) −→ ∀X∃Y ∀y(y ∈ Y = (∃x ∈ X)φ(x, y, p)).

8. Axiom of Foundation: Every nonempty set has an ∈-minimal element.

∀S(S 6= ∅ → (∃x ∈ S)S ∩ x = ∅).

9. Axiom of Choice: Every family of nonempty sets has a choice function.

∀x ∈ a∃A(x, y)→ ∃y∀x ∈ aA(x, y(x)).

The axiom of choice has been the most “controversial” of these axioms, and sometimes Zermelo-
Fraenkel set theory is regarded as excluding it (writing ZFC or ZF when it is or is not included).
Informally, the axiom of choice says that given any collection of bins, each containing at least
one object, it is possible to make a selection of exactly one object from each bin—even if the
collection of bins is infinite.

For more on ZFC, see the Wikipedia article on Zermelo-Fraenkel set theory.

I don’t expect you go to through the ZFC list; I am presenting it more for your “cultural”
understanding of contemporary mathematics. Axiomatized set theory has shaped our basic
understanding of the limits of what can be proven in mathematics. In about two weeks I will
mention an interesting question in set theory whose answer is known to be independent of ZFC.
And I want you to have at least a vague understanding of what such a statement means.

If you’d like to learn more about the history of the foundations of set theory, it could certainly
support a good extra-credit report.

https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
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4 Languages

Languages (also called formal languages) are sets of central importance in computer science,
so it is hard to explain why they are often ignored in discrete math books. I want you to be
familiar with the basic notions and vocabulary from formal language theory.

An alphabet is a finite, nonempty set. We call its elements characters. Examples would
include {0, 1} (the binary alphabet) {1} (a unary alphabet), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {a, b},
{a, b, . . . , z}, and ASCII (a list of 128 named characters), and printable ASCII (a 95-element
subset of these). It is common to use the letter Σ to represent an alphabet.

A string is a finite sequence of characters. Examples: hello, this big dog, or 10110011.
Every string x has a nonnegative length, denoted |x|, which is the number of characters in it.
The length of a string is always finite—conventional strings are not infinite. Strings include the
empty string, denoted ε, the unique string of length 0.

There’s a basic operation on strings, a binary operator called concatenation. You just stick the
two strings together. So: Hello ◦ There = HelloThere. It is routinely written with an implicit
operator (just like multiplication in the integers or reals), so xy = x◦y when x and y are strings.
So if x = y = 2 are strings, xy = 22, not 4. Naturally |xy| = |x|+ |y|.

A crucial kind of set in computer science is a set of strings. A set of strings is called a language.
All of the strings in a language should be composed of characters from a single alphabet Σ.

Here are examples of languages: Numbers written in decimal. Numbers written in binary. 8-bit
bytes. 32-bit words. 64-bit words. A list of all prime number, written in decimal. All valid
Python programs. All valid Python programs that take in no input and eventually stop when
you run them. And all grammatical English sentences. Well, maybe not. That last example is
really too vague to permit, as there is no way that people would always agree what is or isn’t an
English sentence. For natural languages, the property of being grammatical can sort of “fade
off,” getting less and less reasonable. Just the same, linguistics has motivated a good deal of
study in formal language theory.

The concatenation operator on strings can be extended to languages. If A = {0, 1} and B =
{00, 101} then A ◦ B = {000, 0101, 100, 1101} = {000, 100, 0101, 1101}. This is not the same as
A × B = {(0, 00), (0, 101), (1, 00), (1, 101)}. In general, if A and B are languages then A ◦ B =
{x ◦ y : x ∈ A, y ∈ B}.

In formal language theory, L2 = L ◦ L, L3 = L ◦ L ◦ L, and so on. Same notation as in set
theory, but with a different meaning! There, L2 would mean L×L, and L3 = L×L×L, and so
on. Because languages are sets, if A is a language, it’s potentially ambiguous what An should
mean. That said, when L is a language Ln usually refers to n-fold concatenation and not the
n-fold cross product.

A few more examples:

{0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (11)}

{0, 1} ◦ {0, 1} = {00, 01, 10, 11}

{0, 00} × {0, 00} = {(0, 0), (0, 00), (00, 0), (00, 00)}
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{0, 00} ◦ {0, 00} = {00, 000, 0000}. Note from this example that it is entirely possible that
|A ◦B| < |A| · |B|; all we can say is that |A ◦B| ≤ |A| · |B| (why?).

{0, 1}8 = {00000000, 00000001, . . . , 11111111}. This set has 256 points, each an 8-bit string.

{0, 1}32 = {w : w is a 32-bit string}. This set has 232 points, each a 32-bit string.

There are other nice operators on strings besides concatenation. For example, you can extract
the i-th character from an n-bit string x, an operation denoted x[i]. Sometimes indexing is
understood to start at 0, other times, indexing starts at 1. Or you can grab a chunk, a substring,
of characters from x, an operation that could be denoted x[i : j] or x[i..j]. Again, conventions
vary as to how indexing is done. (Mathematicians would normally have indexing start at 1, and
the two endpoints would be inclusive. But this is not the convention adhered to in common
programming languages, or their libraries.)

All of the operations that apply to sets, like union, complement, set difference, and symmetric
difference, apply ipso facto to languages, because languages are sets. But ◦ was something
unique to languages—a binary operator just for languages. And there’s an important unary
operator on languages, too: the star, or Kleene closure of a language L.

Given a language L, we let L∗ be the set of all strings x1x2 · · ·xn, for any n ≥ 0, where each
xi ∈ L. When n = 0, we understand this to be the empty string.

Another way of saying the same thing is that L∗ =
⋃

n≥0 L
n, where L0 = {ε}.

Examples: {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}. {1}∗ = {ε, 1, 11, 111, . . .}. Or {dog}∗ =
{ε, dog, dogdog, dogdogdog, . . .}. Or {a, bb}∗ = {ε, a, aa, bb, aaa, abb, bba, aaaa, . . .}. The last
language I have listed in lexicographic order: list all the strings of length 0; then all the
strings of length 1; then all the strings of length 2; and so on. Within a given length, list the
strings alphabetically. Where you have arbitrarily ordered the letters of the alphabet so as to
make “alphabetical order” a meaningful term.

Note that the way we have defined things, ε ∈ L∗ for any L (even the empty set).

Warning: Don’t confuse the empty set ∅, the empty string ε, and the singleton language {ε}. (A
singleton set is a set that has exactly one element.) These are all different things. The empty
string is a string. It is not a language. The empty set is a set. It is not a string. The set that
contains just the empty string is a perfectly good language. But it isn’t a string. The set that
contains just the empty set is a perfectly good set. But it isn’t a language.

One reason that languages are central to computer science is that they are how we think about
problems. You pose a problem by writing a string. For decision questions (yes/no problems),
you can understand the task as trying to decide if a string is or isn’t in some particular language.
Even for optimization problems, a string is coming in and an answer is coming out, so strings
seem inevitably in the picture. Our programs are strings. Our books are strings (if you have
such poor taste as not to care about their physicality). To a computer scientists, pretty much
everything is a string. Except, perhaps, the physical artifact that attaches to a kite—which has
nothing to do with a string.

Languages that you can build with only the operations union, concatenation, and star are called
regular languages. You get to start with the singletons that are in your alphabet, as well as
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the empty set. If you take ECS120, you’ll spend a maybe three weeks or so studying these
languages.
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