Problem Set 7 – Due Wednesday, March 2, at 5pm

1. (a) Given an equal arm balance capable of determining only relative weights of two quantities, and given 8 coins, all of equal weight except possibly one that is lighter, explain how to determine if there is a light coin, and how to identify it, in just 2 weighings.

(b) Given an equal arm balance as in (a), and given 80 coins, all of equal weight except possibly one that is lighter, show how to determine if there is a light coin and how to identify it with at most **4** weighings.

2. Sort the following functions into groups G_1, G_2, \ldots such that all functions in a group have the same $\Theta(\cdot)$ -complexity, and functions grow asymptotically faster as the group index increases.

$5n \lg n$	$6n^2 - 3n + 7$	1.5^{n}	$\lg n^4$	$10^{10^{10}}$	\sqrt{n}
15n	$\lg \lg n$	$9n^{0.7}$	n!	$n + \lg n$	$\lg^4 n$
$\sqrt{n} + 12n$	$\lg n!$	$\log n$	e^n	2^n	$n \lceil \lg n \rceil$

3. Compute the $\Theta(\cdot)$ -running time for the following code fragment. Assume that S takes unit time to run.

for i = 1 to n do
for j = 1 to i do
 for k = 1 to j*j do
 for m = k to k+100 do
 S

- 4. Solve the following recurrence relations to get at $\Theta(g(n))$ result. Assume that all of the recurrence relations are a positive constant for all sufficiently small n. Show all of your work, not making use of any "Master" theorem you might have seen.
 - (a) $T(n) = T(n-1) + n^2$.
 - (b) T(n) = 5T(n/5) + n.
 - (c) T(n) = 2T(n/3) + n
- 5. Five misanthropes (all computer science professors) live on a triangular island of the south Pacific. The island's dimensions are 2 miles \times 2 miles \times 2 miles. Show that some two of the misanthropes must live within a mile of one another. (They won't be happy about it.) (English usage: two people who live one mile apart *do* live "within a mile" of one another.)
- 6. In honor of twosday, calculate gcd(22022022, 222222). Show your work. Don't factor the numbers.
- 7. Prove that for any positive number *n* there is a nonzero multiple of *n* whose digits, base-10, are all 0s and 1s. *Hint: Pigeons* 1, 11, 111,