Problem Set 7 - Due Wednesday, March 2, at 5pm

1. (a) Given an equal arm balance capable of determining only relative weights of two quantities, and given 8 coins, all of equal weight except possibly one that is lighter, explain how to determine if there is a light coin, and how to identify it, in just 2 weighings.
(b) Given an equal arm balance as in (a), and given 80 coins, all of equal weight except possibly one that is lighter, show how to determine if there is a light coin and how to identify it with at most 4 weighings.
2. Sort the following functions into groups G_{1}, G_{2}, \ldots such that all functions in a group have the same $\Theta(\cdot)$-complexity, and functions grow asymptotically faster as the group index increases.

$5 n \lg n$	$6 n^{2}-3 n+7$	1.5^{n}	$\lg n^{4}$	$10^{10^{10}}$	\sqrt{n}
$15 n$	$\lg \lg n$	$9 n^{0.7}$	$n!$	$n+\lg n$	$\lg ^{4} n$
$\sqrt{n}+12 n$	$\lg n!$	$\log n$	e^{n}	2^{n}	$n\lceil\lg n\rceil$

3. Compute the $\Theta(\cdot)$-running time for the following code fragment. Assume that S takes unit time to run.
```
for i = 1 to n do
    for j = 1 to i do
        for k = 1 to j*j do
            for m = k to k+100 do
                S
```

4. Solve the following recurrence relations to get at $\Theta(g(n))$ result. Assume that all of the recurrence relations are a positive constant for all sufficiently small n. Show all of your work, not making use of any "Master" theorem you might have seen.
(a) $T(n)=T(n-1)+n^{2}$.
(b) $T(n)=5 T(n / 5)+n$.
(c) $T(n)=2 T(n / 3)+n$
5. Five misanthropes (all computer science professors) live on a triangular island of the south Pacific. The island's dimensions are 2 miles $\times 2$ miles $\times 2$ miles. Show that some two of the misanthropes must live within a mile of one another. (They won't be happy about it.) (English usage: two people who live one mile apart do live "within a mile" of one another.)
6. In honor of twosday, calculate $\operatorname{gcd}(22022022,222222)$. Show your work. Don't factor the numbers.
7. Prove that for any positive number n there is a nonzero multiple of n whose digits, base-10, are all 0s and 1s. Hint: Pigeons $1,11,111, \ldots$.
