Lecture 1T

Today:

- □ Course basics
- □ Example problems
 - Counting paths
 - Five riffle shuffles won't well-mix
 - a 52-card deck

Phillip Rogaway

ECS20.A webpage:

https://web.cs.ucdavis.edu/~rogaway/classes/20/winter22/

Administrative stuff

- Turn on your camera, please!
- Read the syllabus!
- Get setup on Gradescope and Piazza. Use your campus ID for this.
- Get setup on Overleaf (and/or install LaTeX local) (highly recommended)
- Get setup on zyBooks (highly recommended)
- First problem set is due next Wednesday
- TAs: John Chan and Zane Rubaii
- Graders: Teo Anderson and Kev Rockwell

When we resume meeting in person:

- No phones! In your bag. Laptops, too.
- Proper mask, properly worn. N95 requested.

"Discrete Math" isn't really a "thing"

Perhaps there is an implicit viewpoint undergirding the kind of math that gets lumped as "discrete math".

A belief that we gain by conceptualizing the world as having separate and distinct possibilities.

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{R}$$

A hierarchy, learned as as truth slowly revealed

 \mathbb{N} , \mathbb{Z} , \mathbb{R}

Three different places to live and work

Example 1

How many ways are there to walk from VMC (14th & B) to Pachamama Coffee Shop (C & 3rd) ?

The number of paths to a point is the **sum** of the number of paths to its closer neighbors. a + b

a

The number of paths to the Start point is **1**.

Finish

b

Start

How many ways are there to walk from VMC (14th & B) to Pachamama Coffee Shop (C & 3rd)?

Mind the Gap!

Look back and ask follow-up questions.

George Polya, How to Solve It (1945)

Example 2 Claim: It takes at least six riffle shuffles to nicely mix a deck of cards. Five won't do.

More specific claim:

Five riffle shuffles can never transform the sequence of cards

(1 2 3 ... 50 51 52)

To the sequence of cards

(52 51 50 ... 3 2 1)

Claims:

- The number of rising sequences in any sequence *s* is well defined.
- If you riffle shuffle a sequence *s*, the number of rising sequences in it will **at most double**.
- There is **1** rising sequence in 1,2, 3, ..., 51, 52 is 1.
- There are **52** rising sequences in 52, 51, ..., 3, 2, 1.
- So maximal number of rising sequences after 1 riffle shuffle is 2 after 2 riffle shuffles is 4 after 3 riffle shuffles is 8 after 4 riffle shuffles is 16 after 5 riffle shuffles is 32 after 6 riffle shuffles is 52
 In particular, you can't get 52, 51, ..., 2, 1 after 5 shuffles starting from 1, 2, ..., 52. The deck can't be adequately mixed.

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By DAVE BAYER¹ AND PERSI DIACONIS²

Columbia University and Harvard University

We analyze the most commonly used method for shuffling cards. The main result is a simple expression for the chance of any arrangement after any number of shuffles. This is used to give sharp bounds on the approach to randomness: $\frac{3}{2} \log_2 n + \theta$ shuffles are necessary and sufficient to mix up n cards.

Key ingredients are the analysis of a card trick and the determination of the idempotents of a natural commutative subalgebra in the symmetric group algebra.

1. Introduction. The dovetail, or riffle shuffle is the most commonly used method of shuffling cards. Roughly, a deck of cards is cut about in half and then the two halves are riffled together. Figure 1 gives an example of a riffle shuffle for a deck of 13 cards.

A mathematically precise model of shuffling was introduced by Gilbert and Shannon [see Gilbert (1955)] and independently by Reeds (1981). A deck of ncards is cut into two portions according to a binomial distribution; thus, the chance that k cards are cut off is $\binom{n}{k}/2^n$ for $0 \le k \le n$. The two packets are then riffled together in such a way that cards drop from the left or right heaps with probability proportional to the number of cards in each heap. Thus, if there are A and B cards remaining in the left and right heaps, then the chance that the next card will drop from the left heap is A/(A + B). Such shuffles are easily described backwards: Each card has an equal and independent chance of being pulled back into the left or right heap. An inverse riffle shuffle is illustrated in Figure 2.

296

D. BAYER AND P. DIACONIS

TABLE 1 Total variation distance for m shuffles of 52 cards

m	1	2	3	4	5	6	7	8	9	10
$ Q^m - U $	1.000	1.000	1.000	1.000	0.924	0.614	0.334	0.167	0.085	0.043

Problem-Solving Techniques

- 1. Reformulate to something equivalent
- 2. Generalize
- 3. Work out special cases. Small cases. Look for patterns.
- 4. Name things (e.g., introduce variables)
- 5. Create tailor-made definitions
- 6. Draw pictures
- 7. Think recursively
- 8. Adopt a playful attitude
- 9. Forget pattern-matching
- 10. But look for echoes
- 11. Know what you know (don't fool yourself, don't try to fool others)
- 12. Give serious attention to exposition. Never turn in a first draft. Critically read what you write.