Lecture 4 (2R) Logic 3

Today:

- □ Doing things with circuits
- □ Tautologies
- □ Formalizing proofs an important theorem
- □ Adding in quantifiers first-order logic
- □ The math/English gap
- Negating quantified formulas

Announcements:

- Quiz 1. Easy. Tomorrow 7am to 7pm
- PS2 is up. More challenging than PS1

Phillip Rogaway

1 0 0 1 1 0 1 0 + 1 0 0 1 1 0 1 1

1 0 0 1 1 0 1 0 1

Tautologies

 $\neg (A \lor B) \equiv \neg A \land \neg B$

Another way to say this:

 $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$

is always true

Or: the truth table for

 $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$

is always 1

Def: A boolean formula

$$\varphi(x_1,\ldots,x_n)$$

is a **tautology** if it is **always** true (no matter how you set its variables)

> We write $\models \phi$ to mean that ϕ is a tautology – it is always true.

Is there an algorithm to figure out if ϕ is a tautology?

How efficient is your algorithm?

Is there a more efficient algorithm?

What about proving that ϕ is true without building a truth table?

1. PQ	assumption	$(PQ)(P \lor R \rightarrow S)(SQ \rightarrow U) \rightarrow U$	
2. $P \lor R \rightarrow S$	assumption		
3. SQ \rightarrow U	assumption		
4. PQ \rightarrow P	AND-1 (eliminate	conjunction)	
5. P	modus ponens on	(1), (4)	
6. $PQ \rightarrow Q$	AND-2 (eliminate conjunction)		
7. Q	modus ponens on	(1), (6)	
8. $P \rightarrow P \lor R$	OR-1 (introduce disjunction)		
9. P∨R	modus ponens on	(5), (8)	
10. S	modus ponens on	(2) and (9)	
11. S \rightarrow (Q \rightarrow SC	2) AND-3 (introc	luce conjunction)	
12. Q \rightarrow SQ	modus ponen	<i>s</i> on (10), (11)	
13. SQ	modus ponens on	(7), (12)	
14. U	modus ponens on	(3) and (13)	

Therefore

{PQ, $P \lor R \rightarrow S$, $SQ \rightarrow U$ } $\vdash U$ or $\vdash (PQ)(P \lor R \rightarrow S)(SQ \rightarrow U) \rightarrow U$ //The given statement is provable

Axioms

Name	Axiom Schema	Description
THEN-1	$\phi ightarrow (\chi ightarrow \phi)$	Add hypothesis χ , implication introduction
THEN-2	$(\phi ightarrow (\chi ightarrow \psi)) ightarrow ((\phi ightarrow \chi) ightarrow (\phi ightarrow \psi))$	Distribute hypothesis ϕ over implication
AND-1	$\phi \wedge \chi o \phi$	Eliminate conjunction
AND-2	$\phi \wedge \chi o \chi$	
AND-3	$\phi ightarrow (\chi ightarrow (\phi \wedge \chi))$	Introduce conjunction
OR-1	$\phi o \phi ee \chi$	Introduce disjunction
OR-2	$\chi o \phi ee \chi$	
OR-3	$(\phi o \psi) o ((\chi o \psi) o (\phi \lor \chi o \psi))$	Eliminate disjunction
NOT-1	$(\phi o \chi) o ((\phi o eg \chi) o eg \phi)$	Introduce negation
NOT-2	$\phi ightarrow (eg \phi ightarrow \chi)$	Eliminate negation
NOT-3	$\phi \vee \neg \phi$	Excluded middle, classical logic
IFF-1	$(\phi \leftrightarrow \chi) ightarrow (\phi ightarrow \chi)$	Eliminate equivalence
IFF-2	$(\phi \leftrightarrow \chi) ightarrow (\chi ightarrow \phi)$	
IFF-3	$(\phi o \chi) o ((\chi o \phi) o (\phi \leftrightarrow \chi))$	Introduce equivalence

- $\vdash \phi$ can prove ϕ
- $\models \phi$ ϕ is always true it's a tautology

Theorem. Fix a proof system like the one sketched. Then:

Soundness: If $\vdash \phi$ then $\models \phi$

Completeness: If $\models \phi$ then $\vdash \phi$

- $\vdash \phi$ can prove ϕ
- $\models \phi$ ϕ is always true it's a tautology

Theorem. Fix a proof system like the one sketched. Then:

Soundness: If $\Gamma \vdash \phi$ then $\Gamma \vDash \phi$

Completeness: If $\Gamma \vDash \phi$ then $\Gamma \vdash \phi$

Leon Henkin (1921-2006)

Invented the standard proof this result, and taught me it as an undergraduate.

Coming clean – the result isn't just about sentential logic, but first-order logic. You get to have \forall and \exists quantifiers, and a proof system with rules for manipulating them.

Adding in quantifiers

"All apples are bad"

 $(\forall x) (A(x) \rightarrow B(x))$

"Some apples are bad" ($\exists x$) (A(x) \land B(x))

"BILLY has beat up every boy at Caesar-Chavez elementary school"

 $(\forall x) ((CCstudent(x) \land Boy(x) \land (x \neq BILLY) \rightarrow HasBeatenUp (BILLY, x))$

All lions are fierce $(\forall x) (L(x) \rightarrow F(x))$

Some lions do not drink coffee $(\exists x) (L(x) \land \neg C(x))$

Some fierce creatures do not drink coffee $(\exists x) (F(x) \land \neg C(x))$

"Nobody likes a sore loser"

Universe of discourse = human beings L(x, y) - predicate - true iff person x likes y S(x) - person x is a sore loser

> $(\forall x) (S(x) \rightarrow (\forall y) (\neg L(y, x)))$ (apparently, a sore loser doesn't like even himself)

Vocabulary of first-order logic consists of:

- Parenthesis and logical connectives: () $\neg \land \lor \rightarrow \leftrightarrow$
- Equality symbol: =
- ∀, ∃
- Variables: $x_1, x_2, ...$
- Constant symbols 0, 1, BILLY
- Function symbols f, +, ...
- Predicate symbols *P*, <, PRIME, ...

usually included universal and existential quantifiers name points in the universe U name a point in the universe U map a tuple of points in U to a point in U functions from universe U to \mathbb{B} The English/Logic Gap

CSE majors take ECS120 or ECS122A

Biology majors take MAT17A or MAT21A

Hosts ask if you want **BEEF or FISH or VEG**

Either Facebook lives or democracy dies.

Either Facebook lives or the square root of 10 exceeds 3.

If the forecast calls for rain then I will grab my umbrella.

$R \rightarrow U$

If the forecast calls for rain then one plus one is two If one plus one is three then I will grab my umbrella. English language propositions (= simple declarative statements about the state of the world) routinely **don't** have clear T/F values.

"It is raining outside" Either true/false? Not really!

English: Words have constructed, contextualized meaning.

Math: Same!

A particular fragment math: A few words and symbols are given a precise meaning.

Negating quantified boolean formulas

$$\neg (A \lor B) \equiv \neg A \land \neg B$$
$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (\forall x) \varphi \equiv (\exists x) (\neg \varphi)$$
$$\neg (\exists x) \varphi \equiv (\forall x) (\neg \varphi)$$