Lecture 4 (2R)

Logic 3

Today:

\square Doing things with circuits
\square Tautologies
\square Formalizing proofs - an important theorem
\square Adding in quantifiers - first-order logic
\square The math/English gapNegating quantified formulas

Announcements:

- Quiz 1. Easy. Tomorrow 7am to 7pm
- PS2 is up. More challenging than PS1

$$
\begin{array}{r}
10011010 \\
+\quad 10011011
\end{array}
$$

$$
100110101
$$

Tautologies

$$
\neg(A \vee B) \equiv \neg A \wedge \neg B
$$

Another way to say this:

$$
\neg(\mathrm{A} \vee \mathrm{~B}) \leftrightarrow \neg \mathrm{A} \wedge \neg \mathrm{~B}
$$

is always true

Def: A boolean formula

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)
$$

is a tautology if it is always true (no matter how you set its variables)

Or: the truth table for

$$
\neg(A \vee B) \leftrightarrow \neg A \wedge \neg B
$$

is always 1

We write $\vDash \varphi$
to mean that φ is a tautology - it is always true.

Is there an algorithm to figure out if φ is a tautology?

How efficient is your algorithm?

Is there a more efficient algorithm?

What about proving that φ is true without building a truth table?

Axioms

Name	Axiom Schema	Description
THEN-1	$\phi \rightarrow(\chi \rightarrow \phi)$	Add hypothesis χ, implication introduction
THEN-2	$(\phi \rightarrow(\chi \rightarrow \psi)) \rightarrow((\phi \rightarrow \chi) \rightarrow(\phi \rightarrow \psi))$	Distribute hypothesis ϕ over implication
AND-1	$\phi \wedge \chi \rightarrow \phi$	Eliminate conjunction
AND-2	$\phi \wedge \chi \rightarrow \chi$	
AND-3	$\phi \rightarrow(\chi \rightarrow(\phi \wedge \chi))$	Introduce conjunction
OR-1	$\phi \rightarrow \phi \vee \chi$	Introduce disjunction
OR-2	$\chi \rightarrow \phi \vee \chi$	
OR-3	$(\phi \rightarrow \psi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\phi \vee \chi \rightarrow \psi))$	Eliminate disjunction
NOT-1	$(\phi \rightarrow \chi) \rightarrow((\phi \rightarrow \neg \chi) \rightarrow \neg \phi)$	Introduce negation
NOT-2	$\phi \rightarrow(\neg \phi \rightarrow \chi)$	Eliminate negation
NOT-3	$\phi \vee \neg \phi$	Excluded middle, classical logic
IFF-1	$(\phi \leftrightarrow \chi) \rightarrow(\phi \rightarrow \chi)$	Eliminate equivalence
IFF-2	$(\phi \leftrightarrow \chi) \rightarrow(\chi \rightarrow \phi)$	
IFF-3	$(\phi \rightarrow \chi) \rightarrow((\chi \rightarrow \phi) \rightarrow(\phi \leftrightarrow \chi))$	Introduce equivalence

$\vdash \phi \quad$ can prove ϕ
$\vDash \phi \quad \phi$ is always true - it's a tautology

Theorem. Fix a proof system like the one sketched. Then:

Soundness: \quad If $\vdash \phi$ then $\vDash \phi$
Completeness: If $\vDash \phi$ then $\vdash \phi$
$\vdash \phi \quad$ can prove ϕ
$\vDash \phi \quad \phi$ is always true - it's a tautology

Theorem. Fix a proof system like the one sketched. Then:

Soundness: If $\Gamma \vdash \phi$ then $\Gamma \vDash \phi$
Completeness: If $\Gamma \vDash \phi \quad$ then $\Gamma \vdash \phi$

Leon Henkin (1921-2006)

Invented the standard proof this result, and taught me it as an undergraduate.

Coming clean - the result isn't just about sentential logic, but first-order logic. You get to have \forall and \exists quantifiers, and a proof system with rules for manipulating them.

Adding in quantifiers

"All apples are bad"

$$
(\forall x)(A(x) \rightarrow B(x))
$$

"Some apples are bad"
$(\exists x)(A(x) \wedge B(x))$
"BILLY has beat up every boy at Caesar-Chavez elementary school"
$(\forall x)((C \operatorname{Cstudent}(x) \wedge \operatorname{Boy}(x) \wedge(x \neq B I L L Y) \rightarrow$ HasBeatenUp $(B I L L Y, x))$

Some lions do not drink coffee $\quad(\exists x)(L(x) \wedge \neg C(x))$

Some fierce creatures do not drink coffee

$(\exists x)(F(x) \wedge \neg C(x))$
"Nobody likes a sore loser"
Universe of discourse = human beings
$\mathrm{L}(\mathrm{x}, \mathrm{y})$ - predicate - true iff person x likes y
$S(x)$ - person x is a sore loser

$$
\begin{aligned}
& (\forall x)(S(x) \rightarrow(\forall y)(\neg L(y, x))) \\
& \text { (apparently, a sore loser doesn't like even himself) }
\end{aligned}
$$

Vocabulary of first-order logic consists of:

- Parenthesis and logical connectives: () $\neg \wedge \vee \rightarrow \leftrightarrow$
- Equality symbol: =
- \forall, \exists
- Variables: x_{1}, x_{2}, \ldots
- Constant symbols 0, 1, BILLY
- Function symbols $f,+, \ldots$
- Predicate symbols $P,<$, PRIME,..
usually included universal and existential quantifiers name points in the universe U name a point in the universe U map a tuple of points in U to a point in U functions from universe U to \mathbb{B}

The English/Logic Gap

CSE majors take ECS120 or ECS122A

Biology majors take MAT17A or MAT21A

Hosts ask if you want BEEF or FISH or VEG

Either Facebook lives or democracy dies.

Either Facebook lives or the square root of 10 exceeds 3.

If the forecast calls for rain then I will grab my umbrella.

$$
R \rightarrow U
$$

If the forecast calls for rain then one plus one is two
If one plus one is three then I will grab my umbrella.

English language propositions (= simple declarative statements about the state of the world) routinely don't have clear T/F values.

"It is raining outside" Either true/false?
 Not really!

English: Words have constructed, contextualized meaning.
Math: Same!

A particular fragment math: A few words and symbols are given a precise meaning.

Negating quantified boolean formulas

$$
\begin{aligned}
& \neg(\mathrm{A} \vee \mathrm{~B}) \equiv \neg \mathrm{A} \wedge \neg \mathrm{~B} \\
& \neg(\mathrm{~A} \wedge \mathrm{~B}) \equiv \neg \mathrm{A} \vee \neg \mathrm{~B} \\
& \neg(\forall \mathrm{x}) \phi \equiv(\exists \mathrm{x})(\neg \phi) \\
& \neg(\exists \mathrm{x}) \phi \equiv(\forall \mathrm{x})(\neg \phi)
\end{aligned}
$$

