
Lecture 4 (2R)

Logic 3

Today:
▢ Doing things with circuits
▢ Tautologies
▢ Formalizing proofs – an important theorem
▢ Adding in quantifiers – first-order logic
▢ The math/English gap
▢ Negating quantified formulas

Announcements:
- Quiz 1.  Easy.   Tomorrow 7am to 7pm
- PS2 is up.   More challenging than PS1

Phillip Rogaway
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a

cout
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s

cin

a b  cin  s cout 
0  0  0   0  0
0  0  1   1  0
0  1  0   1  0
0  1  1   0  1
1 0  0   1  0
1  0  1   0  1
1 1  0   0  1
1  1  1   1  1
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Tautologies

¬ (A ∨ B) ≡      ¬ A ∧ ¬ B

Another way to say this:

¬ (A ∨ B)  ↔  ¬ A  ∧ ¬ B

Or: the truth table for 

¬ (A ∨ B) ↔ ¬ A ∧ ¬ B 

is always 1

is always true

Def: A boolean formula

ϕ(x1 ,…, xn)

is a tautology if it is 
always true (no matter 
how you set its variables)

We write    ⊨ ϕ
to mean that ϕ
is a tautology – it is
always true. 
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Is there an algorithm to figure out if ϕ is a tautology?

How efficient is your algorithm?

Is there a more efficient algorithm?
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What about proving that ϕ is true without building a truth table?  

(PQ)(P ∨ R → S)(SQ → U) → U1.  PQ                assumption
2.  P ∨ R → S  assumption 
3.  SQ → U       assumption 
4.  PQ  → P AND-1 (eliminate conjunction) 
5.  P           modus ponens on (1), (4)
6.  PQ → Q           AND-2 (eliminate conjunction) 
7.  Q           modus ponens on (1), (6)
8.  P → P ∨ R       OR-1 (introduce disjunction) 
9.  P ∨ R       modus ponens on (5), (8)
10.  S             modus ponens on (2) and (9)
11. S → (Q  → SQ) AND-3 (introduce conjunction)
12.  Q  → SQ          modus ponens on (10), (11)
13.  SQ         modus ponens on (7), (12)
14.  U           modus ponens on (3) and (13)

Therefore
{PQ,  P ∨ R → S,  SQ → U}  ⊢   U          or
⊢ (PQ)(P ∨ R → S)(SQ → U) → U      //The given statement is provable
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⊢ ϕ can prove ϕ

⊨ ϕ ϕ is always true — it’s  a tautology

Soundness:       If ⊢ ϕ then ⊨ ϕ

Completeness:    If ⊨ ϕ then   ⊢ ϕ

Theorem. Fix a proof system like the one 
sketched. Then: 
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⊢ ϕ can prove ϕ

⊨ ϕ ϕ is always true — it’s  a tautology

Soundness:       If  Γ ⊢ ϕ then Γ ⊨ ϕ

Completeness:    If Γ ⊨ ϕ then Γ ⊢ ϕ

Theorem. Fix a proof system like the one 
sketched. Then: 
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Leon Henkin (1921-2006)

Invented the standard proof this result,
and taught me it as an undergraduate.

Coming clean – the result isn’t just about sentential logic, but
first-order logic.  You get to have ∀ and ∃ quantifiers, and a proof 
system with rules for manipulating them.
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Adding in quantifiers

“All apples are bad”

(∀x) (A(x) → B(x))

“Some apples are bad”

(∃x) (A(x) ∧ B(x))

“BILLY has beat up every boy at 
Caesar-Chavez elementary school”

(∀x) ((CCstudent(x) ∧ Boy(x) ∧ (x≠BILLY) → HasBeatenUp (BILLY, x)) 
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All lions are fierce                   

Some fierce creatures do not drink coffee

(∀x) (L(x) → F(x))

Some lions do not drink coffee (∃ x) (L(x) ∧ ¬ C(x))

(∃x) (F(x) ∧ ¬ C(x))

"Nobody likes a sore loser" 

Universe of discourse = human beings 
L(x, y) - predicate - true iff person x likes y
S(x)  - person x is a sore loser

(∀x) (S(x) → (∀y) (¬ L(y, x)))
(apparently, a sore loser doesn't like even himself)



15

Vocabulary of first-order logic consists of:

• Parenthesis and logical connectives:  (   )    ¬  ∧ ∨ →  ↔
• Equality symbol:   =                                                usually included
• ∀,  ∃ universal and existential quantifiers
• Variables: x1, x2, ...                      name points in the universe U
• Constant symbols  0, 1, BILLY           name a point in the universe U 
• Function symbols  f, +, … map a tuple of points in U to a point in U
• Predicate symbols  P, <, PRIME, …      functions from universe U to 𝔹𝔹
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The English/Logic Gap

CSE majors take ECS120 or ECS122A

Biology majors take MAT17A or MAT21A

Hosts ask if you want  BEEF or FISH or VEG
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Either Facebook lives or democracy dies.

Either Facebook lives or the square root of 10 exceeds 3.

If the forecast calls for rain then I will grab my umbrella.

R → U

If the forecast calls for rain then one plus one is two
If one plus one is three  then I will grab my umbrella.
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English language propositions (= simple declarative statements
about the state of the world) routinely don’t have clear T/F values.

“It is raining outside”    Either true/false?
Not really!

English: Words have constructed, contextualized meaning.

Math:  Same!

A particular fragment math: A few words and symbols are given a precise meaning.
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Negating quantified boolean formulas

¬ (A ∨ B)   ≡   ¬ A  ∧  ¬ B

¬ (A ∧ B) ≡   ¬ A ∨ ¬ B

¬ (∀ x) ϕ ≡      (∃ x) (¬ ϕ )

¬ (∃ x) ϕ ≡      (∀ x) (¬ ϕ )
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