
Two Proofs of Ladner’s Theorem

We give two proofs of Ladner’s Theorem in this note. This note is adapted from the appendix
of the paper “Uniformly Hard Sets” by Fortnow and Downey.

Theorem 1 (Ladner) If P 6= NP then there exists an incomplete set A in NP − P.

Both proofs have a similar set up. First we assume that P 6= NP. Every NP-complete language
is not in P with this assumption and we will focus on one of them, namely SAT, the language of
satisfiable Boolean formula.

We have two sets of requirements to fulfill. Let M1,M2, . . . be an enumeration of deterministic
Turing machines clocked so that the machine Mi(x) runs in time |x|i and captures all of the
languages in P. We also have a similar list fi of the polynomial-time computable functions.

1. Ri: A 6= L(Mi).

2. Si: For some x, x ∈ SAT and fi(x) 6∈ A or x 6∈ SAT and fi(x) ∈ A.

In addition we need to guarantee that A is in NP.

Proof by blowing holes in SAT

This proof is based on the original proof of Richard Ladner.

Our set A will be defined using a function f by

A = {x | x ∈ SAT and f(|x|) is even}.

Note that if we make f(n) computable in polynomial in n time then A will be in NP.

The function f will be set to the current stage of the construction. Intuitively in stage 2i, we
keep f(n) = 2i for large enough n until condition Ri is fulfilled. If Ri is never fulfilled then the set
A will be equal to L(Mi) and a finite difference from SAT contradicting the assumption that P 6=
NP.

In stage 2i+ 1 we keep f(n) = 2i+ 1 until condition Si is fulfilled. If Si is never fulfilled then
A will be finite and SAT reduces to A via fi which would put SAT in P, again contradicting the
fact that P 6= NP.

1

The trick is to do this while keeping f polynomial-time computable. We do this by delayed
diagonalization, i.e., we do not start a new stage until we see the requirement for the previous stage
has been fulfilled on inputs so small we can test it. Thus we do not start a new stage until well
after the old requirements are fulfilled.

We now formally define f(n) inductively in n. Let f(0) = f(1) = 2. For n ≥ 1 we define
f(n+ 1) as follows: If logf(n) n ≥ n then let f(n+ 1) = f(n). Otherwise we have two cases:

1. f(n) = 2i: Check to see if there is an input x, |x| ≤ log n such that either

(a) Mi(x) accepts and either f(|x|) is odd or x is not in SAT, or

(b) Mi(x) rejects and f(|x|) is even and x is in SAT.

If such an x exists then let f(n+ 1) = f(n) + 1 otherwise we let f(n+ 1) = f(n).

2. f(n) = 2i+ 1: Check to see if there is an input x, |x| ≤ log n such that either

(a) x is in SAT and either f(|fi(x)|) is odd or fi(x) is not in SAT, or

(b) x is not in SAT and f(|fi(x)|) is even and fi(x) is in SAT.

If such an x exists then let f(n+ 1) = f(n) + 1 otherwise we let f(n+ 1) = f(n).

Since to compute f(n) we only examine x with |x| ≤ log n and

|x|i ≤ logi n ≤ logf(n) n < f(n),

we can compute f(n) in time polynomial in n. It is straightforward to check that f(n) does not
increase until the corresponding requirements if fulfilled and that if f(n) remains constant for all
large n then we will have violated the P 6= NP assumption.

Proof by Padding SAT

This proof is based on an unpublished proof of Russell Impagliazzo.

Here the idea is to encode SAT questions of length n on inputs of length f(n). Define the
language L as

L = {φ01f(n)−|n|−1 | φ in SAT, and |φ| = n}.

We will create a polynomial-time computable in n function f large enough so that L is not NP-
complete but not so large as to make L in P.

We will keep f(n) = ni long enough to fulfill Ri and then let f(n) = ni+1.

We define formally define an algorithm for computing f(n). Let i = 1 initially. For each n in
order we do the following: Let f(n) = ni. Check to see if there is an input x, |x| ≤ log n such that
either

1. Mi(x) accepts and x is not in L, or

2

2. Mi(x) rejects and x is in L.

If so let i = i+ 1 otherwise leave i unchanged. Go onto the next n.

Since we are only checking very small x, we can compute f in polynomial time in n.

Suppose that L is in P. We then have that L = L(Mi) for some i so f(n) = ni for suitably large
n. But then we have an easy reduction from SAT to L and SAT would also be in P, violating our
assumption.

So we have fulfilled all of the Ri requirements and i goes to infinity. Suppose some requirement
Sj is not fulfilled. We then have a function fj that reduces SAT to L. We want to show that we
can now compute whether φ is in SAT in polynomial time.

Since fj runs in time bounded by nj we have that for all φ, |fj(φ)| ≤ |φ|j . There must be some
n0 such that for all n ≥ n0, f(n) = nk for some k > j. We hardwire satisfiability for all inputs of
length up to n0.

Suppose we have a formula φ with |φ| > n0. If fj(φ) is not in the range of f then fj(φ) is not
in L so φ is not in SAT. Otherwise, fj(φ) = ψ01f(m)−m−1 where m = |ψ| and φ in SAT if and only
ψ is in SAT. We have f(m) = |fj(φ)| ≤ |φ|j so |ψ| = m ≤ |φ|j/k if f(m) = mk. Since |φ| > n0

we have k > j so |ψ| < |φ|. If |ψ| ≤ n0 then we know whether ψ and thus φ is in SAT. Otherwise
we apply this algorithm recursively to ψ. Since |ψ| gets smaller each step the algorithm runs in
polynomial time.

3

