Problem Set 2: Problems 5-8. Due Tuesday, Jan 31, 2006

Problem 5. Papadimitriou, pp. 66-67, problem 3.4.2 parts (a)-(e).
Problem 6. Papadimitriou, pp. 85, problem 4.4.10.
Problem 7. Papadimitriou, pp. 119, problem 5.8.10.
Problem 8. At some point you may have seen a description of the tiling problem and a proof of its undecidability. Recall that in the tiling problem you are given a finite set T of tile types. Each tile type is a four-tuple of number (a, b, c, d) specifying the colors of the left, top, bottom, and right edges. The question in TILING is as follows: is there a tiling of the upper-right quadrant of the plane that uses $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ tiles of the specified types where adjacent edges have the same color? (Often, for simplicity, one further demands that a particular tile be laid down at the origin.) At some point in your long career, you may well have seen a proof of the undecidability of the tiling problem (a pretty easy reduction from the complement of the halting problem). Such a proof shows that TILING is not r.e.. But is it co-r.e.? Prove your answer.

