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CS 15-855 Computational Complexity Theory September 13, 2000

Lecture 1: The Formal Foundations of Complexity

Lecturer: Rudich Scribe: Steven Rudich / Editor: Steven Rudich

Synopsis: Definitions of one-tape and multi-tape Turing machines, their
computation and operation. Time and space classes. Linear-speedup
theorem. Simulation and Diagonalization: the hierarchy theorems.

1 What is Complexity?

Computational complexity theory is the formal study of what can and what
can’t be computed using bounded resources. The resources which will receive the
most attention in this class will be space and time. Other resources include parallel-
time, time-space product, random bits, interaction, volume of communication, and
advice from god.

2 Basic Definitions

For completeness, we start at the beginning. For many this will be a fast review of the
formal foundations of Turing machine time and space complexity classes. For others,
this material will be new. In which case, the lecture will be too quick to absorb and
should be carefully studied out of class. Practical and philosophical considerations
which motivate our choices will be deliberately postponed until the third lecture.

2.1 Turing Machines

The Turing machine (TM) was first defined by Alan Turing in his landmark 1937
paper[2]. There are many variations on the details of its definition. Let us agree on
what we will mean for the duration of the class. A one-tape Turing machine is a
computing device with a finite state control, a tape, and a tape head which points
to (scans) a given cell on the tape. The tape is an infinite sequence of cells starting
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at the left. We initialize the machine by putting the finite control into a special
start state ¢gqr and writing our input to the machine on the tape (starting from
the leftmost cell). All other cells on the tape will contain the special blank symbol
(. At each time step the machine makes a move which is a function of the state of
the finite control and of the symbol being scanned by the tape head: it changes its
control state, overwrites the symbol on the cell being scanned, and moves the head
one to the right or left. If the machine ever enters the special state gaccept (Greject) it
halts and is considered to have accepted (rejected) the input.

More formally, a Turing machine M is a 3-tuple (X,Q,d). X contains the blank
symbol () in addition to some finite alphabet of tape symbols. @ contains gsyar,
Qaccept Greject; and a finite set of control states. ¢ is the transition function for M. ¢
is a function from ¥ x @ to ¥ x @ x {—,<«}. A configuration C' of M consists of
the tape contents up to the rightmost non-blank symbol, the state of the control, and
the position of the head. A configuration is represented as a string of symbols from
YUQ: 010903...0,Q0;41 ...0;, Where 0,05 - -+ 0y are the tape contents, ¢ is the state
of the finite control, and o, is the symbol being scanned by the tape head.

Figure 1: The Turing machine state represented by o,0905...0;q 0;41...0,

We can now define how the TM M computes on an input string x = x12223...1T,.
M is initialized to the configuration Cy = qgqri®122 - - - . At the ith time step the
TM applies 6 to C;_; to derive the configuration C;: § is applied to the current state
and the symbol being scanned. The result is a 3 tuple (o, ¢, d): o is written on the
current cell, the finite control is changed to be in state ¢, and (unless it will fall off
the left) the head is moved one cell in direction d. If at the kth step the machine
enters Guecept(OT Greject), We say that the machine halts and accepts (or rejects) input
x in k steps. The computation of the machine on x is the sequence of configurations
<C(), Cl, . ,Ck>

Example: Let PALINDROMES be the set of strings over {a,b} that read the
same backwards and forwards. We can build a TM to accept exactly the strings in

this set. ¥ = {a, b, =+, D} Q = {QStarta Qaccepty Arejects day 9a’ > 4b, v’ QZ}- We now have to
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define 6 on all its values:

(aa QStart) = (+7 Ga; _>) (S(b, QStart) = (+7 av, _>) 5(|:|7 QStart) = (Da Qaccept _>)
(a7 Qa) = (aaqﬂ7_>) 6([)7 qﬂ) = (b7 Qa,—>) 5(D7qﬂ) = (D7Qa’7k)

(aa qa’) — (l:‘a qi, F) 6([)7 Qa’) - (ba Qreject, _>) 5("‘7 Qa’) = ("—, Gaccepts <_)
(a7 Qb) = (a7 v, _>) 6([)7 Qb) = (b7 v, _>) 5(D7 Qb) = (D7 Qv <_)

(aa Qb’) = (aa Qrejects %) (S(b, Qb’) = (D7 qi, %) 5("‘7 Qb’) = (+7 Qaccepts %)
(a, @) = (a,q1, ) (b, i) = (b, a1, ) 6(+, @) = (+, Gstart: —)

S S S D &

The machine starts by changing the leftmost symbol to a “+” and moving the head
to the rightmost symbol and changing it to a blank (if the symbols fail to match, the
machine rejects). It moves back to the right of the plus and repeats the process until
all symbols have been matched. We leave as an exercise to work out the sequence of
11 configurations the machine enters during its computation on input aba.

A multi-tape TM with input and output tapes operates on the same basic principle as
the one-tape TM, but has a few differences. It has a special input only tape which is
read-only and a special output only tape which is write only. For work space, it has
some constant number of work tapes just like the tape on the one-tape machine. The
input is, of course, initially written on the input tape. At each time step the machine
makes a move depending on all the (constant) number of symbols being scanned by
the tape heads and the state of it finite control. Each head overwrites the cell it is
scanning and moves left or right one cell. Termination conditions are the same. The
formal description is analogous to the one-tape case. The 0 function now depends on
tuples of alphabet symbols as well as the current state.

Read-only input tape
Y

Write-only output tape

Work tape #1
A

Work tape #2

Finite state control |

4\ :

Work tape k

R

Figure 2: A k tape multi-tape Turing Machine
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Convention: Unless we say otherwise, when we say Turing machine we will mean
MULTI-TAPE TM WITH INPUT AND OUTPUT TAPES.

Definition 2.1 A set (language) S is recognized (or decided) by a TM M if M
accepts every string in S and rejects every string not in S.

Definition 2.2 A set (language) S is accepted by a TM M if M accepts every
string in S.

Notice that, unlike a recognizer, an acceptor for a set might not halt on all inputs.

Definition 2.3 A set S is recursive (or decidable) if there exists a TM which
recognizes it.

Definition 2.4 A set S is recursively enumerable (or r.e.) if there exists a TM
which accepts it.

2.2 Time and Space

Let f be any function from N to N. The notation |z| means the length of the string .
We will define our time and space classes in terms of the sets which can be recognized
using no more than a specified amount of a resource.

Definition 2.5 A € TIME(f(n)) if there is a multi-tape TM which recognizes A and
uses no more than f(|x|) steps on input x.

Definition 2.6 A € SPACE(f(n)) if there is a multi-tape TM which recognizes A
and uses no more than f(|z|) cells of its work tapes during its computation on input
x. A cell is considered used if it is scanned by the tape head.

We can define time and space for function computation as well.

Definition 2.7 r € FTIME(f(n)) if there is a TM which on input x writes r(x) on
its output tape within f(|x|) steps.
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Definition 2.8 r € FSPACE(f(n)) if there is a TM which on input x writes r(x)
on its output tape and uses no more than f(|z|) cells of its work tapes.

Example: PALINDROMES is in TIME(2.5n) and is also in SPACE(3logn). It is
in TIME(2.5n) because a TM can copy the input onto its work tape (time n), send
the input head back to the beginning (time n), and then compare the two sides of the
string as the input head marches forward and the work tape head marches backwards
(time n/2). It is in SPACE(3logn) because we can store 3 pointers into the input
string. One pointer will always contain the current head position. One pointer will
start at 1. We run our input head to the end and set the third pointer to the position
of the last input symbol. We then run the head back and forth keeping our last two
pointers up to date concerning which pair of symbols is being checked.

Question: Can PALINDROMES be recognized by a machine which runs simul-
taneously in linear time and logarithmic space? Neither of the two algorithms above
has this property. We will be able to answer this question in the next lecture.

3 Basic Theorems

3.1 Linear Speedup and Compression

The next two theorems show us that multiplicative constants don’t matter when we're
talking about complexity classes.

Theorem 3.1 (Linear Speedup) Suppose M(x) runs in f(|x|) steps. For any
€ > 0, we can build an equivalent machine M' that runs in €f(n) + n steps.

Proof: Fix k as large as desired. M’ has one more work tape than M (and a much
larger finite control and tape alphabet). M’ copies its input onto its extra work tape
in compressed form: one tape-symbol for every k-tuple of M’s tape symbols (thus the
need for a much larger tape alphabet). This initial copying and compression takes n
steps. M’ will then simulate M so as to maintain a compressed representation of all
its work tapes.

M’ will make 6 moves to simulate k& of M’s moves. By moving each of its tape heads
one right, two left, and one right again while storing those symbols in its finite control,
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M’ now knows (in its control) every symbol within radius k of any of M’s tape heads.
Thus, M’ knows M’s next k& moves. By using 2 additional moves, M’ can modify its
compressed symbols so as to represent the configuration of M after those k£ moves.
]

Corollary 3.2 If A can be recognized in cn time for ¢ > 1, then for any € > 0,
A € TIME((1 + €)n).

Corollary 3.3 Suppose n = o(f(n)). If A can be recognized in O(f(n)) time, then
A € TIME(f(n)).

Theorem 3.4 (Linear Compression) Suppose M (x) runs in f(|x|) space. For any
e > 0, we can build an equivalent machine M' that runs in e€f(n) + 2 steps.

Corollary 3.5 If A can be recognized in O(f(n)) space, then A € SPACE(f(n)).

The proof for the case of space is left as an exercise.

3.2 Simulation
3.2.1 Proper Complexity Functions

Before speaking about the simulation of a given machine for f(n) steps, we will address
a technical point. If we are going to simulate a machine for f(n) steps, we had better
be able to calculate f(n). Since we will want our simulations to be efficient, it would
be counter-productive if the calculation of f(n) required more than f(n) time or
space. The reasonable f(n) (e.g., logn, n'°6™ 27) that people actually use as bounds
for complexity classes don’t pose any problem. This consideration motivates a formal
definition of which functions are appropriate to use as resource bounds.

Definition 3.1 f(n) is a proper complexity function if f(n) > f(n — 1) and there
is a TM M which for every input x outputs a string of length exactly f(|x|) and runs
in time O(|z| + f(|z|) and space O(f|x]).
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Why do all the normal functions have this property? The following exercise will help
to explain why. Show that if f(n) and g(n) are proper complexity functions then so

are f(g(n)), f(n) + g(n), f(n)g(n), and 290

Proposition: If f(n) is a proper complexity function then languages recognized in
time f(n) are the same as those accepted in time f(n).

Proof left as exercise.

Convention: Unless we say otherwise, ALL COMPLEXITY FUNCTIONS CONSIDERED
IN THIS CLASS WILL BE ASSUMED TO BE PROPER COMPLEXITY FUNCTIONS.

3.2.2 Representing TM’s as Strings

Any string or number can be viewed as a TM and vice versa. This is a simple point,
but important enough to explain. Let’s fix a convention for how a TM (X, @, 9) is
represented as a string over {0, 1,#}. Assign a distinct binary sequence of length k
to each symbol in ¥ and Q. k is chosen as the least number that will allow us to do
this. The assignment is otherwise arbitrary except that gsare, Gacceprs and greject are
assigned the sequences 0%, 0¥='1 and 0%7210, respectively. By “list ¥” we will mean
listing the binary codes for the elements of 3 separated by #’s (similarly for “list
Q7). A transition rule in § such as 6(a,b,c,q) = (d,<+,e,<+, f,—,¢') can be listed
as:

a&eH#b& & #q&e#Hd&1#e& 1# f&O#¢ &

where & means the binary code for x. To list the entire TM description we just
list X, place ##, list @), place a #+, list 0, and place an end-marker #+#. Notice
that given the string, we can unambiguously reconstruct the TM which it represents.
Also notice that since every such string is a number in base 3, we have a method
to calculate the precise correspondence between i and the ¢th Turing machine. Of
course, for most ¢ the ith Turing machine is not even syntactically well formed, but
it can be view as a Turing machine which does nothing. (Formally, we can equate it
with whichever particular TM we wish.)

3.2.3 The Simulation Theorem

The following is the formal version of the fact that we can easily write an efficient
interpreter (such BASIC or ML) that runs any given program-input pair for a fixed
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number of steps.

Convention: IN SITUATIONS WHERE WE GIVE A TM M AS INPUT TO ANOTHER
MACHINE, IT SHOULD BE UNDERSTOOD THAT WE MEAN THE STRING WHICH REP-
RESENTS M.

Also notice that because of the endmarker in our representation of TM M, we can
feed Mx to another TM and expect it to be able to parse it into the M portion and
the x portion.

Theorem 3.6 (Clocked Simulation) For every proper complexity function f(n),
there exists a TM Sy running in time f*(|Mz|) such that on input Mz, Sy accepts
iff M(x) accepts within f(|x|) steps.

Proof sketch: S; will have 4 work tapes. On one, it ticks off f(|z|) cells to make
a “clock”. Notice that because f(n) is a proper complexity function we know that
this will not take very long. Another tape will be devoted to the contents and head
positions of M’s work tapes. A third tape will store M’s program and the current
state of its finite control. Keep the forth tape for work space.

Sy scans the entire tape holding M’s work tapes. As it does so, it writes the informa-
tion about which heads are scanning which symbols on its scratch tape. Now S; can
scan M’s program and determine the result of the next move. S; makes the updates
and removes one “tick” from the clock tape.

If the clock ever runs out or if M rejects, then Sy rejects. If M ever accepts, then Sy
does too.

The time spent simulating each of the f(|z|) steps of M could be as much as O(f(|Mx|)?)
because during an update the information on the tape doing an update might have
to be moved over as many as Q(f(|x|) cells. The total simulation can be compressed
as in Theorem 3.1 from O(f?) to f? steps. n

In fact, by being much more clever about the details of the simulation it is possible
to show a better simulation theorem[1]. We state it without proof.

Theorem 3.7 (Clocked Simulation) For every proper complexity function f(n)
and g(n) = w(f(n)log f(n), there exists a TM Sy running in time g(|Mx|) such that
on input Mz, Sy accepts iff M(zx) accepts within f(|z|) steps.
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The optimal version for space is much easier and is left as an exercise.

Theorem 3.8 (Bounded Space Simulation) For every proper complezity function
f(n), there exists a TM Sy running in space f(|Mz|) such that on input Mz, S
accepts iff M(x) accepts using only f(|x]) space.

3.3 Diagonalization and the Hierarchy Theorems

The brilliant technique Cantor used to argue the uncountability of the real numbers
is called diagonalization. It was also used to show the undecidability of the halting
problem and Godel’s incompleteness theorem. We can import the technique into
complexity theory. The idea is quite simple. Suppose that a machine M in time class
A can simulate any machine in time class B. We will build a diagonalizer machine
D. On input z, D will use M to simulate z(z) and do the opposite of what it does.
(This is called “diagonalizing against 2”.) It follows that if  is in time class B,! M
gave a correct simulation of z, and hence D(z) # x(z). The language recognized by
D, which is in time class A, is different on at least one string from any language in
time class B.

Theorem 3.9 (Time Hierarchy) For any proper complexity function f(n) and
g(n) = w(f(n)log f(n)), TIME(f(n)) is properly contained in TIME(g(2n)).

Proof: Let Sy be the simulator from Theorem 3.7 which runs in g(n) steps on inputs
of length n. Make a “diagonalizer” machine D that runs the simulator and does the
opposite, i.e., D(M) accepts iff Sp(M M) rejects. The language A recognized by D
is clearly in TIME(g(2|M])). For any N which runs in f(|M|) time for all inputs M,
N(N) # D(N) because S;(N,N) = N(N) by theorem 3.7. Hence, no machine N
can decide A in f(|M]) steps on all inputs M.

Alternative ending: Suppose that N (M) runs in f(|M]) steps and recognizes A. N(N)
accepts implies that S; (N, N) =reject. N (V) rejects implies that Sy(N, N) = accept.
Contradiction. n

Corollary 3.10 TIME(n*) is properly contained in TIME(nk*Y), for all k.

If it is not, what M does might be meaningless, but it does not hurt the argument.
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Theorem 3.11 (Space Hierarchy) For any proper complexity function f(n) and
g(n) =w(f(n)), SPACE(f(n)) is properly contained in SPACE(g(2n)).

The proof is left as an exercise.

4 Worthy of Mention

I will state two theorems that are worth mentioning. The first shows that our restric-
tion to proper complexity functions is not a mere technicality; without this restriction
very strange gaps appear in the complexity classes. The second warns us that there
is not always an optimal time bound for a given problem.

Theorem 4.1 (Trakhtenbrot-Borodin? Gap Theorem) Given any total recur-
sive function® g(n) > n, there exists a total recursive function S(n) such that

SPACE(S(n)) = SPACE(g(S(n)).
The gap theorem has a similar version for time.

Theorem 4.2 (Blum’s Speedup Theorem) Let r(n) be any total recursive func-
tion. There exists a recursive language L such that for any TM M recognizing L,
there is a faster TM M’ recognizing L. If M runs in time t(n), M" will run in time
less than r(t(n)) for all but finitely many inputs.

The proofs of these theorems can be found in Introduction to Automata Theory, Lan-
guages, and Computation, by Hopcroft and Ullman (published by Addison-Wesley).

References
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3That means any function computable by a TM and defined for every value.
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Lecture 2: B.C. Complexity Theory— Palindromes

Lecturer: Rudich Scribe: Patrick Riley / Editor: Hakan Younes

Synopsis: The lecture first develops some results from the area of com-
munication complexity, specifically about the equality function. Those
results are used to prove very tight bounds on the computational com-
plexity of recognizing palindromes with a multi-tape Turing machine and
a one tape Turing machine. The three primary results in this lecture are:
a time-space tradeoff for a multi-tape machine (time x space = Q(n?)), a
lower bound for the space needed by a multi-tape machine (logn), and a
lower bound on the time needed by a one-tape machine (n?).

5 The Palindromes Problem

This lecture gives a taste of complexity theory Before Cook (before reductions and
completeness were the focus of an energetic young complexity theorist’s labors). In
particular, we will focus on machines that recognize the PALINDROMES language:

PALINDROMES = { X X® | X € ¥*} (where X represents the reverse of X)

In the previous lecture we saw that (for the multi-tape TM we use) PALINDROMES €
TIME(3n) and PALINDROMES € SPACE(3 logn).

This lecture will answer the following three questions:

1. Is there a space-time tradeoff for palindromes, or can a single algorithm be
simultaneously fast and space efficient?

2. How fast can a one-tape Turing Machine recognize PALINDROMES?

3. Can PALINDROMES be recognized in o(logn) space?

We can look at item 1 intuitively

12
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Intuition: Consider the input string with substrings X on the right and
Y on the left, both having length n/3 and separated by a sequence of n/3
zeros (fig. 3).

n/3 n/3 n/3
X 09000 Y
space
S(n)

Figure 3: Carrying information across the sea of zeros ...

Suppose that a TM uses at most S(n) space. Whenever it moves from X
to Y or back, it can only carry O(S(n)) bits of information across the 0’s.
Thus it needs to make at least 2(n/S(n)) trips across the section of zeros.
Each such trip takes at least n/3 steps. Therefore, the total number of
steps is at least T'(n) = Q(n?/S(n)). From this we get the space-time
trade-off

T(n)-S(n) = Q(n?).

Of course, all this is just an intuitive explanation of what yet has to be
formally demonstrated.

6 Communication Complexity

In order to prove some interesting things about PALINDROMES, we are going to use
some tools from communication complexity. Naturally, we first need to understand a
little bit of this theory.

6.1 Basic Definitions

The basic setup is as follows. Two parties have a number that only they know. Call
these numbers X and Y (and the respective parties the X-player and Y-player).



14 6 COMMUNICATION COMPLEXITY

The players want to compute a function f(X,Y) — {0,1} so that they both know
the value. The trouble is that communication is very expensive, so they want to
minimize the number of bits they have to communicate. We will allow each player to
have infinite computational resources.

Example: Consider the function

f(z,y) =(x+y) mod 2 z,y €[0...n]

Dumb protocol: Player X sends logn bits of x to player Y. Player Y sends back
one bit of result. The cost is (logn) + 1 bits to communicate.

Smart protocol: Player X sends x mod 2. Player Y sends back the answer. The
cose is 2 bits to communicate.

Definition 6.1 A protocol is a binary tree where each internal node v is labeled
(X-player, f,) or (Y-player,g,) where f,: X — {0,1} and g,: Y — {0,1}. Each leaf
node s labeled 0 or 1.

The label on the node determines whose turn it is to speak. The functions f, and g,
determine what bit the player should send, and which branch of the tree to go down.
Here is the formal algorithm for when the X-player has input x and the Y -player has
input y.

current_node = root;
while (current_node is not a leaf)
if (current node is X-player)
X-player computes b = f,(z)
else
Y-player computes b = g¢,(y)
The player announces b
if (b=0)
current_node
else
current_node = right_child(current_node)
f(z,y) = contents of leaf current_node

left_child(current_node)

There are a couple of points to note:
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Figure 4: An Example Protocol

e We assume that communication is completely reliable.
e There must be a different protocol for every set X and Y.
e A path in the protocol represents a conversation between X and Y
As an example, consider the protocol shown in Figure 4 for computing whether the

two bit strings r = xyx5 and y = y,y2 are the same. The function F' is defined as
follows

0 ifa=50
F(“’b)_{ 1 ifa#b

Note the order of the 0 and 1 leaves!

In particular if x = 10 and y = 11, the protocol would follow the path highlighted.

Definition 6.2 The cost of protocol P on input (x,y), denoted COST, P is
the length of the path in P taken on input (x,y).

Definition 6.3 The cost of protocol P, denoted COSTP is the length of the longest
path in P.
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Note that

COSTP = max COST@’y)P

(w,y)

Definition 6.4 The COMMUNICATION_COMPLEXITY(f) is the minimum over
all protocols P computing f of COSTP.

Note in particular that if a function f takes inputs of maximum size x and v,
COMMUNICATION_COMPLEXITY(f) < max(z,y) + 1. Any function f can be com-
puted by one player sending all of their bits to the other, who then computes f and
sends the result back.

Definition 6.5 The AVERAGE_COMPLEXITY(f) of a set S is the minimum over
all protocols computing [ (over the set S) of the average cost of computing f. In
other words

COST. P
AVERAGE_COMPLEXITY(f) = min Z(CIJ,?DGS (z,y)
P computing f |S]

An important note here is that while we only look at the cost of P on S, P must be
a protocol computing f on all inputs, note just those in S.

6.2 Path Braiding Lemma

Fix a protocol P. Let Ci,,) be the path (a.k.a. conversation) taken on input (z,y).

Lemma 6.1 Path Braiding
(Clamy = Cly)) = (Claw) = Clay)

Proof: We will proceed by induction on the path Cy; 5. The base case (of a 0 length
path) is trivial. Suppose that C(, .y is the same as C;,) up to a node v. Consider
two cases:

e v belongs to X-player

The paths C; 5 and Ci, ) must take the same child of v here because the
X-player has the same input in both cases.
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e v belongs to Y-player

The paths Cy,,y and Cf,,) must take the same child of v here because the
Y-player has the same input in both cases. We know that C, ) = Cy )

Note that while the statement of the lemma just mentions (x,y), by simple variable
renaming we have

(Cloy = Clyay) = (Clary = Clag) = Clyy = Cly)

6.3 The Equality Function

We will now use the Path Braiding Lemma to prove interesting (but perhaps not sur-
prising) things about the equality function. Intuitively, the equality function should
have high complexity because (in the worst case), every bit of both players input
must be compared.

In particular, we will compute the function f: {0,1}" — {0, 1} with

|1 ifx=y

Throughout the rest of this section, let P be any protocol for f.

Lemma 6.2 For every x, Cu ) in P must be distinct.

Proof: Assume not; that is dz,y with x # y, such that C, ., = C,,). By the Path
Braiding Lemma (Lemma 6.1), Cy 5y = Clg ). However, f(z,x) # f(z,y), so P must
give the wrong answer on one of those inputs. =<« n

Theorem 6.3 COMMUNICATION-COMPLEXITY(f) =n+1

Proof: There are 2" distinct paths of the form C(, . (see Lemma 6.2). Clearly,
at least one of them must have length n. However, if they all have length n, then



18 7 TIME-SPACE TRADEOFFS FOR PALINDROMES

there are only 2" leaves (which must then be all labeled 1). We know that f must
sometimes return 0, so there must be a path a length n + 1.

We know that COMMUNICATION_COMPLEXITY(f) = n + 1 because of the trivial
algorithm of X sending all her bits to Y, who then sends back the answer. [

Theorem 6.4 AVERAGE_COMPLEXITY(f){(zx)zcfo,1}»} > 1 —logn —c where ¢ is a
constant.

Proof: Let us consider how many strings (out of the 2" possibilities) have cost less
than n — logn. By looking at the size of a complete binary tree, we see that there
can be at most 2nlosntl — # such strings. Therefore, at least a ”T’Z fraction of
the strings contribute at least n — logn to the average. Let’s conservatively say that
all of those strings contribute n —logn to the average and that the rest contribute 0.

AVERAGE_COMPLEXITY (f) sy jac (o)) > —

n—2

(n —logn) =

n— (logn) —2>n —logn —2

In the proofs below, we're going to use a variant of the equality function:
1 ifx =9yt
' _

It should be obvious that this function has the same communication complexity
bounds shown above.

7 Time-Space Tradeoffs for Palindromes

We will now use all this communication complexity to prove some results about
computational complexity in our model. We will look at the time it takes to recognize
palindromes that have a “large” number of 0’s in the middle of the string.

Theorem 7.1 Let M be a multi-tape Turing machine running in time T(n) and
space S(n) on inputs of length m = 3n; rejecting {x0"y | |z| = |y| = n,z # y®} and
accepting {z0™y | |z| = |y| = n,z = y?}. Then,

COMMUNICATION-COMPLEXITY(f') = O (M)
n
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Proof: We are going to construct a protocol for computing f’ from the machine
M. Imagine the two players X and Y interactively simulating the machine M. X
simulates M until the read head gets to the Y portion of the string (past the Os in
the middle). At that point, X communicates to Y the current state and the contents
of the work tapes, O(S(n)) bits. The Y player then simulates M until the read head
crosses into the X portion of the input tape, at which point Y communicates the
current state and the contents of the work tape to X.

This continues until the machine halts, at which time whichever player has control of
the machine sends the 1 bit answer to the other player.

The only communication occurs when the simulation is handed between players. Each
hand off must take at least n time steps because the “sea” of 0s in the middle of the
input must be crossed. Therefore, there are at most O(7'(n)/n) communications of

O(S(n)). Therefore,

COMMUNICATION_COMPLEXITY(f') = O (M)

n
n
Corollary 7.2 T'(n) - S(n) = Q(n?)
Proof: From Theorem 6.3, we know that COMMUNICATION_COMPLEXITY(f') =
n + 1. Therefore,
T
1= (Z500)
n
T(n)-S(n) = Qn?)
n

8 Omne-Tape TM for Palindromes

Now we are going to try and apply the communication complexity results to the one
tape Turing machine model. This is a little more challenging because the machine is
allowed to write over symbols on the input.
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The proof this time will work by defining a set of protocols and using our bounds on
average communication complexity (Theorem 6.4) to get a bound on the time for the
Turing machine.

Note that I have switched the usage of n and m here from the lecture slides to be
consistent with the previous section. In general it doesn’t matter because they are
only a constant factor different.

Consider a one-tape TM M which recognizes palindromes in time 7'(m). We will

consider inputs of the form {z0"y | |z| = |y| = n}, where m = 3n. Pictorially
n n n
1 2 R n
| x [0Jofo] o Jo] o [o]o] y |

Let A; be the ith cell from the left in the 0-portion of the string.

Now we will define communication protocol P;. This is similar to the interactive
simulation used in the proof of Theorem 7.1. The X player simulates M while the
read head is to the left of A;. The Y player simulates M at A; and to the right of
it. When they hand off the simulation, they communicate O(1) bits (just the current
state of the machine).

Lemma 8.1 For all inputs x,

> COST4)P; = O(T(m))

=1

Proof: We’ll prove this by looking at the path of the read head during the com-
putation of the machine. COST ,yF; is a lower bound on the amount of time the
read head spends pointing to the symbol at A; (up to a multiplicative constant).
COST ;4 F; does not count cases where the read head comes from the right and then
returns to the right. The sum of the costs is therefore a lower bound on the time of
the machine. [

Theorem 8.2 For a one-tape Turing machine recognizing PALINDROMES, T'(n) =
Q(n?)
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Proof: By using Lemma 8.1 we get the following:

reX 1=1
3> COST o m Pr = 2"0(T(m))
1=1 zeX

If we have an upper bound on the sum of a group of elements, we know that at least
one of the elements must be at least as small as the average. Therefore, 37 such that:

» COST( P <270 <@> =2"0 <@>

zeX
D COSTal (T
27 - n
! T(n)
.. AVERAGE_COMPLEXITY(f) =0 | —=
n

We know from Theorem 6.4 that AVERAGE_COMPLEXITY(f') = Q(n). Therefore,
T(n) = Q(n?). ]

9 Lower Space Bound for Palindromes

In order to answer our third question, we will use the very useful technique of counting
the number of configurations a machine can have.

Theorem 9.1 A Turing machine M on input x of length n can have at most n-255(
configurations (where k is a constant).

Proof: Let consider how many bits are needed to describe a configuration. logn bits
are needed to indicate the read head position. O(S(n)) bits are needed to describe
what is on the work tapes. O(1) bits are needed to describe the state. The number
of configurations will be bounded by

9logn+0(S(n)) — 4, . 9O(S(n))
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Corollary 9.2 A recognizer using S(n) space does not use more that n - 285 time.

Theorem 9.3 No Turing machine recognizes PALINDROMES in o(logn) space.

Proof: Assume there was a machine M that recognizes PALINDROMES in o(logn)
space. By Corollary 9.2,

T(n) < n2kolosn) < nnt =n2

T(n)S(n) = n2o(logn) < n?

The last statement contradicts our space time tradeoff, Theorem 7.1. |

10 Robust Complexity Classes

Now it’s time to take a step back and understand what we have done. We proved
some very good and exact bounds on the computational complexity of recognizing
PALINDROMES. However, the results depend on the details of our machine model. In
particular, having two tapes is faster than 1. If we had random access to the tape,
we could use time n and space logn.

10.1 Some Robust Classes

For the rest of the course, we will focus on complexity results which are:

e Robust: if we make “reasonable” changes to the machine model the result still
holds.

e Capable of classifying interesting problems: Most people would consider PALIN-
DROMES a solved problem. We are interested in the difficulty of problems like
primality, graph isomorphism, VLSI layout, linear programming, and factoring.
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Here are some classes which seem to be robust:
L = SPACE(logn)
P = JTIME (n*)
k

PSPACE = |_J SPACE (n*)
k

EXP = | JTIME (2“)
k

There are a few obvious results:

e LCP

A logn space recognizer uses no more that n2*°6™ time (Corollary 9.2).

e P C PSPACE

An n* time machine is an n* space machine.

e PSPACE C EXP.

An n* space recognizer uses no more than n2°("*) time (Corollary 9.2).

e L #P VP #PSPACE
We know from the Space Hierarchy Theorem that L # PSPACE.

e P £ PSPACE Vv PSPACE # EXP
We know from the Time Hierarchy Theorem that P # EXP.

Further, here are some of the best known problems and the complexity classes to
which we know they belong:

e L: multiplication, many statistical tests, boolean formula evaluation
e P: linear programming, GCD, Gauss’s quadratic residue modp algorithm
e NP: SAT, factoring

e PSPACE: games
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10.2 Invariance Theses

Alonzo Church believed that than any effective mechanistic procedure can be simu-
lated on a Turing machine. This gives rise to several “Invariance Theses”

e Time: Any reasonable machine can be simulated by a Turing machine with only
a polynomial slow down.

e Space (for > logn): Any reasonable machine can be simulated by a Turing
machine using the same space.

e Time and Space: Any reasonable machine can be simulated by a Turing machine
using the same space and only a polynomial slow down.

Peter Shor (at FOCS 94) gave algorithms for a “Quantum Computer” which can not
(obviously) be efficiently simulated by a Turing machine! This is certainly a danger
to the invariance thesis, but a quantum computer is not yet a reasonable model of
computation. The invariance theses are scientifically falsifiable hypotheses. When a
new machine model comes around, the hierarchy of complexity classes will have to
be shuffled around.

If the invariance theses are true, then any space class larger than logn is robust and
any time class with bounds closed under multiplication is robust. In particular P is
the smallest robust time class containing TIME(n).

10.3 Lower Bounds

In the lower bounds presented here, we exploited a weakness in the machine model,
namely that it is difficult to get information from one side of the input tape to the
other. If we wanted to prove some lower bounds for robust classes, we have to exploit a
weakness in all the machine. Our intuition begins to fail us as we look for weaknesses
in all machines. That’s one of the things that seems to make complexity theory such
a challenging area.
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Lecture 3: Non-determinism, Completeness, Central 7s

Lecturer: Steven Rudich Scribe: Hakan Younes / Editor: Dominic Mazzoni

Synopsis: Non-determinism. Definition of non-deterministic Turing ma-
chines. Definition of non-deterministic time and space. NP, NL, and
co-classes. “P = NP?” and other central questions. Reducibility: Turing
reducible, Karp reducible, logspace reducible. Completeness and hard-
ness. The Cook-Levin theorem (SAT is NP-complete).

11 Non-determinism

So far we have dealt with deterministic processes. We will now see what happens if
we introduce non-determinism into our models.

11.1 Non-deterministic Turing Machines

Recall from the first lecture that a (deterministic) Turing machine M, formally de-
fined, is a 3-tuple (X,Q,d) where X is a finite alphabet of tape symbols, @ is the
control states, and ¢ is the transition function for M. The function 0 takes a config-
uration C; of M, and returns the configuration C;; following C;.

Instead of having a function, we can allow § to be a relation. In other words, for a
given configuration C;, § would return a set of configurations that are allowed to follow
C;. It is not specified which path is taken by the machine, but rather we say that
the configuration following C}; is chosen non-deterministically from the elements in
d(C;). Hence, we name this beast a non-deterministic Turing machine (NTM).

A computation path in an NTM is a sequence Cy, C, ... ,Cy such that C;; € 6(C;).
A configuration C; is reachable if there exists a computation path from the start
configuration Cj to C;. The non-deterministic computation of an NTM on a given
input x is a directed graph with vertices representing the reachable configurations,
and with an edge from C; to C; whenever C; € 6(C;).

25
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Definition 11.1 An NTM M accepts input x in time ¢ if there is a computation
path of length less than or equal to t from the start configuration Cy to an accepting
configuration.

Definition 11.2 An NTM M accepts a set S if for every x € S, M accepts x, and
for every x & S, M does not accept x.

A non-deterministic computation is often thought of as a tree (Figure 5), where each
node represents a configuration, and branches indicate non-deterministic choices.

| O
/ \
AN A

® )

N
g\

Figure 5: A non-deterministic computation, viewed as a tree.

TIME

11.2 Time and Space

We can now define a few more time and space classes. As before, f(n) is a function
from N to N.

Definition 11.3 A € NTIME(f(n)) if there is an NTM M accepting A such that on
input x, the computation of M contains no path longer than f(|z|).

Definition 11.4 A € NSPACE(f(n)) if there is an NTM M accepting A such that
on input x, no configuration in the computation of M uses more than f(|z|) cells of
its work tapes.

We can program an NTM to solve satisfiability of boolean formulas (SAT) as follows:
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1. Guess an assignment to the variables.
2. Substitute the guessed assignment into the input formula and evaluate it.

3. If the formula evaluates to true on the guessed assignment, accept; otherwise
reject.

If the number of variables in a formula ¢ is n, it requires O(n) steps to guess a
value for all the variables. The substitution of the variables with the guessed values,
and the subsequent evaluation of the formula can be performed in O(|¢|) steps. The
computation will consist of 2" paths, all with length O(|¢|) (really O(|@| + n), but
the number of variables cannot exceed the length of the formula). Thus, according
to our previous definition (and the equivalent of the linear speedup theorem for non-
deterministic machines), SAT € NTIME(n).

11.2.1 Non-deterministic Polynomial Time (NP)

We now define the complexity class NP as follows:

NP = | JNTIME(n*)
k

Since we proved SAT is in NTIME(n), clearly SAT is in NP. Other problems also in NP
are, for example, determining whether two graphs are isomorphic, and determining
whether a graph is 3-colorable.

We can define a path simulator Turing machine S, which takes as input an NTM
M, an input vector z, and a path P, and returns the configuration C' that M would
reach by following path P. P is specified as a sequence of numbers, with each number
bounded by the max fan-out of the relation §. The path simulator can work with no
time overhead, or no space overhead.

Without loss of generality, we can simulate any NTM M as follows:

1. Guess a path P.
2. Run S(M,z, P).

There is only a constant factor loss in time.

Instead of thinking about paths, an alternative way of thinking about NP is that
we first guess a solution and then verify it. If A is in NP, and we want to know if
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x € Ais true, we can guess a “proof” of the statement, and then verify the proof. The
verification must be efficient (it must run in polynomial time). We can therefore think
of NP as the class of problems for which a solution can be verified in polynomial
time, while for problems in P a solution can be generated in polynomial time. We
will return to this issue later.

By using the path simulator S, we can show that NP C PSPACE. Simply loop through
all the paths and run S on each path. We are simply doing depth first search on the
computation tree of the NTM. This requires space proportional to the length of the
longest path, but this is the running time of the NTM which is polynomial in the size
of the input. Thus, the depth first search can be done in PSPACE.

11.3 Non-deterministic Logarithmic Space (NL)

Non-deterministic logarithmic space NL is defined as NSPACE(logn). A set is in NL
if it can be recognized by an NTM using only O(logn) work tape cells.

Any directed graph G = (V, E) can be represented as a list of node pairs, with each
pair (vy,vs) representing a directed edge from vy to vy. STCONN is the set of all
directed graphs in which there is a directed path from node s to node t. We can
recognize STCONN using the following algorithm:

Read input to count the number of edges, and let n be this number
current_node <— s
counter < (0
repeat until (counter = n OR current_node = t)
Read an edge (v1,vq) from the input
if v = current,ode then
choose non-deterministically
current_node < vy
counter <— counter + 1

or
do nothing
if current_node = t then
ACCEPT
else
REJECT

Note that in the algorithm above, we implicitly assume that the NTM skips back
to the beginning of its input if it gets to the end and hasn’t exited the loop yet.
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Anyway, an NTM can be programmed to run the algorithm. It is clear that it only
uses logarithmic space, since all we need to keep on the work tapes at each time step
is a counter and a node name. This means that STCONN is in NL.

A computation for a non-deterministic NTM, using only O(logn) space, is a directed
graph of size O(n). We can determine if there is a path from the start configuration
Cy to an accepting configuration Cpq in polynomial time. Thus, we have NL C P.

11.4 Co-classes

If we can recognize the complement A of a set A in NTIME(f(n)), then we say that
A'is in coNTIME(f(n)). In particular, if A is in NP (NL), then A is in coNP (coNL).
The set of satisfiable logical formulas (SAT) is in NP, so we have that the set of
unsatisfiable logical formulas (UNSAT) is in coNP. Another member of coNP is the
set of prime numbers (PRIMES). A member of coNL is of course the set of graphs such
that there is no directed path from a given node s to another node ¢. Is NP = coNP,
or NL = coNL? The former is still an open question, while the answer to the latter
will be given in a later lecture.

We can also ask if there are any sets in known to be in NP N coNP. As we mentioned
above, PRIMES is in coNP. In homework 2, we showed that PRIMES is also in NP,
so there we have one member of NP N coNP.

12 Central Questions

Clearly, all sets recognizable in deterministic polynomial time are recognizable in non-
deterministic polynomial time. Consequently, P C NP. We might then ask ourselves
if there are more sets in NP than in P. Does the non-determinism buy us anything
substantial, or can an NTM be simulated by a deterministic TM with only polynomial
slowdown? This is the question “P = NP?” that has haunted theoreticians for several
decades (at least since 1971, but Kurt Gédel had already posed the question in 1956
in a letter to von Neumann). Although the problem is still open, there are strong
reasons to believe that the answer is “No!”.
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Table 1: Examples of recognition tasks and generation tasks.

Recognition Generation
Audience Composer
Appreciating jokes Being a comedian

Verifying that p and ¢ are factors of pg Factoring pq
Understanding a mathematical argument | Being a research mathematician

12.1 Recognition vs. Generation

We mentioned above that P can be seen as the complexity class with members that
can be generated in polynomial time, while NP contains sets for which membership
can be verified (recognized) in polynomial time. If P = NP, then generation would
be just as easy as recognition. Table 12.1 gives examples of recognition tasks and
generation tasks.

Remember that SAT is in NP. It is easy to verify if a given variable assignment
satisfies a formula ¢, but it seems harder to come up with a satisfying assignment only
given ¢. If P = NP, we would be able to find a satisfying assignment in polynomial
time. In general, given a relation R(z,y) computable in polynomial time, and given
an z and a y, we can verify these values indeed make R(x,y) true. Suppose now that
P = NP. Then we can generate an z and a y that satisfy R(x,y) (use self reducibility
as in homework problem 1.1).

We could let R be the relation between a formula F' in first order logic, and a proof
that the F' is true. With P = NP, we could generate, not only a proof, but the
shortest proof for F' in time polynomial in the length of the proof. This means
you could solve all mathematical problems in time polynomial in the length of the
answer! This would of course leave all mathematicians without work, but P = NP has
far wider consequences. It is, for example, easy to verify if a design for a cold fusion
reactor works. Well, then use the same technique as before to generate a design for
a cold fusion reactor. But why stop there? A society with access to this wonderful
algorithm could produce optimal airplanes, bridges, buildings, rockets, etc. All of this
sounds just incredible, and perhaps that is why a majority of theoreticians believe P
just cannot be equal to NP.
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Table 2: Relations between complexity classes and concepts.

Complexity Classes Concepts Example

P =NP? Recognition vs. Generation | SAT € P?

NP = coNP? Existential vs. Universal TAUTOLOGY € NP?
P=L? Sequential vs. Parallel CVAL € L?

L = NL? Recognition vs. Generation | STCONN € L?

P = NP N coNP? Computation vs. Proof FACTORING € FP?

P = PSPACE? Time vs. Space n xn GO € P?

EXP = NEXP? Recognition vs. Generation | n x n TILING € EXP?

12.2 Questions Related to Other Complexity Classes

We have just argued that the question “P = NP?” can be related to the question
“Is there a qualitative difference between the ability to recognize and the ability to
generate?”. Similar questions can be related to other complexity classes. Table 12.2
summarizes this. Figure 6 shows the world picture we have constructed so far, as-
suming none of the complexity classes are the same. If the answer is “yes” to any of
the questions in Table 12.2, we would have to revise the world picture accordingly.

13 Reducibility

An important concept in complexity theory is reducibility. We often want to convert
recognition of a set A into recognition of a set B. If we know something about the
complexity of recognizing elements in A, this will give us information about the
complexity of recognizing elements in B. There are different flavors of reducibility:

Definition 13.1 A set A is Cook (Turing) reducible to B (A <r B) if there
exists a polynomial time oracle M such that MPB decides A.

Definition 13.2 A set A is Karp (Levin, or Many-One) reducible to B (A <,
B) if there exists a function f € FP such that x € A if and only if f(x) € B.

Definition 13.3 A set A is logspace reducible to B (A <, B) if there exists a
function f € FSPACE(logn) such that x € A if and only if f(x) € B.

The reducibility relations are transitive. Furthermore, logspace reducibility is the
strongest—i.e. A<, B — A<, B = A<y B.
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PSPACE

N

Figure 6: The world picture so far.

Knowing A <r B already tells us that if we can solve B, then we can solve A. Why
bother making sure the reduction can be performed in logspace? The less resources
needed for the reduction, the closer is the relation between A and B. For example,
UNSAT <7 SAT because we can have a Turing machine M that simply negates the
result of a machine recognizing SAT. If, however, UNSAT <,, SAT then NP equals
coNP. Whenever possible (which is almost always), logspace reductions are used.

14 Completeness

Definition 14.1 A set A is NP-hard with respect to logspace reductions if for every
B e NP, B <, A.
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Definition 14.2 A set A is NP-complete with respect to logspace reductions if A
is NP-hard, and A € NP.

Completeness is about expressiveness. An NP-complete set can, in some sense, express
any other set in NP. If we can find an NP-complete set A, and we can show A € P,
then we know P = NP. We can substitute any other complexity class in place of
NP in the definitions above. Thus we can talk about EXP-hard, or PSPACE-complete
sets.

Theorem 14.1 (Cook-Levin) SAT is NP-complete with respect to logspace reduc-
tions.

Proof: We know from before that SAT is in NP. Now, let A be an arbitrary set in
NP. We must show that a logspace f exists such that r € A <= f(z) € SAT.

Let M be an NTM recognizing A running in time n*. For a given input x, x € A if
and only if there exists an |z|* x |x|¥ tableau for M (x) such that:

1. OO = Gstart™

2. C; Eit Cit1 for every step of the computation.

3. Qaccept appears in the tableau.

We will build a formula ¢() that will verify a tableau. The input to ¢ is a bit vector
t, with bits #; ;, that are 1 if and only if the symbol s is written on cell (i,j) of the
tableau. The formula gb(f) will be a conjunction of four different parts, each verifying
a specific aspect of the tableau:

° gbsynmx(f), which is true if and only if there is exactly one symbol in each cell:

¢syntam(£> = /\ (\/ ti,j,s) A /\ (_‘ti,j,s \% _'ti,jzsl)
s

i,J 0,575’
The first part verifies that every cell has at least one symbol, and the second
part that no cell has more than two symbols.

° qﬁmit(f), which is true if and only if g¢yq-x is written on the first line of the
tableau:

Ginit (1) = 11,1 Gogars N T1200 A - Attt zn A tmaa O N -
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° qﬁloml(f), which is true if and only if all 2 x 3 regions in the tableau are consistent
with the transition relation §:

d)local (E) - /\ A(T)

reR

Here, R is the set of all 2 x 3 regions, and A is a function that checks consistency
for such regions. For example, A would be true for the region -5—+24%1if and

q c| b
only if (b,¢' <) € 6(a, q).

° qﬁaccept(f), which is true if and only if guecepr OCcurs in the tableau:

¢accept (ﬂ = \/ ti:ja‘]accept

i7j

As defined, ¢(f) is in conjunctive normal form and has size polynomial in |z|. We
can construct ¢(f) in logspace. Furthermore, there is a one to one correspondence
between accepting paths in M (z) and satisfying assignments to qﬁ(f) Thus, every set
A € NP can be reduced to SAT. [

15 Open Questions

We have introduced non-determinism, and the complexity class NP. We have shown
that a number of natural mathematical problems, such SAT and PRIMES, reside in
NP. In the previous section, we proved that SAT not only is in NP, but that it is
NP-hard. PRIMES, on the other hand, is not. The fact that there exist efficient
randomized algorithms for determining primality of a number suggests that PRIMES
might be in P. This is possible without having P = NP. Other open questions
are if factoring can be done in polynomial time, and if graph isomorphism can be
determined in polynomial time. Although many cryptographic schemes would break
if factoring could be done in polynomial time, the hierarchy of complexity classes that
we have built up so far could still be valid since we do not know that factoring is
NP-complete.
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Synopsis: In this lecture, we are going to continue building our world
picture of complexity classes. In particular, we are going to consider the
computation power of different nondeterministic space classes such as NL.
We will also prove Savitch’s Theorem NSPACE(s(n)) C SPACE(s*(n)) and
the Immerman-Szelepscényi Theorem NSPACE(s(n)) = coNSPACE(s(n)).

16 Recap

Remember that last time we started building our world picture of complexity classes.
We are interested to know about, for example, NP ~ coNP and P = L.

We also defined the notion of log-space reducibility <;. For two languages A, B € ¥*,
we say A <, B iff there exists a log-space reduction function f: A — B such that
r € A < f(x) € B. With the notion of reducibility, we were able to give definitions
to hardness and completeness. We say A is A-hard w.r.t. <, if VB e A, B <, A. We
say A is A-complete if A is A-hard and also A € A.

Of the many complete problems in different complexity classes, here are some exam-
ples that we will see in this course. CVAL is P-complete as we see in homework 2.1b.
The problem of s-t connectivity will be shown to be NL-complete in this lecture. As
we all know, SAT is NP-complete. Finally we will show QSAT is PSPACE-complete.

17 NL

17.1 In the beginning, there is s-t connectivity ...

The problem of s-t connectivity (STCONN) can be stated as follows: given a directed
graph G = (V| E) and two nodes s,t € V, is there a path going from s to t? It

35
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turns out that STCONN is a very important problem because, as we will see, it’s
NL-complete in a very natural way.

In 1970, Savitch showed that STCONN is in SPACE(log” n), which immediately im-
plies that PSPACE= NPSPACE. This shows that the effect of using nondeterminism in

space classes is not as dramatic as what we believe for time classes as in the P Z NP
question.

A real surprise came in the late 1980’s when Immerman (1988) and Szelepscényi
(1987), each working independently, discovered that s-t non-connectivity is also in
NL, thus NL= coNL. That concludes that nondeterminism and co-nondeterminism
are equally powerful in space classes. On the other hand, the relationship between

nondeterminism and co-nondeterminism for time classes remains open as in the NP =
coNP question.

17.2 s-t connectivity is NL-complete

Theorem 17.1 STCoONN € NL

The intuition behind this proof is to do a “drunk-pub-crawling”—we first get drunk,
and then start walking from pub s on the street. If we ever arrive at pub ¢ before we
get rolled over by a car driven by another drunk fellow, then we know there is an s-t
path ...

Proof: First read the input graph G = (V, E) and nodes s and ¢t. Let n = |E|. We
start with node s and repeatedly guess the next node among the reachable nodes
from the current node and update the current node. We will continue doing this until
either we arrive at node ¢, or we have already guessed n times. If we arrive at node
t, then we accept. Otherwise reject.

Observe that the counter can be kept with a log n-bit counter and we can find out the
reachable nodes of a given node by simply reading through F once each time. Thus,
STCoONN € NL. ]

Theorem 17.2 STCONN s NL-complete

Proof: Since we already have theorem 17.1, all we need to prove is that for any
A e NL, A<, STCONN.
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For any A € NL, let M4 be the NL machine for A using S(n) = O(logn) space.
WLOG, we assume M, hs exaclty one accepting configuration Cyecept-

Let’s count the number of possible configurations of M. Let the number of states
that M, has be (), which is a constant. Then there are n input head positions
and 200°8™) = ((n) work-tape contents. So there are only @ x n x O(n) = O(n?)
configurations.

Observe that we only need a O(logn) space counter in base-4 to count up to O(n?).
So here is an algorithm that can generate the configuration graph of My:
MAKE-CONFIGURATION-GRAPH(M 4, x)

1 n < length[z]

2 V10

3 E<+ 0

4 for i+ 1 to n?

5 do V<« VuUC(;

6 for j < 1 to n?
7 do V «+ VuU(;
8 if Cz —1 Cj
9 then £ + E U <Cl, C]>
10 s+« C()
1T ¢+« Oaccept
12 return ((V,E), s,t)

The correctness of this algorithm follows immediate by observing that we have enu-
merated all possible pairs of configuration. Thus, if M4 () accepts, there must be a
path from s to ¢, which means 2 € A <= MAKE-CONFIGURATION-GRAPH(M 4, z) €
STCONN. n

The technique of producing the entire computaion graph of M, using little space,
generalizes to arbitrary M.

Lemma 17.3 Let M be a nondeterministic machine using space f(n) > logn. There

is a deterministic space f(n) machine H that given x outputs the entire configuration
graph of M (zx).
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17.3 Savitch’s Theorem

Theorem 17.4 STCONN € SPACE(log” n)

Before we prove this theorem, we will first define a very useful notion that we will
be using again in the course. We say, with respect to a graph G, that the predicate
PATH(x, v, ) holds if there is a path from x to y in G of length at most 2¢,

Proof: Obviously, if we are able to compute PATH(s, t, [logn]), then we can decide
STCONN. The trick is to re-use space smartly. Consider the following algorithm
(with G declared implicitly):
PATH(z,y, 1)
1 ifi=0
2 then if (z,y) € E
then return TRUE
else return FALSE
else z € Vif PATH(z,z2,i — 1) and PATH(z,y,i — 1)
then return TRUE
else return FALSE

~N O Ot = W

To see that this algorithm only takes O(log? n) space, we specifically lay out how to im-
plement the recursion stack here: whenever PATH(a, b, 1) is called, we place the activa-
tion record (a, b, ) on work-tape stack. When the call returns with a value, we remove
the triple from the stack and use the returned value to resume work on PATH(a, ¥V, ')
where (a',b',1") is now at the top of stack. Observe that PATH(s, ¢, [logn]) never has
more than [logn]| activation record on the stack, and each activation record is just
O(logn) bits long. Thus, the total space required is O(log” n).

The correctness of this algorithm follows immediate from the fact that if node y is
reachalbe from node z in at most 2 steps, then there must be another node z that is
reachable from z in at most 2°~! steps and at the same time can reach y in at most
2i=1 steps from z. n

17.4 Immerman-Szelepscényi Theorem

Theorem 17.5 ST-NON-CONN € NL
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The technique that we will use in this proof may be called “iterate count accounting”.
First we define R(i) to be the number of nodes reachable from node s in at most i
steps, then we show how to compute R(7) from R(i — 1). Note that computing R(%)
only depends on R(i — 1) and nothing before, thus we can compute R(n) iteratively,

starting from R(0). This allows us to re-use space efficiently.

Proof: Here is an algorithm that computes R(i) using the value of R(i — 1). Note
that we iterate on ¢ in the main function and use the value of R(i — 1) as an input
in the helper function. We adopt the convention that if a function returns NIL that

means the function crashes (never returns).
CoMPUTE-R-HELPER(G, i, R;_)

C
1
2
3
4
5
6
7

After showing how we can compute R(n), we have a simple algorithm to compute

(V,E) + G
Veount — 0
v € Vg < FALSE
Ucount — 0
u € Vif guess u is reachable in at most 7 — 1 steps
then if guess path of at most ¢ — 1 steps from s to u
then Ucount — Ucount + 1
ifu=voru—;v
then Vflag = TRUE
else return NIL
if Ri—l 7A Ucount
then return NIL
if Uflag
then Ucount = Vcount 1 1
return v.oun:

OMPUTE-R(G, i)

(V,E) + G

n <+ |V|

Rprey <1

fori+1ton

do R <— COMPUTE-R-HELPER(G, i, Ryrev)
Rprev — R

return R

whether node ¢ is unreachable:
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T-UNREACHABLILTY(G, s, t)

(V,E) G

n <+ |V|

V' V\{t}

if Rv(n) = er(n — 1)
then return FALSE
else return TRUE

SO W N

The correctness of this algorithm can easily be established if we can prove that
CoMPUTE-R-HELPER indeed computes R(i) from the value of R(i — 1). To ana-
lyze COMPUTE-R-HELPER, let’s focus on the return value, namely v.oun:. We can
see that vy 1S incremented only when ey, contains the value R(i — 1) (line 13)
and vy, is set (line 15).

We observe that the value of R(i — 1) by definition is the number of nodes reachable
from s in at most i — 1 steps. By the guards in lines 7 and 8, ucoyn: Will only get
incremented when we find a path from s to any node u in at most ¢ — 1 steps. By the
virtue of nondeterminism, this will imply that at some computation path w.yu,; will
indeed contain the value of R(i — 1). (The guard at line 13 is to make sure we kill
the other “branches”. Recall what it means by a nondeterministic TM to compute a
function.)

It should be obvious that vy, will only be set when ucyun; is incremented, which
means u is reachable from s in at most ¢ — 1 steps, and when either u = v or v is
reachable from u in exactly one step. Either way, that means v is reachable from s
in at most i steps. Thus, veun: indeed contains the value of R(i).

The space requirement of this algorithm is clearly O(logn) because all we need to
keep is a couple of counters around while each of them are bounded by n. [

17.5 Deterministic vs. Nondeterministic Space Classes

By Savitch’s Theorem, we know STCONN € SPACE(log?n) and a straight-forward
corollary follows:

Corollary 17.6 NSPACE(logn) C SPACE(log® n)

Furthermore, we have a similar corollary for any function f(n) greater than logn:
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Corollary 17.7 NSPACE(f(n)) C SPACE(f?(n))

Proof: Let M be a NTM accepting A € NSPACE(f(n)). There exists a SPACE(f(|z]))
DTM H such that H(x) is the configuration graph of M (z) with Cy and Cycepr marked
and |H ()| = ¢/0) for some constant c. Let G be the log” n space STCONN machine.
G(H(z)) accepts A in log?(c/(?0) = O(f?(|z|)) space. ]

Also, by the Immerman-Szelepscényi Theorem, we know that ST-NON-CONN € NL
and a corollary simply follows:

Corollary 17.8 NL = coNL

Another corollary whose proof is similar to corollary 17.7 is (also only for functions
bigger than logn):

Corollary 17.9 NSPACE(f(n)) = coNSPACE(f(n))

18 PSPACE

TQBF (or QSAT) is a variant of SAT. Formally, we define
TQBF := {A | A is a True Quantified Boolean Formula}.

A QBF is a formula of the form Jz,Vzodzs - - - Qna, ¢(x1, T2, T3, ... , x,) where z;’s
are boolean variables, ¢ is a CNF formula on z;’s and @), is V if n is even and 3 if n
is odd.

The main result in this section is that QSAT is actually PSPACE-complete.

18.1 QSat is PSPACE-complete

Theorem 18.1 QSAT € PSPACE

Proof: Given input z, observe that we can easily check if the input is of the right
format with a log |z| bit counter and reject if the format is not right. From now on,
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let © be Q1x1Q2xs - -+ Qnrnd(x1,xs,... ,x,). Here is an algorithm to check if z is
true:

CHECK(QleQZxZ e anngb(xla Loy 7:Un))

1 ifn=0

2 then return ¢(xy, %2, ..., Tn)|e) 20, an

3 else if )1 =3

4 then return CHECK(Qax2 - - Qnrnd (T, 3, ..., Tp) |z =0)

5 or CHECK(QaTy * - * Qnnd(T2, T3, ... , Tp)|zy=1)

6 else return CHECK(Q2%s -+ QnTn@(xo, 3, ... ,Tp)|z,=0)

7 and CHECK(Q2%s - - - QnTn (T, T3, ..., Tp)|z,=1)

Let S(n) be the space used by CHECK(Q1x1Q2%s - - - Qnx,0). We observe that re-
currence relation is S(n) = O(1) + S(n — 1) and S(0) = logn. Solving it we get
S(n) = O(n). Thus, CHECK can be done in linear space. ]

Theorem 18.2 QSAT is PSPACE-complete

Before we prove this theorem, here is an observation. Let M be a PSPACE machine.
M (x) accepts iff there exists a valid tableau of dimension |z|¥ x ¢/ which is clearly
too big if we have to use a variable for the content of each cell. Thus, the Cook-Levin
proof can’t be adapted for QSAT.

We will instead try to encode Savitch’s space-efficient recursion as a short QBF. In
paritcular, we will re-use the PATH(a, b, {) notation again to mean that configuration
b is reachable from configuration a in 2¢ steps. Clearly, our aim here is to check
PATH(Cy, Cyeeept, n*) for n being the length of the input.

A quick yet flawed attempt would be the encode PATH(a,b,0) = 1 iff @ —; b and
PaTH(a, b, i) = 32(PATH(a, 2,7 — 1) APATH(%,b,i— 1)). The problem is our formula’s
length will get doubled every time i goes down by 1, thus creating an exponential
length formula in the end.

Proof sketch: It should be easy to verify that PATH(a, b, 7) can be encoded as

VaVyl((z =aANy=2)V(r=2Ay=10>)) = PATH(x,y,i— 1)].

Let’s check the length of the formula. Denote |PATH(a,b,7)| as L(i), we see that
L(i) = O(n)+L(i—1) and L(1) = O(n). Solving this recurrence, we get L(n) = O(n?).
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Here are a sketch on how to get the resulted formula into QBF': first we can move all
the quantifiers into the front of the formula by transforming it into prenex normal

form to get Q1x1Q2xs - - - Qnry[d(z1, xo,... ,x,)]. Then we can transform the for-
maula further by transforming ¢(z1,x9,... ,2,) to &' (x1,Ta, ..., Ty Y1, Y25 - -+ s Ym)
as in SAT <; 3SAT. Finally, we can make sure the quantifiers alternate and start
with a 4 by adding dummy variables. [

The reader is referred to Papadimitriou page 456 for a very detailed proof on how to
massage the formula into the right form and the variable accounting.

18.2 Games

It turns out that there is an interesting way to think of QSAT: for any QBF formula
1, we can think of it as a game between the 3 player (E) and the V player (F). We
can see that E wins the game if there exists a choice x; for E, such that for all choices
xo for F, such that there exists a choice x5 for E, such that ... that ¢(xy, 29, ..., z,)
is true. Thus, E has a winning strategy iff ¢y € QSAT.

We may define the notion of a “reasonable” game in a PSPACE flavor:

e if n is the nubmer of bits required to describe the state of the game, such as the
board configuration, then the maximum number of moves a game could take is
bounded by a polynomial in n, assuming at least one of the players is playing
optimally.

e when any player gets a winning position, the first player can prove this fact
with a proof of length at most polynomial in n.

If we consider any resaonable full-information game, we can use 37¢(Z, 7/) to denote
that Z is a win for the first player. Then, Jz,Vxs - - - Qrx,x YO (Z, §) is in QSAT iff
the first player has a win. Using the QSAT oracle, we can say that P®5T can play
any “reasonable” full-information game optimally.

Fact 1 Nothing less than a PSPACE-complete set could be universal for a two-player,
full-information game.

Here we give an example of a simple PSPACE-complete two-person game called Ge-
ography. We assume that there is a n word dictionary accessible to both players and
there is a designated starting word. The rules of the game are:
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e player one starts and says the designated starting word

players alternate and must use a word that begins with the last letter of the
previous word

e no word can be repeated

the player who gets stuck loses

An example game using real-life geographic words maybe: Athens, San Francisco,
Ohio, Oakland ...
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To see that Geography is PSPACE-complete, we observe that it can easily be used
to express a QSAT formula by encoding special “words” into the dictionary as the
following figure shows:

Figure 7: Geography of 3x,Vay3xs[(—zy V —2a) A (29 V 23) A (22 V —23))]
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Furthermore, Geography is not the only real-life game that can be generalized into
PSPACE-complete. In fact, the generalization of many real-life games like n x n Go
and n x n Checkers are actually PSPACE-complete. (For Chess, it’s a little bit un-
natural to generalize into n x n.) Thus, if SAT is the patron saint of mathematicians,
then QSAT is the patron saint of game players. And if NP # PSPACE, as what we
expect, then it would mean that there is no short way to describe an optimal strategy
for every given game. However, we should also note that there are short interactive
proofs that has the power of PSPACE, as we will see later in the course.

There are other extensions of games too. For example, solitare games like getting a
piece of furniture through a twisting hallway can be PSPACE-complete. (Maverick:
Sokoban is a fun puzzle game that is also PSPACE-complete.) Games against random
opponents like stochastic SAT can be PSPACE-complete. While PSPACE-complete
sounds so good for a lot of games, a three person gams with randomness and hidden
information (like some generalized poker game) can be as difficult as NEXP-complete.
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19 State of Affairs

By now, we have proved that NSPACE(f(n)) ¢ SPACE(f?*(n)) and NSPACE(f(n)) =
coNSPACE(f(n)). Whether L = NL is an open and interesting open question. In
this lecture, we study PSPACE further by introducing the polynomial hierarchy.

20 Oracles

Much like an algorithm invoking another, generally "simpler”, algorithm to solve a
problem, we can imagine a Turing Machine invoking another Turing Machine. This
worths studying because it enables us to study the problems that can be solved given
a solution to some other problem.

Formally, we define a Turing Machine with an oracle or an Oracle Turing Machine
(OTM), M" as a multi tape deterministic Turing Machine that has a special tape
called query tape and three states ¢, gyes, and ¢y, that are called the answer states.
Any language can be plugged in for '7’.

Let A be a language, then a computation of an Oracle Turing Machine with an oracle
A proceeds like a Turing Machine, except for the transitions involving the states where
the oracle is queried. The Oracle Turing Machine is in ¢, state whenever it queries
the oracle with a question of the form ”is y € A”, where y is on the query tape with
the head pointing to the beginning of the query. The Oracle Turing Machine then
MOoves t0 Qyes OF ¢no if y € A or y ¢ A respectively. We denote the computation of
M" with oracle A on input x as M“*(z). A nondeterministic Turing Machine with an
oracle can be defined similarly.

47
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We define the time complexity of an Oracle Turing Machine as the time complexity
of the Turing Machine M’ corresponding to the Oracle Turing Machine. In M?,
an oracle query takes one step. We further define complexity classes with oracles
based on this notion of time complexity. Let C' be a complexity class then C# is the
complexity class of languages that are decided (accepted) by a Turing Machine with
oracle A that has the same sort and time bound as in C.

Example:
PA = {L | Thereexists an OTM M* that decides L in polynomial time.}
Example:
NP*={L | Thereexistsan OTM M* that decides

L in nondeterministic polynomial time}.

We can further apply a complexity class as an oracle. In this case, a language in the
oracle complexity class can be used as an oracle throughout a computation.

Example:
PYP = [ | 3A € NPandthereis adeterministic, polynomial — time
Turing Machine with oracle A that decides L.}
Example:
NP2 = {L | 3FA € Aandthereexists a nondeterministic, polynomial — time

Turing Machine that decides L.}

Example:P5AT = PNP Indeed, PSAT C PNP we simply choose, SAT as the oracle
language. To show that PN C P47 e observe that every A € NP can be reduced
to SAT in logarithmic space, and thus, in polynomial time.

Here are a few more examples with oracles.
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Figure 8: A Turing Machine for finding an X satisfying VY ®(X,Y).

Example:Is P47 = NPQSAT? The answer is yes. First note that QSAT is
PSPACE complete. Hence PSPACE C PP°AT and trivially, P954T C NPQSAT,
Furthermore, NP?54T C NPSPACE. Finally, by Savitch’s theorem NPSPACE C
PSPACE. Thus we have, PSPACE C PQ%AT C NPYSAT C PSPACE, and hence,
PRSAT = NPQSAT — PSP ACE.

Example:Is PSAT = NPSAT? If P = NP then these two classes are equal. Other-
wise, we believe that it is highly unlikely that these two a classes are equal. As an
example, consider a problem of the form “Is there an x such that VY ®(X,Y")?” This
problem can be solved by an OTM with a SAT oracle , M547 as shown in Figure 8.
The machine M guesses an assignment for X, X, and then asks its oracle whether
- (X, Y) is satisfiable for some Y. If the oracle says “yes” then M does not accept,
otherwise, it accepts. As we will see later in the lecture, this problem is unlikely to
be in P5AT,

21 The Polynomial Hierarchy

The polynomial hierarchy is the sequence of classes A;, ¥;, II; such that, Ay = ¥ =
Il = P and A; = P¥-1 %, = NP¥-1 and A; = coNP*~'. We define the polyno-
mial hierarchy as the class PH such that PH = J,5,%;.

The first level of the hierarchy is the familiar, P, N P,coN P classes. The second level
is the PP NPNP and its complement coNPNP. There are important problems
such as the minimum circuit problem in the second level. Figure 9 depicts the first
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Figure 9: The first three levels of the polynomial hierarchy.

three levels of the polynomial hierarchy.

21.1 Polynomially-balanced Relations

A language L € NP can be described in terms of a relation R as follows: L =
{z | 3y R(x,y)}, where |y| is polynomial in x and R is polynomial-time checkable
relation. We call y a certificate for z. Indeed, if a language has this form, then
a nondeterministic Turing Machine can guess y and verify it in polynomial time.
Similarly, if a language is in NP, then the tableau of the accepting path of the
computation on input z is a certificate for x. Similarly, a language L is in coN P if and
only if there is a polynomial-time checkable relation R such that L = {x |Yy R(z,y)},
where |y| is polynomial in |z|. Indeed, for such an L, the complement of L, L¢ =
{z|3y—R(x,y)}. Since R is polynomial checkable, =R is as well. Thus, L¢ € NP and
therefore, L is in coN P. To prove the sufficiency part, observe that the complement
of L ={x| 3y R(x,y)} have the appropriate form.

A polynomial-time checkable relation R(x,y1,y2, ..., Yn), where the length of yy, ..., y,
are polynomially bounded by the length of x is called a polynomially balanced relation.
Earlier, we expressed NP and coN P in terms of polynomially balanced relations. In
the rest of our discussion, all the relations that we mention are polynomially balanced;
we will state otherwise. The following theorem demonstrates that every class in
polynomial hierarchy can be represented with polynomially balanced relations along
with a list of alternating quantifiers.

Theorem 21.1 A language L is in Y; if and only if there is a polynomially balanced
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Figure 10: A Turing Machine for the MINIMUM_CIRCUIT problem.

relation R such that
L = {z |3V VY23Y;5...Q;Y; R(z,Y7,...,Y;)},

where Q; 1s a ¥V if 1 is even and an 3 otherwise.

As a corollary observe that a language in II; = coX¥; can be expressed as
L= {o|Wi3ViVY5.QY; Rz, Vi, ... Yi)}.

For example the MINIMUM _CIRCUIT problem which is in II; has the following
form:

{c |V 3z c(x) # ¢ (x)}.

The MINIMUM _CIRCUIT problem can be stated as follows: Given a boolean
circuit C', is it true that there is no circuit with smaller gates that gives the same result
as C on every input (i.e., is C' minimal)? The MINIMUM _CIRCUIT problem is
in I, if one can generate all smaller circuits and verify that each such smaller circuit
computes a different function. This can be done by nondeterministically creating all
smaller circuits and asking whether C'(X') # C'(X) for all such circuits. It is currently
not known whether MINIMUM _CIRCUIT is Il; complete or not.

Polynomial hierarchy captures the expressibility of a problem in logic. For example,
consider the UNIQUE_OPTIMAL_TSP problem. The language UNIQUE_OPTIMAL_TSP
contains all graphs that have a unique optimal tour. The UNIQUE_OPTIMAL_TSP

language can be expressed as follows:

AT VT [tour(T) Ntour(TYN (T £ T") = |T'| > |T],
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Figure 11: The computation on x with Oracle Turing Machine.

where |z| denoted the length of a tour and tour(z) evaluates to true if and only if
is a tour. This expression of UNIQUE_OPTIMAL_TSP tells us that it is in X,.
Now, consider an alternative way to express UNIQUE_OPTIMAL_TSP:

VIV 3T [tour(T) N tour(T') N (T £ T') = (|T"| < |T]) U (|T"| < |T"]).

In this expression, we used two V quantifiers of the same type in a row. Note that,
VIVT' =V(T,T").

By now, we have studied decision problems. Decision problems, however, are not
a natural way of expressing optimization problems. Optimization problems, when
expressed in a more natural way, helps us to understand other important problem
classes. As an example, consider the Traveling Salesperson Problem, T'SP, and its
various characterizations. The decision version of T'SP, T'S Pp is stated as “ Is there
a tour of length at most [?” The exact T'SP problem, T'S Pg is stated as “Is there an
optimal tour of length [?” The T'SP cost problem, T'S Poosr is stated as “What is
the length of the optimal tour?” And finally, the T'S P problem is stated as “What is
the optimal tour?” The versions of T'SP problem gets harder in the order we stated
them, that is, TSPp <, TSPr <, TSPcosr <; T'SP. We know that the T'SPp
problem is N P-complete. The T'S Pg problem is D P-complete - a language is in DP
if it is the intersection of two languages, one in NP and the other in coNP. The
TSPcogr and the T'SP problems are both F'PNP-complete.

The T'SPg problem is in DP because it is the intersection of T'SPp, a problem in
NP, and the complement of T'S Pp, a problem in coN P. Note that DP is not defined
as NP NcoNP but as the intersection of languages rather than classes.

Theorem 21.2 A language L is X; if and only if there is a polynomially balanced
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relation S(x,y) such that L = {x | Jy S(z,y)}, where {(x,y) | S(x,y)} € II;_5}.

Proof: The proof is by induction on ¢. For the base case, we need to show that a
language L € NP if and only if L = {z | 3y R(z,y)} for some polynomially balanced
relation R. We have shown this earlier in this section.

For the general case, assume that the statement holds for all integers up to ¢ —1. For
the sufficiency part, we want to show that L can be recognized by a nondeterministic
Turing Machine with a Y; ; oracle. The nondeterministic Turing Machine simply
guesses a y and asks the ¥; | oracle whether =S(x,y); since S(z,y) € II; 1, S(z,y) €
Eifl-

For the sufficiency part, we would like to show that such a polynomially balanced
relation S(z,y) exists for a language L € ¥;. Since L is in ¥;, there is a nonde-
terministic Turing Machine with oracle A € ¥; |, M#, that decides L (see Figure
11). The computation with the Turing Machine M“ on an input string # € L has a
polynomial-time accepting path. The Turing Machine M“ makes calls to the oracle
A along this path and receives either a “yes” or a “no” answer. Since the language
A is in ¥; 1, there is a relation T, such that T'(w, z) is true for w € A, i.e., z is a
certificate for w. Now, consider the computation tableau for the accepting compu-
tation together with the certificate of each query to the oracle A that results in a
“yes” answer. We define the tableau of an accepting computation on z together with
oracle certificates as the certificate for . Thus, S(x,y) holds if and only if y is the
certificate for z.

Now, we show that S(z,y) is polynomial time checkable. First we need to verify that
each move on y is valid, which we do in polynomial time by using the definition of the
Turing Machine M*. Second, we need to verify that each “yes” answer from the oracle
is valid. Since, we have a certificate z for each such query for w and T'(w, 2) € II; 1,
this is in II;_; for each query. There are at most a polynomial number of them and
thus, the verification of all “yes”’ s is in II;_;. Likewise, we need to verify for each
“no” answer for a query of w that w ¢ A. Since A € ¥;_1, A° € II,_; and thus, we
ask for whether w € A°. Since, there are only a polynomial number of “no” answers,
all of them can be checked in IT;, ;. This completes the proof. [

21.2 The Algorithm-Oracle Paradox

Given an algorithm for SAT, we can make a polynomial algorithm for MINIMUM _CIRCUIT.
Given an oracle for SAT, however, it is remains unclear how to solve the MINIMUM _CIRCUIT
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problem. Many people think that it is not possible. Given these, we have an apparent
paradox: An oracle for SAT has the same input-output behavior as an algorithm for
SAT, it cannot possibly be less useful in solving problems!

21.3 Quantified SAT

We define PH as the union of the classes in the polynomial hierarchy. Formally,
PH = Y:_°%;. It is now known whether ¥, = X,;; for some i. However, it
is believed that this is not the case. The following theorem exhibits a complete
language, QS AT; for 3;. The language QS AT; is defined as follows

QSAE = {X|3X1VXQE|X3QZ Xz (I)(Xl,XQ, ceey XZ), and ,X = X1X2...Xi},

where @ is a 3 — SAT formula and each Xj is a string of bits. Clearly, QSAT; € ¥,.

Theorem 21.3 QSAT; is X;-complete.

Proof: A language L € ¥; has the form:

Since, R is polynomially checkable, by Cook-Levin, there are ®; and ®, such that

R(X,Y1,...Y2) & 3Z79(X,Y,,...,Y,, Z),and
R(X,Y1,....Y3) & 3IZ0y(X,Y,,....Y;, Z).
If the quantifier (); is an 3, then
L={z|3V1VY,...3Y;3Z &(x,Y71,Ys,....Y;, Z)},
or equivalently
L ={z|3IV1VY,..3Y] &(z,Y1,Y;, ..., Y)},

where Y/ = (Y}, Z).
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If the quantifier @); is a V, then

L = {z|3VV2..VY; R(z,Y1,Ys, ..., Y;, Z)}

(¢ | ~(¥V13Y5..3Y; =R(x,Y3,Ys, ..., Vi, Z)}
(o | ~(V13Y5..3Y;3Z &y (2, Y1, Vs, .., Vi, Z)}
(& | IVVY5. VYV Z =Dy (2, Y1, Y, .., Vi, Z)}
{z | VVY2. VY] =®y(z, V1, Vo, .., YY)},

where Y/ = (Y;, Z). This completes the proof. n

The following proposition states that PH is a subset of PSPACE. Indeed, a poly-
nomially balanced relation can be checked in polynomial space given a given set of
assignment for the variables of the relation. Since, the variables are of polynomial
length in the length of the input, this can be done in polynomial space. It is not
known whether PH = PSPACE. However, if this is the case, then all the polyno-
mial hierarchy collapses to a some layer.

Proposition: PH C PSPACE.

Remark: PH is the set of all graph theoretic properties that can be expressed in
second order logic.

A first order quantification is a quantification over nodes of a graph. A second order
quantification is over relations defined over nodes, such as EDGE¢(u,v).
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Lecture 6: The Complexity of Counting

Lecturer: Steven Rudich Scribe: Shuchi Chawla / Editor:

Synopsis: Complexity classes for counting. Sharp-P, Sharp-P complete-
ness. parsimonious reducibility. # SAT, # Perfect Bipartite Matching,
# Cycle Cover and Permanent of a matrix as # P complete problems.

22 Counting Classes

In the last lecture, we studied problems of the form dx Vs ... Qpx, ¢.

We know that sets of the form {y | Jz¢p(x,y)} are in NP, sets of the form {y |
Ax,Vaad(y, x1, 22) } are in 3y, and sets of the form {y | Iz Vs ... Qnr,d(y, 21, 22, ..., 25)}
are in PSPACE.

A main thrust of this lecture is to consider the following question:
For a given ¢, how many x are there such that ¢(z) holds?

Such questions regarding the number of solutions to a problem are classified into
Counting Classes, for example, #P.

23 Sharp-P

#P or Sharp P (also known as Number P or Pound P) is the class of functions which
count the number of satisfying assignments to polynomial problems. Formally:

Definition 23.1 (Sharp P) . A function f is said to be in #P (denoted f € #P)

iff there exists a non deterministic Turing machine M (running in polynomial time ),
such that, M(x) has f(x) accepting paths for all inputs x.

Example: Let f(¢) = # of satisfying assignments to ¢. Construct M (4) € NP, such
that, M guesses an assignment X and accepts ¢ iff ¢(X) is true. In other words, M

26
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is the NP machine for SAT. Hence, f € #P. Such a function f can also be called
#SAT or Sharp SAT.

Some other examples of counting problems are

# Hamiltonian : Given a graph G, how many hamiltonian cycles does it have?
# 3 Color : How many 3-colorings does a graph G have?
# Triangles : How many triangles does a graph G have?

# Graph reliability : How many subgraphs of a graph G contain a path from 1
to n?

23.1 Position of #P in the World View

PSPACE

Figure 12: Modified World View

23.1.1 Decision versions of Counting classes

To observe the position of Counting classes in the hierarchy of complexity classes
(world view), we consider decision versions of counting classes which are classes having
access to counting oracles.
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P#F is a polynomial time machine which gets advice from a #P oracle. Similarly,
P#94T i a polynomial time machine which gets advice from a #SAT oracle. Clearly,
P#SAT — P#P gince a #SAT oracle can answer any question which any other #P
oracle can answer.

Notice that NP C P#54T since we can solve SAT using a #SAT oracle. Similarly,
Ay, = PSAT ¢ p#SAT  However, P#T C PSPACE since a machine in P#I can be
simulated deterministically in polynomial space as both # P and P can be simulated
in PSPACE. Hence, our world view now looks like Figure 12.

Question: Is FP = #P?

If FP = #P, then #SAT € FP, which implies that we can solve SAT in polynomial
time (by solving #P and answering 1 if the solution is positive). This suggests,
P = NP. Hence, most people believe that FP is strictly contained in #P.

24 #P Completeness

Definition 24.1 f is said to be #P-Hard iff #P C FP/.

Definition 24.2 f is said to be #P-Complete iff f is #P-Hard and f € #P.

24.1 # SAT is #P complete

#P completeness of #SAT follows easily from NP-completeness of SAT. In the
proof for NP-completeness of SAT, we use Cook-Levin reduction, which reduces the
acceptance problem for any Nondeterministic Turing machine M and input x to an
instance of SAT, such that each accepting path corresponds to exactly one assignment
of the corrsponding SAT. Hence, the number of satisfying assignments to SAT is the
same as the number of accepting paths in NTM M. Hence, we can reduce the problem
solved by M to #SAT. Such a reduction is known as Parsimonious Reduction.

Definition 24.3 f is Parsimoniously reducible to g iff there exists r € FP such
that for all z, f(x) = g(r(x)).

By the above definition, Cook-Levin gives a Parsimonious reduction from any prob-
lem in #P to #SAT. This is because Cook-Levin reduction gives a 1-1 map between
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accepting paths in the NP-complete problem and satisfying assignments to the cor-
responding instance of SAT.

Note that parsimonious reducibility is an equivalence relation as it is symmetric and
transitive. Accordingly, two functions are called parsimoniously equivalent, if one
is parsimoniously reducible to the other.

24.2 Some more #P Complete problems

Definition 24.4 Let G = (U,V, E) be a bipartite graph, in which |U| = |V| and
E CUxV. M C E is a Perfect Bipartite Matching iff every node in U is incident
with precisely one edge in M and every node in 'V is incident with precisely one edge
in M. Equivalently, we may say that there exists a bijection 7 : [1..n] — w[l..n] so
that ugvy € M for each i € [1..n].

We will shortly demonstrate how #SAT is reducible to # Cycle Cover, which is
parsimoniously reducible to # Perfect Bipartite Matching and Permanent of a matrix.
This will imply that #S5 AT is reducible to # Perfect Bipartite Matching which implies
that the latter is #P Complete.

Contradiction!!

Notice, that if #SAT is Parsimoniously Reducible to # Perfect Bipartite Matching,
then we can reduce SAT to Perfect Bipartite Matching. To see this, use the argument
that if there exists a Perfect Bipartite Matching, then number of PBM’s of the graph
is greater than zero. By applying parsimonious reducibilty, this means that number
of satisfying assignments to the corresponding SAT is greater than zero and hence
the formula is satisfiable.

However, Perfect Bipartite Matching can be done in polynomial time. Hence, if SAT
is reducible to PBM, then P = NP! This means that our argument has gone wrong
somewhere.

The catch is that #SAT is not parsimoniously reducible to # PBM. #SAT is only
Turing reducible to # PBM. As a result, the number of satisfying assignments to
SAT are related to the number of PBMs of the corresponding graph, but the two are
not equal.

# Perfect Bipartite Matching is parsimoniously equivalent to # Cycle Cover and
Permanent of a matrix.
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24.2.1 # PBM is parsimoniously reducible to # Cycle cover

Definition 24.5 Let G be a directed graph. A Cycle Cover of G is a set of Node
disjoint cycles covering every node.

Observation: Cycle Cover and Perfect Bipartite Matching are parsimoniously equiv-
alent.

Proof: Let G = (U,V, E) be a Bipartite Graph. Construct a graph G' = (W, E’)
such that |W| = |U| = |V| and (w;,w;) € E' iff (u;,v;) € E. It is clear that a cycle
cover of graph G’ defines a PBM on G and every PBM on G can be expressed as a
cycle cover on G'. Hence the two problems are parsimoniously equivalent. [
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Cycle cover
G G M

Figure 13: Equivalence of PBM, # cycle cover and permanent of a matrix

24.2.2 +# PBM is parsimoniously reducible to Permanent of a matrix

Definition 24.6 Let M be a n X n binary matriz. The Permanent of M s the
sum of matriz values of all permutations on [1..n]. That is, if 7 is a permutation on
[1..n), [[;Z} mixq) is the value corresponding to that permutation, and Permanent of

M =37 TIiZ) mix)-

Observation: Perfect Bipartite Matching and Permanent of a matrix are parsimo-
niously equivalent.
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Proof: To reduce # PBM to Matrix permanent, for a bipartite graph G = (U, V, E),
define a matrix M as m;; = 1iff (u;, v;) € E. (Notice that this is the adjacency matrix
for G). Then, the value of a permutation in M is 1 iff all edges corresponding to this
permutation are present in GG. Hence, each permutation with value 1 corresponds to
exactly 1 perfect bipartite matching in G. Thus the two problems are parsimoniously
equivalent. [

Example: Consider Figure 13. The dashed edges and italicised numbers demonstrate
a PBM on graph G, the corresponding cycle cover on G/, and the corresponding
permutation on Matrix M.

O _— Clause Gadgets —
)
&

)
N @ /XOR Gadget

': ,/Q
0

Figure 14: Graph for # 3SAT

24.3 # Cycle cover and related problems are #P Complete

Now we will show a Turing reduction from #3SAT to # Cycle cover, proving the
#P completeness of the three problems mentioned above. (Notice that #SAT is
reducible to #3SAT in the same way as SAT is reducible to 3SAT".)
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Figure 15: The Clause Gadget

Consider a 3CNF formula of the form (AV BV C) A --- AN (X VY V Z), where,
A, B, ..., 7 are all literals. In order to cnvert these into a graph, we will separately
convert, each clause into a subgraph called a Clause Gadget. Each variable will have a
Choice Gadget associated with it, which will help us to decide the value of the literal
in the formula. Further, XOR Gadgets will help us enforce that value into the formuls.
The convertion of a formula into these gadgets and their functioning is demonstrated
in Figure 14. We describe the working of the gadgets below.

The Clause Gadgets

Each bold edge in the Clause gadget (Figure 15) corresponds to one literal in the
associated clause. Selection of a bold edge signifies value 0 for the corresponding
literal. Notice that the clause gadget is so designed, that we cannot select all 3 bold
edges in the cycle cover simultaneously, as in that case we will not be able to include
the middle node in the cycle cover. Also, there is exactly 1 cycle cover for each of the
seven ways to include to not include the bold edges.

The Choice Gadgets

The Choice Gadgets help us select an assignment for the corresponding variable. We
should be able to associate this assignment with the choice of the corresponding edge
on the Clause Gadgets. For this purpose we use the XOR Gadgets. The placement
of this gadget between two edges implies that at most one of these edges will be
included in a cycle cover. Construction of the XOR Gadget is discussed next.

24.3.1 The XOR Gadget

The XOR Gadget should be designed in a manner enforcing that any cycle cover must
use exactly one of the edges to which the gadget is connected. However, recall that
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Idea :

G @

XOR Gadget :

(Edges with no label have weight = 1)

Figure 16: The XOR Gadget

if we are able to construct such a gadget, we will be able to parsimoniously reduce
#3SAT to # cycle cover, which will prove P = NP as discussed earlier. We will see
that constructing such a gadget is not possible and instead we will construct a gadget
which enforces that the number of cycle covers using exactly one of the edges gets
multiplied by 4, while the number of cycle covers which dont use exactly one of the
edges gets multiplied by a large number N. As a result the obtained reduction is not
parsimonious.

In order to construct an XOR Gadget, we first relax the requirement that edges have
no weight (or each edge has weight 1). Figure 16 demonstrates the construction of
such a gadget.

We define the weight of a cycle cover as the product of its edge weights. Cycle cover
count is defined as the sum of weights of all cycle covers. In the Figure, we can see
that cycle cover count = 4.



64 24 #P COMPLETENESS
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Figure 17: Simulating edge weights

24.3.2 Simulating edge weights

Since in the original problem, edges do not have weights, we need to simulate edge
weights by constructing a subgraph such that the number of cycle covers in the original
graph get multiplied by the edge weight if an edge is replaced by the appropriate
subgraph. These subgraphs are shown in Figure 17. This takes care of all edges with
positive weights. However, notice, we have edges with weight -1. In order to simulate
this using a subgraph, we consider number of cycle cover modulo some sufficiently
large number N, and replace the -1 edge by a subgraph of value N — 1.

Let m be the number of XOR Gadgets in the weighted graph case.

Then, each satisfying assignment corresponds to 4™ weight contribution to the cycle
cover. Hence, the cycle cover count is at most 2™ - 4™ (as number of satisfying
assignments < 2™). Therefore, the cycle cover count is at most 23™.

We choose N = 2*™ +1 (Sufficiently larger than the possible number of cycle covers).
Accordingly, we can replace each edge of weight -1 with a subgraph corresponding to
value 2™,
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24.3.3 Correspondence between #35AT and # Cycle Cover

We reduced a #3SAT problem into a graph G and number m such that

# of cycle covers of ) mod (24m+1)
am :

The number of satisfying assignments to ¢ is (

Notice that this is not a parsimonious reduction. Due to the presence of ‘mod’ in the
equation, we cannot reduce 3SAT to Cycle cover or PBM in a similar manner.

25 Related things

25.1 Another counting class : Sharp P, (#PF,)

Definition 25.1 Sharp P;. A function f is said to be in # P, iff there exists an
NTM M such that for all n, M(1™) has f(n) accepting paths.

This class is not nearly as interesting as #P due to the absence of any interesting
natural problems known to be complete in it. Valiant in 1977 demonstrated a com-
binatorial #P; complete problem.
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Lecture 8: What can be said about the NP-complete sets?

Lecturer: Rudich Seribe: Cory Williams / Editor: Jason Crawford

Synopsis: Mahaney’s Theorem: NP-complete sets are not sparse. Iso-
morphism conjecture: All NP-complete sets are isomorphic to one another.
Ladner’s Theorem: P # NP implies there exists a problem in NP which
is not NP-complete or in P.

26 Sparseness

Definition 26.1 A set S is said to be sparse if there exists a polynomial P(n) such
that the number of strings of length n in S is less than P(n).

Sparseness is an intermediate step between normal sets and unary sets. As we will
see, sparseness is a useful notion in terms of the relationship between P, NP, and
NP-complete sets.

26.1 Mahaney’s Theorem

We will require a few theorems and corollaries before expressing Mahaney’s Theorem.

Theorem 26.1 (Berman 1978) If S is a unary set and SAT <, S, then P = NP.

Proof: Let ¢ be a formula with variables x1,x,...,z, and let ¢4,4,..a; be ¢ with
Ty = a1,Ty = ag,...,T; = a;. Then we can define the tree T to be the binary tree
pictured below.

66
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/\
/\ /\

¢11 10 ¢01 00

This can be thought of as a search tree to a satisfying argument.

Now let r: SAT — S be the reduction function. Then we may observe that

{r(¢) 11| < oI} < lg|*

This follows from the fact that fact that there can be at most one element of a given
length in S and that r(¢) can only have length polynomial in the size ¢. We can also
see that if r(¢) = r(¢') then ¢ and ¢' must both be satisfiable or both be unsatisfiable.

Now let us think of the possible values of r(¢) as colors. We can then think of painting
each node of T}, with its color. It is important to note that there are only a polynomial
(in the length of ¢) number of colors being used to color this tree.

Consider a depth first search of the tree T}. If we stop when we have found a satisfying
argument to ¢ then we will have seen exactly n+1 satisfiable nodes in the tree, namely
those along the path to the satisfying formula. All other nodes that we visited will
have been unsatisfiable, otherwise we would have found a satisfying argument earlier.
Using this knowledge, we can create a pruning rule for a depth first search of the
tree Ty. If we see a color more than n + 1 times, then we know that the color must
represent unsatisfiable formulas. Thus we can prune that branch of the tree and
continue. If such a color represents satisfiable formulas, then we should have reached
the bottom of the tree already since we have seen n + 1 satisfying formulas. If we
let ¢ be the number of colors in the tree T}, then we can see that we will never visit
more than ¢(n + 1) nodes. Since there are only a polynomial number of colors in the
tree, the search will only take polynomial time and thus we have SAT € P. [



68 26 SPARSENESS

One of the more subtle points in this argument is that we don’t care how long it takes
to compute S or even if it is computable. We only use the reduction r(¢) to get an
element of S which we used as a color in the tree Tj,.

The statement of the above theorem is strengthened in the following corollaries.

Corollary 26.2 (Fortung 1979) If S is sparse and SAT <, S then P = NP.

Proof: Note that the argument for the above theorem will work as long as the number
of unsatisfiable colors is polynomially bounded. Formulas of length less than |¢| can
only map to things in S of length |¢|¥ and there is only a polynomial number of
elements of S of length less than this, since S is sparse. n

Definition 26.2 We write S <pjioy T' to say that there is a reduction from S to T
using a Turing Machine that takes polynomial time and receives O(log)n) advice.

Corollary 26.3 (Mahaney) If S is sparse and SAT <pjo; S then P = NP.

Proof: If suffices to note that we have proved P = P/log in homework 3.3b. [

At this point this point we are almost ready to prove Mahaney’s Theorem. We need
one lemma first.

Lemma 26.4 If S is sparse and S € NP then S € NP/log.

Proof: To decide if x ¢ S we can take as advice the number of elements of S of
length |z|. Since there are a polynomial number of such elements, the number can
be written in O(logn) bits. We can then guess all the elements of S of length |z| and
proofs for them. We can then easily decide if z € A or not. n

Theorem 26.5 (Mahaney 1980) If S is sparse and NP-complete, then P = NP.

Proof: If S is NP-complete then we know that SAT <_ S. This implies that SAT <_
S By the previous lemma, we know that S € NP /log and thus SAT € NP/log.
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Now consider the meaning of the statement SAT € NP/log. This can be write as

SAT ={¢ | (¢, A(l¢]) € T}

where A(n) is the advice function and 7" € NP. But since S is NP-complete, know
that there exists a function f in L such that x € T'< f(z) € S. Thus we can rewrite
the above equation as

SAT = {¢ | f(¢, A(I¢]) € S}

Thus we can conclude that SAT <p,, A, and by Mahaney’s Corollary, P = NP. =

27 Isomorphism Conjecture

If all NP-complete sets could be shown to isomorphic to one another, the study of
them would be greatly simplified. Berman and Hartmanis proved a weaker result
in 1977. They demonstrated a polynomial time version of the Schroder-Berstein
Theorem and used it to show that all known NP-complete sets are polynomial time
isomorphic. More formally, for any two sets S and 7T, there exists a polynomial time
bijection from S to 17" whose inverse is also computable in polynomial time. From
this they conjectured the following

Conjecture 27.1 All NP-complete sets are polynomial time isomorphic to one an-
other.

The following intuition against the Isomorphism Conjecture was given in class.

Intuition: Let f be a polynomial time bijection which scrambles its input
in a pseudo-random way. Then the set S = f(SAT) is NP-complete, but
f has no polynomial time inverse.

We can find examples of such an f in cryptography, where such functions are used to
encrypt messages.

Unfortunately, this intuition does not hold up and was negated by a recent paper
published by Allendar, Agrawal, and Rudich. This paper showed that all sets that are
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NP-complete under ACy reduction are ACy-isomorphic and that all natural encodings
of NP-complete sets are complete under ACy reductions. We have not studied the
complexity class ACqy, but it is similar to NC but allows unbounded fan-in AND and
OR gates.

28 Ladner’s Theorem

So far, all the problems in NP that we have studied have been shown to be NP-
complete. This begs the question of whether or not there are problems in NP that
are not in P and not NP-complete. Ladner’s Theorem answers this question.

Theorem 28.1 (Lander 1975) If P # NP, there is a language in NP which is neither
i P nor is it NP-complete

Proof: The idea used here is delayed diagonialization. We will diagonalize against
all NP-complete sets and all P sets, but it will not be explicitly clear where the set
we will create will be different from any particular P set or NP-complete set.

Let S be a set in P and let Z be an NP-complete set. By hypothesis, we know that
S # Z. From these sets, we will construct a set L which has different parts of S and
Z interlaced. More specifically, we will construct a set CUTANDPASTFE such that
L=(SNCUTANDPASTE)U(ZNCUTANDPASTE). We will do this is such a
way that any NP-complete set will differ from L in at least one section that comes
from S, and and P set will differ from L in at least one section that comes from Z.

We will first need to enumerate all P machines and all NP-complete machines. We
may enumerate all P machines by enumerating all possible Turing machines and then
adding “clocks” to each one so that machine M; will reject if it runs more than |z|°
steps on input . We will denote this new machine by P;. Note that we can enumerate
machines so that every machine gets enumerated infinitely often. Thus we enumerate
every machine with arbitrarily large polynomial clocks.

Now we may enumerate NP-complete machines as follows. We first enumerate all
possible logspace reductions, ;. We can do this in a manner similar to P;, using
a “ruler” to measure space instead of a clock for time. Now we can enumerate the
machines NP, as follows. Consider n as a pair so that n = (i, 7). Then we compute
NP,(x) by checking that for all y such that |y| < |z|, y € SAT < M;(R;(z)) accepts.
If we find this to be the case, then NP;(z) accepts when M;(x) accepts. Otherwise
NP;(x) will accept when x is in SAT.
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Now we shall define a few functions. Let ri(n) be the first d such that for all i < n
there exists d' < d such that |d'| > n and S and NP; differ on element d’. Define
r2(n) similarly except that Z and P; differ on d’. Then we choose 7(n) such that it is
a proper complexity function and r(n) > max(ry(n), ro(n)).

Now we can see that the elements between n and r(n) will differentiate P; from Z and
NP; from S for j < n. Let us define (for reason we will see later) r*(0) = r(0) and
r(0) = r"=*(r(0)). Again, the elements between 7*(0) and r**'(0) will differentiate P;
from Z and NP; from S for j <.

We are ready to construct CUTANDPASTE. Tt will be the set {z | r**(0) < |z| <
P2ty

Claim: CUTANDPASTE € P

Given an x, we can start computing r(0),72(0),... until we find k£ such
that 78(0) < |z| < r¥71(0). We will accept z if k is even. The one problem
is that 78+1(0) may be extremely large. Note that r(n) is proper complex-
ity function and therefore can be computed in O(r(n)) time. We can use
a clock to time the computation of r¢(n) and abort the computation if it
takes too long. We then know that r*(0) is much larger than |z| and thus
we know k is i — 1.

Then L = (SNCUTANDPASTE) U (ZNCUTANDPASTE). We can see that
L € NP. To check if a particular = is in L, we first check if 1 € CUTANDPASTE.
If it is, then x € L if and only if x € S. Otherwise, x € L if and only if z € Z. We
can also see that L # NP; for any i. Choose an even k such that i < r¥(0). Then we
know that there is an z such that 7#(0) < |z| < r**! and NP, and L will differ on z.
Similarly we can see that L # P; for any . [
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Lecture 9: Enter Randomness

Lecturer: Steven Rudich Scribe: Konstantin Andreev / Editor:

Synopsis: Comunication Complexity, Checking Matrix Arithmetic, Ver-
ifying Arithmetic, Classes RP, ZPP, BPP. Adelman’s Theorem, Sipser’s
Theorem, Schwartz-Zippel’s Theorem. Lovasz’s randomized algorithm for
perfect matchings.

First we give several beautiful examples of the strength of randomized algorithms. In
all of them we assume we can flip an unbiased independent coins.

29 Examples of randomized algorithms

29.1 Communication complexity

Two parties Alice and Bob try to determine whether their two n-bit numbers = and
y are equal. If they exchange the information bit by bit they will end up in the worst
case complexity n and on average with n — logn. There is clever way to verify the
equality of the two numbers with certain probability. Bob chooses a random prime
number between 2 < r < 4n?. He computes + mod r and sends it along with r.
Alice on the other end verifies if + = y mod r and sends back the answer. For one
iteration the complexity is 2log4n® = 4log2n = O(logn). As shown in Homework
1.2b

NN

Prjzx #y mod r|z # y] >

In other words if + # y mod r then we are certain that x # y, otherwise we have
certainty more than 1/2 that + = y. We can amplify certainty by iterating the
protocol k£ times. If there is an r such that  # y mod r then we are certain that x
is different than y. Otherwise we have x = y( mod r) for all k£ random choices of r
and we have certainty more than 1 — 1/2% that z = y.
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29.2 Checking matrix arithmetic.

Let My, My and N are n x n matrices over a field F'. We want to verify if M, x M, =
N. The best known deterministic algorithm (using Strassen’s Algorithm) has time
complexity O(n*37). With probabilistic algorithm we can do better. Let r be a
random 0-1 bit vector. We multiply the matrix equation from the right with it and
we verify the result. The time complexity of this operation is O(n?).

Fact 2 If My x My # N then Pr.[M; x My xr# N xr]| > 1/2.

Proof:

Let M = M; x My — N which by assumption is different from the matrix with all
zero’s. We look at M x r. There is at least one element of M different from zero.
If we have exactly one element different from zero in a row the probability that this
element is multiplied by a 0 is equal to the probability that it is multiplied by 1. If we
have more than one non zero element in a row j, say M;; # 0, than for every linear

combination Y"1  r;M;; = 0 we have at least one corresponding linear combination
(1 —r)Mjy + >, riMj; # 0. Thus Pr[M x r # 0] > 1/2.

Again if we see an r such that M; x My xr # N X r we are certain that M; x My # N.
Otherwise we have probability at least 1/2 that M; x My = N. We can amplify the
certainty by iterating the protocol.

29.3 Verifying arithmetic

Randomization gives us polynomial time improvement for the previous problem. Now
we will give an example in which randomization gives us an exponential time and
possibly exponential space improvement.

Suppose we are given a circuits with multiplication and addition gates instead of
AND and OR gates. Such a circuits is called arithmetic circuits. We want to verify
the output on an given input for this arithmetic circuits.

There is no known deterministic polynomial algorithm to verify the output, since the
intermediate results can be exponential in size with respect to the input and still have
a polynomial size output. See figure 1
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If we apply the same trick as in the case of communication complexity we can get
around the intermediate value problem. Choose a large enough prime p. Evaluate the
circuit mod p. If the result we are given our evaluation will disagree with that value
with probability at least 1/2. If the value that is given is correct than the algorithm
will always accept.
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30 The RP complexity class

Definition 30.1 A language A is in RP (randomized polynomial time) if there exists
a nondeterministic TM M running in polynomial time such that

1) M accepts A

2) If x € A then at least 1/2 of all computational paths accept.

Equivalent way of stating 1) and 2) is
1) If x ¢ A then no paths accept.
2) If x € A then at least half of the paths accept.

We can imagine this as a machine which made all this nondeterministic choices by
flipping a fair coin.

Examples of languages in RP are COMPOSITENESS, CHECKING ARITHMETIC
CIRCUITS.

30.1 Amplification of certainty

Let A € RP we can amplify our probability of acceptance by running the correspond-
ing TM, M several times. We accept if and only if the machine accepts one time.
Then we have if the machine runs & times

1) z ¢ A then M (x) accepts with probability 0
2) x € A then M(z) accepts with probability greater than 1 — 1/2*

If we run the same procedure polynomialy many times instead of constant number of
times we get the following equivalent definition of RP.

Definition 30.2 A language A € RP if and only if Yk there exists a probabilistic
polynomial time TM M such that

1) If v ¢ A then M(x) rejects always,
2) If x € A then M(x) accepts with probability at least 1 — 9-lel*,
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Definition 30.3 We define a new class ZPP = RPNco-RP.

Remark:

It is true by definition that RP C NP. Like NP it is not known that RP =co—RP. One
example of the significance of this question is PRIMES. It is known that PRIMES
€ NPNco-NP. We also know that PRIMES €co-RP. In 1987 Adelman and Huang
proved that PRIMES is in RP. This implies that PRIMES € ZPP which was a major
advancement in computational complexity.

31 The BPP complexity class

We define the class BPP standing for Bounded probability polynomial time.

Definition 31.1 We say that a language A is in BPP if there exists a probabilistic
polynomial time TM M, such that

1) If x € A then Pr[M(z) accepts
2) If x ¢ A then Pr[M(z) accepts

3
] 2 4
| <5
It is clear that BPP C P*". It is not known whether BPP C NP. We will prove in this
lecture that BPP C Yy N II,.

31.1 Certainty amplification for BPP

We can amplify the certainty of the answer by running BPP algorithm k-times and
then taking the majority of the answers. More precicely as we saw in Homework 1.5
A useful calculation if we take k = 6|x|® then

Corollary 31.1 1) If x € A then

1
Pr[M(z) accepts] > 1 — SER

2)if v ¢ A then

1
Pr[M(z) accepts] < S
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Lets overview the material in this lecture up to now. If a language A € BPP then
we know it has an efficient randomized algorithm. If A € RP we have that A has
an efficient Monte Carlo algorithm, i.e. an expected polytime algorithm that makes
limited number of misclasifications on words in the language and makes no mistake
on words outside of the language. If A € ZPP then we know that it has a Las Vegas
algorithm, i.e. an expected polynomial time algorithm that answers with certainty.
Examples of problems in ZPP are PRIMALITY and FIND SQUARE ROOTS MOD-
ULO A PRIME. Still open problem is if P = RP or even if P = BPP. However we are
almost sure that PRIMALITY is in P!

Theorem 31.2 Miller'76
If the Extended Riemman Hypothesis holds then PRIMALITY e P.

There are deeper reasons as well.

32 Where does BPP fit in our world picture?

In this section we will present some results how does BPP fit in the world picture.

Theorem 32.1 Adelman

BPP C P/poly.

We will give four “different” proofs of this theorem. Lets first state a slightly modified
definition of BPP which uses TM with auxiliary input. We can think of probabilistic
polynomial time TM as a polynomial time TM with enough auxiliary input of random
bits. Combining this observation with the certainty amplification we give the following
equivalent definition of BPP.

Definition 32.1 A language A € BPP if there exists a polynomial time TM M, such
that

1) If x € A then

1
Pr[M(z,r) accepts] > 1 — SRR



78 32 WHERE DOES BPP FIT IN OUR WORLD PICTURE?

2) If v ¢ A then
1

z|?

Pr[M(z,r) accepts] < ,

2

If r causes M (x,r) to misclassify = we say that r is bad for z. If not,we say that r is
good for z.

Lemma 32.2 There is an r which is good for all inputs of length n.

If we prove the above Lemma then we will have proven the Theorem. We have that
for any language A € BPP is true that A € P/poly because we can give r as the
advice string for inputs of length n and M (z,r) will never misclassify.

Lemma 32.3 Suppose that for inputs of length n, r is a string of length n?. Let
R = {0, 1}”2 be the set of all binary strings of length n?. Then Ir € R such that r is
good for every input x of length n.

Proof: Counting Argument

For each of the 2" inputs there are at most a 1/2"° fraction of 7’s which are bad for
it. We throw them away. We tossed out a 2"/2"* fraction of r’s. The remaining are
good for all inputs.

Proof: Probabilistic Method

Pr,[(r is bad for z1) V (r is bad for x4) V (r is bad for z3) ...V (r is bad for z,)]

<3P Prlris bad for z;] = 2%

Hence

P%[(r is good for all z)] > 1 — 277+,
re
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Proof: Method of Fxpectations

Define 0-1 random variables V,, as 1 if r is bad for x and 0 otherwise. Lets
V=>"V.

In this way V' is the number of z’s for which r is bad.

EVI=S BV =Y — = =

on? ~ on?’

Which implies that E[V] < 1, so 3r such that V' < 1. Since V' must be an integer for
this r we have V' = 0, i.e. r is good for all =.

Proof: Kolmogorov-Chaitin randomness

Suppose M (z,r) misclassifies z, i.e. r is bad for x. By the same argument used in
Homework 4.3b we have

K(r) <l|z|+ log(2"""|$|2) +C < |r|— |2?| + |z| + C << |r|.

If r is n-random we know that K (r) > |r| — n which means that r is good for all .

Combining all this results, we have BPP C P/poly.

Remark:

The four proofs look different, but they are essentially the same.

One more result about BPP.

Theorem 32.4 Sipser

BPP C 33 N1ls.
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Proof:

With out loss of generality pick a TM M with error less than 1/2/% on 2 € L. Lets
define the set

A(x) ={r | M(z,r) accepts}.

Now we define a translation of A(x) with a vector ¢ as

Alxyet={r@t|re Ax)}.

Lemma 32.5 If

|[A(2)| 1

A o’

then there exist t1,ty,... ,ty| such that |t;| = |r| and

I
UA@ ot =R
=1

Proof:

Again we will use the probabilistic method. Pick a random sequence t1,%5,... %},
Let

]
S=JA@) @t
=1

For all r in R we have

1

Prir ¢ ] =Prlr ¢ A(z) @ t,]- Pr[r ¢ A(x) @ ts]- - Pr[r & Ax) @ ty] = (ﬁ)’" = ST

Now using the well known union inequality we get

|7|
Pr[(r, € S)V (ry € S)V ...V (1o ¢ 5)] < Z 2x1-7" - 2296-7" <<l
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Which means that

Pr[S=R]>1-

2lz]

Lemma 32.6 If x ¢ L that is |A(z)|/|R| < 1/21* we have there does not exist
t1,to, ..., t, such that

Ir|
R=JA@) @t
=1

Proof sketch:

W<<1.

This means that z € L if and only if there 3¢, 5, ... , ¢}, such that Vr € R M (r&t;)
accepts or M (r @ ty) accepts or ... M(r @ t},) accepts. The latter is a ¥, predicate.
Since BPP is closed under compliment, it must also be included in II,.

It is worth mentioning that M. Sipser’s original proof was the first application of hash
functions to complexity theory.

33 Schwartz-Zippel’s theorem and applications

We will conclude this lecture with two more examples of the power of randomized
algorithms.

Lets look at the decision problem: We are given a n-variable polynomial over a finite
field presented in the form of a product of brackets and we are asked to verify if this
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polynomial is equivalently 0. For example is (1 4+ 329 — 3)(3z1 +x4 — 1) ... (27 — x2)
equivalent to 0 over the field with 7'° elements. Their is no known deterministic
polynomial time algorithm to answer this question. However we can answer this
question with certain probability using the following theorem.
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Theorem 33.1 Schwartz-Zippel

Let P(xy,22,...,2,) Z 0 be a degree d multivariable polynomial over the field F for
any finite S C F, if we pick at random ri,ro,... ,r, € S we have

d
Pr[P(r,r, ... 1) =0] < W

Proof:

We will proof the Theorem by induction on the number of variables. The base case
is n = 1. Then we have a univariate polynomial p(z) Z 0 of degree d. It has at most
d roots, so

Pr[P(r) = 0] < |i|

Lets assume that the conditions holds for all polynomials on less than n variables.
Let P(x1,%2,...,2,) be a polynomial on n variables. We rewrite P with respect to
the degree of the first variable

d
P(zy,x9,... ,2,) = Zx’iPi(xZ,... , Tp).

1=0

By assumption P # 0, so there exists an i such that P; £ 0. We pick the maximum
such 7. Lets pick r9,... ,r, € S at random. By the induction hypothesis
d—1i

S|
Because of our choice of i, the univariate polynomial P(z1,7,... ,7,) is of degree i.
Now from the base case of the induction we have

Pr[Pi(re,... 1) =0] <

Pr[P(ThTQV" 7Tn) | -Pi(TQ,... ,Tn)%(]] < ﬁ

Hence, when we add up the two conditional probabilities we get

d
Pr[P(r,79,... ,ry) =0] < 5k
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33.1 A randomized algorithm for perfect matchings on bi-
partite graphs and Lovasz’s corollary

The following result is due to Edmonds

Theorem 33.2 Edmonds 1967

Let A be the n X n matrix obtained from a bipartite graph G as follows:
A= Ajj=1 If there is an edge between u; and v,
Aij =0 Else

Then the det(A)# 0 < G has a perfect matching.

Since the determinant can be expanded as a sum over all the permutations we have

det(A) = Z Sgn(ﬂ)Alm(l)Agm(z) .. -An,ﬂ(n)-

There is no possible cancellation of non zero terms in the expansion.

Based on this Theorem Lovasz proved a corollary and gave a randomized algorithm
for perfect matchings on bipartite graphs. The det(A) is a polynomial of degree at
most n. Here is the algorithm.

Pick a finite field F' such that |F| > 2n.

Pick ry,79,... ,r g € F at random.

Create a new matrix A by substituting the value of r; for z; in A.

Compute the det(A).

If G has a perfect matching then by Schwartz-Zippel and Edmond’s Theorems,

det(A) # 0 at least half the time. In 1987 Mulmuley, Vazarani and Vazarani used
this to prove a stronger result, namely that PERFECT MATCHING € RNC.
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Lecture 10: Randomized Logspace (RL)

Lecturer: Rudich Scribe: Luis von Ahn / Editor: Maverick Woo

Synopsis: Definition of RL. UST-CONN is in RL: Random Walks.

34 RL

We now define the class of languages RL: A € RL if there exists a non-deterministic
logspace machine M such that for x ¢ A, M(x) does not accept and for x € A
the computation of M on x has at least half of its paths accept. Alternatively, we
can think of putting a probability measure on the paths by flipping a coin at each
non-deterministic choice and requiring that:

e 1 ¢ A = Pr[M(x) accepts | > 1/2.

e 1 ¢ A = Pr[M(x) accepts | = 0.

A technical note is required here: we have defined non-deterministic machines so that
all paths terminate. If this were not the case, then we would have that NL = RL.

35 UST-CONN €RL

UST-CONN is the analogue of ST-CONN for undirected graphs. Recall that we
have shown that ST-CONN is NL-complete. We now show that for undirected
graphs, the problem of deciding whether nodes s and ¢ are connected is in RL.

Theorem 35.1 UST-CONN € RL

Proof: Here’s the algorithm (which takes an undirected graph G' = (V| E) and two
elements of V', s and ?):

85
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Start at s and make 2n?® random steps. (Taking a random step means the
following: when you are about to take a step, you choose unformly from
all the neighbors of the node your are in in order to detemrine the next
node you will be in.) If you ever see ¢, accept. Otherwise reject.

We now analyze the algorithm. For this we will need to analyze random walks on
graphs.

Let W be an infinite random walk starting from node s on an (undirected, con-
nected) graph G = (V, E). For each a € V define ¢, as the frequency of node a in
W. That is,

n—00 n ’

where #W,(a) is the number of times « is seen in the first n steps of W. An im-
portant point is to prove that ¢,, being a limit, indeed exists. We will not, however,
prove this. For < a,b >€ E, let ¢4~ be the frequency with which W goes accross
< a,b > (starting from a).

Claim: Let d, be the degree of a € V. Then ¢,> = ﬁ—z

Proof: This should be obvious: the number of times W goes through < a,b > is
exactly the number of times W goes through a divided by the degree of a (since, at
a, all neighbors of a are equally likely to be chosen by ).

Claim: Let N(a) be the set of neighbors of a in G. Then:

Pa = Z P<ba>-

beN(a)
Proof: This should again be clear.
From the previous claims, we get:

beeN(a) ¢)<b',a>
¢<a,b> = d .

Lemma 35.2 ¢4 is mazimal = Pegps = P o> for all b € N(a).
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Proof: Otherwise, we would have that ¢, ;- is greater than the average over b’ €
N(a) Of ¢)<bl,a>. | ]

Lemma 35.3 ¢, is the same for all edges < a,b >€ E.

Proof: Repeated application of the previous lemma and the fact that G is connected
yield the result.

Lemma 35.4 ¢.p> = ﬁ for all edges < a,b >€ F.

Proof: Y _ . cp®<ap> = 1, by definition, so the result follows. The 2 is here because
we count each edge twice (as the defintion of ¢4~ takes the direction of the edge
into account, but G is undirected). ]

Corollary 35.5 ¢, = % foralla € V.

Proof: We have that ¢, = ¢,/d, so:

Now, for each pair of vertices a and b, define T'(a,b) to be the expected number of
steps W takes to go from a to b.

Lemma 35.6 T'(a,a) = é = %@E‘.

Proof:
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Lemma 35.7 If a and b are adjacent, then T'(a,b) < 2|E|.

Proof: Recall that ¢4 = ﬁ Let D(a,b) be the total distance in W, of the [a, b]

intervals (that is, the total number of nodes traversed by W in its first n steps on
paths from a to b). Notice that D(a,b) < n. Let N(a,b) be the number of [a, b]

intervals in W,,. N(a,b) > 37 Hence:

>

T(a,b) = lim (a,b)

< 2|E|.
n—oo N(a,b) — ]

Now, let ay, ay, ..., as—1y be a walk that visits all of G' (notice that such a walk does
exist: take a spanning tree of G for instance). Define S to be the expected length of
a random walk in order for it to contain the subsequence ai, a, ..., azn—1). We have
(since the sum of the expectations is the expectation of the sum) that

2(n—1)—1
S= > T(a,ain) <2(n—1)2E|
i=1
It is, then, clear that the expected number of steps W takes to traverse GG is smaller

than 2|E|(n — 1) < n3. And, we have:

Corollary 35.8 The probability that a random walk from a vertexr a of G fails to
visit all of G in 2n® steps is less than or equal to 1/2.

Proof: This is a simple consequence of Markov’s inequality. [
Notice that this proves the correctness of our algorithm. [

As a note, we can add that UST-CONN is actually in RLNco— RL. This was proved
by Borodin, Cook, Dymond, Ruzzo and Tompa in 1989.

Remark: (directed)ST-CONNe RL would imply that RL = NL. This, however, is
unlikely.
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36 Universal Sequences

The theory of Universal Sequences is of utmost importance to frequent
museum goers.
-Mike Sipser.

Definition 36.1 A d-regular graph is one in which all nodes have degree d.

Let G be a d-regular undirected graph. Assume that each edge is doubly labelled,
once at each end:

C

At each node, the d edges going out (or in) are labelled 0, 1,2, ...,d — 1 in some order:

Note that you can interpret a sequence of numbers (all from 1 to d) as a particular
way to walk the graph.

Definition 36.2 Call a sequence S € {0,1,...,d — 1}* universal for d-reqular graphs
with n nodes if: For any labelling of an n-node d-reqular graph G, and for any start
node, following the sequence of moves given by S will cause you to visit all nodes in

G.
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Proposition: For every n, a universal sequence S,, exists.

Proof: Let us first enumerate all the different labellings of a d-regular n node graph
and all start nodes: G4y,Gs,...,Gr. Let S, be the concatenation of the following
sequences:

e A;: a sequence to solve GGy.

e Ay: a sequence to solve Gy starting from where A; left off (assuming it was
performed in GY).

e Aj: a sequence to solve G3 starting from where A; A, left off (assuming it was
performed in Gj).

Theorem 36.1 A universal S,, exists where |S,| = O(n®logn).

Proof: Let R, be a random sequence of length en?log n.

Claim: Pr[R,, is universal]> 0.

Proof: Consider a fixed d-regular labelled n-node graph G. Then Pr[ a walk of length
2|E|(n — 1) = O(n?) fails to visit G] < 1/2. So, Pr[R, of length O(n*)O(nlogn)
fails to visit G] < 1/29(1°¢7)  Now, how many n-node d-regular labelled graphs are
there? We can sepcify one using O(nlogn) bits: For each node we write a dlogn bit
list of neghbors and a logd! bit list of out labels. This proves the assertion.

By the probabilistic method, this proves our assertion.

We now know that there are universal sequences of length O(n®logn). The following
are still open questions, though:
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1. Is there a polynomial size universal sequence where producing the i-th symbol
is in logspace?

2. Is there a way to construct a polynomial sequence in time polynomial in n? (We
know that there is an n'°¢™ time way to construct an n'°¢" length sequence. We
also know that a polynomial time way to construct a universal sequence exists
for the particular case when d = 2.)

It has been conjectured that the length of the shortest universal sequence S,, satisfies:

n(n+1)

S, <
Sul < T

(The conjecture has been verified for the cases when n < 8 using computer experi-
ments.)
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37 What is Randomness?

When one calls the function rand() in the standard C library, for most implementa-
tions the value returned is not really random, unless one has a plug-n-play quantum
bit card. Usually the value returned is generated by the rule:

zo = (random seed)

T axi—1 +bmodm

Where the seed is typically generated by some bits of the clock at the time the
program is run. Clearly the bits returned by this function are not “actually” random
(although they are pairwise independent when m is prime). However, these bits “look
random”. We can perform several standard statistical tests, which it will pass, for
example the x? test. In fact, this generator is “random enough” for many practical
applications. One could consider its output a “patternless pattern”. How can these
concepts be formalized? That is the topic of this lecture.

We will say that two things “look the same” if you cannot tell them apart. Thus
when they are different, we will expect that they have some characteristic that would
be different. If we wish to claim that something does not “look random,” we need to
show that it does not share some detectable characteristic with a random sequence.
A random sequence has several such characteristics. For instance, consider the bit
sequence:

(1011 ]01]01[11[00][10][ 101101 |

92
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Let us count the number of times each type of 2-digit subsequence occurs:

Subsequence | Number of Occurrences
00 1
01 3
10 3
11 3

If the sequence was random, with a high probability the number of occurrences of
each subsequence would be equal. Since this is not the case, one can be fairly certain
that this sequence of bits was not generated by a random process, because it does
not share this characteristic. This is an example of a statistical test.

Definition 37.1 A sequence generator is an efficiently computable rule by which we
take any short initial sequence and associate it with a long output sequence.

Example: g¢,(x) = by by by ... b where the initial string x is some integer between
0 and n.

z?mod n — by (0 or 1 depending on whether z2mod n is odd or even)
z*mod n — by

28mod n — by

l
x>mod n — b

This is called a repeated squaring generator.

Note that, from a theoretical perspective, it is insufficient to have a sequence which
looks random to all tests in current commercially available statistical analysis soft-
ware. To truly appear random, from the theoretical perspective, a sequence should
look random for any test that one could devise and execute efficiently.

We will say that a generator is pseudorandom if for any efficiently computable test
for randomness(including those not yet invented) the output of the generator “looks
random” for all but a tiny fraction of initial sequences x.

A major achievement in complexity theory and the foundations of cryptography was
the discovery that factoring is hard if and only if the repeated squaring generator
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is pseudorandom: if there exists any efficient test discerning something non-random
about the output of the repeated squaring generator, this test can be converted into
an efficient factoring algorithm. The proof of this equivalence can be found in [1]. The
more general result, developed in part by Yao [4], Blum and Micali [2], and Goldreich
and Levin [3], states that a one-way function exists if and only if a pseudorandom
generator exists.

38 Computational Indistinguishability

Definition 38.1 An ensemble is a family {X,} of random variables, when X, ranges
over strings of length n.

Example: {U,} where U, is the uniform distribution on 3".
In statistics, there is a straightforward concept of closeness:

Definition 38.2 The ensembles X = {X,,} and Y = {Y,} are A(n) statistically
close if

A(n) <Y |Pr[X, = o] - Pr[Y, = o]

«

Example: Let X and Y be ensembles, for which the distributions of X, and Y5 are
given in the table below:

a | Pr[Xy=a] | PrlYa =q] | |Pr[Xs =a] — Pr[Ys = q
00 0.3 0.2 0.1
011]0.1 0.1 0.0
10 1 0.3 0.4 0.1
111 0.3 0.3 0.0

In this example, > |Pr[X, =a] — Pr]Y; =«al| =0.2.

Definition 38.3 Gliven two vectors & and i, the Ly norm of the difference is

Li(Z,9) = Z |z — i
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Definition 38.4 {X,} and {Y,} are S(n) secure computationally indistinguishable
or % computationally close, denoted {X,} = %{Y(n)}, if for every circuit C,, of
size T'(n):

|PT[Cn(Xn) = 1] - PT[Cn(Yn) = 1” < 1
T(n) ~ S(n)

If we are discussing uniform pseudorandomness, then we replace “Every circuit C), of
size T'(n)” with “Every TM running in time 7'(n)”. The circuit (or TM) C,, is called
a statistical test.

These two definitions are similar, but they are not identical.

Lemma 38.1 If {X,} and {Y,} are e(n) statistically close then they are £(n) com-
putationally close.

The proof is left as an exercise.

One can easily prove that they are different. Consider the ensemble {X,,} where the
nth bit is the parity of the first n — 1 bits and {U,,}. Then A(n) = 1/2. Observe that
any n — 1 of the bits of X,, are independent and uniformly distributed, so the only
way to detect the difference is to use all n bits, which will take at least logn time and
n — 1 gates. Thus the ensemble {X,} is (n — 1) computationally indistinguishable
from uniform. One can think of statistical closeness as a computational closeness if
one has infinite computational power.

Definition 38.5 If{X,} = %{Yn} for every polynomial P(n), we will simply write
{X,} = {Y.}, and say that they are polynomially indistinguishable.

Lemma 38.2 If f € FP and {X,,} 2 {Y,}, then {f(X,)} = {f(Y.)}.

Proof: Let {F,} be a polynomial-sized, uniform circuit family computing f on inputs
of length n (we know such a family exists since f € F'P.), and let k be such that
|f(x)| < |z|*. Let {Cn+} be a circuit family distinguishing f(X,,) from f(V,) with
gap £(n¥) > 1/p(n¥) for some polynomial p(-), that is:

|Pr{Cu(f(Xn)) = 1] = Pr{Cus(f(Ya)) = 1]] 1
|Cre| p(n*)’
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Then the circuit D, = Cpx o F}, has size |D,| = |F,| + |Cyx|; and gap
1
p(n)

But since |C,x|/|D,| is polynomial in n, this means there exists a polynomial ¢(-)
contradicting the 1/poly indistinguishability of {X,} and {Y},}.

|Pr[Dn(Xy) = 1] = Pr{Dn(Y,)) = 1]] > [Cps|

Lemma 38.3 There erists a {X,} such that {X,} ranges over less than 2"/? strings
and {X,,} = A{U,}.

Note that these two ensembles are statistically quite different!

Proof: Consider all {X,,} which are uniform over some set S,, |S,| < 2"/2. S,
can be shown to exist by a probabilistic argument: Uniformly choose the strings
S1, 89, . . . Sqns2 from the set {0, 1}". For some fixed circuit C,,, let p,, denote Pr[C,,(U,) =
1]. Let ¢; = C(s;) Noting that E[¢;] = p,, we apply the Chernoff bound to get:

on/2

Pr |pn _ 2*711/2 qu| > 27n/8 S 26,2.271/2,2771/4 < 272n/4
i=1

Which means that with probability at least 1 — 2_2n/4, we choose a sequence which
works for C, (i.e. has computational gap less than 27/® for C,,). Since there are
at most 22" circuits of size 27/8, this means that there is a non-zero probability of
randomly picking a S, which is 2"/ secure computationally indistinguishable from

n n/
U, (actually Pr[S, =y U,] > (1—272"")2 " x 1/€). Thus such an ensemble must
exist.

Definition 38.6 A function G: X* — X* is a pseudorandom generator if:

1. G s polynomial time computable
2. G: {0,1}F — {0, 1}
3. {Us} ={G(Uk)}

Definition 38.7 A function g : ¥* — X* is an £(n) pseudorandom generator with
stretch 1(n) if:
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1. g € UeenFTIME(I¢(n))
2. g: {0,1}" — {0, 1}
3. {9(Un)} = iy {Uim }

4. l(n) >n
Example: If X,, = g(U,) where m = [(n), {X,,} is e(n) pseudorandom.

Theorem 38.4 If {X,} = {Y,}, then they are also indistinguishable to polynomial-
size circuits that can draw a polynomial number of samples:

n)-—n’»-n? n

The proof technique uses hybrid distributions, distributions which are a mixture of
two other distributions.

Proof(by contrapositive):
Suppose that |Pr[Cy (X}, ..., X2(n)) = 1] — PriCa(Y,, ..., YP(n) =1]] > =
First, we will define a set of hybrid distributions:

oY) = (Xp, X2, X3, Xp(=t xpl)y = X,

H' = (X! x2 x3 .  xpm-1 yrn)y
H? = (X} X2 ... yPm=2 ypn-1 ypn)

HIO-U = (XL Y2 V3L Yl ye)

n’ n n?o

™ = (YL Y2V yrml yry —y

n’ n?’ n?’

We know that C,, can “distinguish” between H® and HE™; we’ll show that C,, can
also distinguish X, and Y,,.

Definition 38.8 C,, has a gap of f(n) on ({X,},{Y,.}) if

|Pr{Cn(Xn) = 1] = Pr{Cu(Y,) = 1][ = f(n).
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Lemma 38.5 Gap Lemma If C), has gap greater than f(n) on ({X,},{Yn}) and a
gap greater than g(n) on ({Y,},{Z,}) then it has a gap less than f(n) + g(n) on

({Xn}, {Ya})-
Proof: We are given the bounds:
|Pr(Cn(Xn) = 1] = Pr{Cu(Ya) = 1] < f(n)
and
|Pr(Cn(Yn) = 1] = Pr[Cy(Z,) = 1]| < g(n)
and we are interested in bounding the gap
|Pr|Cn(X,) = 1] — Pr[C,(Z,) = 1]|.
Let py = Pr[C,(V,) = 1]. Rewriting the last gap and applying the triangle inequality,
we get the desired bound:
Ipx —pz| = |px —pz+ (v —pv)]
= |(px —pv) + (py —p2)|
Ipx — pyv| + |py — pz|
f(n)+g(n)

<
<

Corollary 38.6 There ezists a polynomial S(n) such that for all n there exists an i
such that C,, has a gap of ﬁ on (H:, HTY).

Since these two distributions differ only in the p(n) — ith input, there exists some
setting of the other inputs such that the gap is retained. We can prove that this can
be accomplished recursively. Suppose that U and V' are random vectors for which

PriC(U)=1]-Pr[C(V)=1]>r
, and define
b= Pr[U,=1]= Pr[Vy, =1]

where Uy and V; denote the first bits of U and V, respectively. Let P, denote the
event Uy = o, let (), denote the event Vy = o, and define qq, po, ¢1, and p; such that
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Then

PriC,(U) =1] = bpy + (1 = b)po
and

Pr{Cu(V) =1] = bg1 + (1 = b)qo
and

|Pr{Cu(U) = 1] = PriCu(V) = 1][ = [b(p1 — ¢1) + (1 = b)(po — o)

Thus the gap on (U, V) is the weighted average of the gap on (P, Q) and the gap
on (P, (Q)q). Therefore, one of these two gaps is at least as large as (U, V). Hence, we
can set the first bit without tightening the gap.

Thus if one fixes all the inputs for which the two distributions H? and H:™' do not
differ, then the resulting circuit can discriminate between X,, and Y,, with the same
or larger gap as on (H:, Hit1).

As we mentioned at the outset of the proof, this technique is called a hybrid argument.
You should be sure to review it if you don’t understand it; we will be getting some
serious mileage out of this technique in the remainder of the course.
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Synopsis: How does randomness help. Relating power of randomness to
one-way functions and hardness of functions. Amplifying hardness.

39 What is the power of Randomness

So far we have several complexity classes like RP, BPP, ZPP and others which use
randomness. We also saw some problems, like primality testing, which can be solved in
polynomial time using randomness, but for which no solution is known in deterministic
polynomial time. So in this lecture we will ask the question: What is the power of
Randomness? Is P = RP or P = BPP? At present we only know that ZPP C Up2™".

In this lecture we shall show a beautiful duality that exists between hardness and
randomness. In particular, if some problems are hard, then other problems are easy.
For example we will see that if factoring is as hard as it seems to be then, BPP &
TIME (28" ™).

39.1 Randomness and One-Way functions

In lecture 12, we observed that, 3¢ > 0 such that, if Je(n) one-way function, this
1

implies that 3 €¢(n) pseudorandom generator® with stretch Ok
This observation was used by Yao, to relate the results for one-way functions to the
time taken by randomized complexity classes.

Theorem 39.1 (Yao) If an e(n)® pseudorandom generator with stretch ﬁ erists,

then »
BPP — TIME(t) C TIME(2°¢ (i)

1

where €' is the inverse function of €(n), i.e. € '(e(n)) =n.

4The generator runs in time polynomial in the length of its output.
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Proof sketch:

e Let M be a BPP algorithm using ¢t random bits.

°
.

et g : €'(7) bits — ¢ bits be an e2(n) pseudorandom generator with stretch

1
e(n

~

e M will behave approximately the same way if it is given bits from g(U(l(%))
instead of random bits from U;. Otherwise, M would be a test for g and thus
contradict the fact that ¢ is pseudorandom.

e Simulate M on all 2¢'(#) strings output by g.

e Take the majority outcome.

This immediately implies the following:
Corollary 39.2

1. If a one-way function exists then Ye > 0, BPP C TIME(2"")

2. If there is Q}LE one-way function for some € > 0 then BPP C TIME(2'°¢"™), for

some c € N

3. If there is a 251n one-way function for some € > 0 then BPP = P

The above results relate the results about the existence of one-way functions to time
taken by randomized algorithms. However, these conditions about one-way functions
are rather strong. Noam and Wigderson showed that the above results hold under
much weaker conditions. In fact, their results are considered to suggest that probably
P = BPP.

39.2 Randomness and Hard functions

In this section we will prove Noam and Wigderson’s result, which proves results similar
to above under much weaker assumptions.

We first begin with an observation.
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Observation: For Yao’s theorem to work the pseudorandom generator does not need
to run in time polynomial is its output®. It might as well use time O(2") on inputs of
length n, since we take 2" time to enumerate all seeds. In other words, the generator
might as well relax.

Definition 39.1 An €(n) pseudorandom generator g with stretch l(n) is said to be
relaxed if it satisfies the following properties.

e Takes n bits to l(n) bits
* 9(Un) Zetw) Uiy

e g runs in time O(2")

Definition 39.2 A function f is S(n) hard if, V circuits C'(n)

|Procu,[Cn(@) = f(@)] = Pra[Cu(z) # f(@)]] _ 1
Size of C(n) — S(n)

Notation: Let E denote the class U, TIME(2%") and EX P denote the class U, TIME(2"")

Theorem 39.3 (Nisan-Wigderson 1988) If 3 h € E such that h is S*(n) hard,
then there is a % relaxed pseudorandom generator with stretch S(n).

This implies the following:
Corollary 39.4

e If h € E is super-polynomial hard, then
BPP C TIME(2"),Ve > 0

o Ifh € E 2™ hard for some e > 0 then

BPP C TIME(2'°5°™), for some ¢ € N

5This assumption is usually needed in cryptographic applications, however they are not necessary
in our scenario, where the simulation of randomized algorithms is considered.
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o Ifh € E is 2 hard then
BPP =P

Proof: [Theorem 39.3] We know from Problem set 5, #3, that V¥ prime power n, 3 a
Logspace computable S(n) x n matrix A, that is a (log S(n),/n) design. That is, it
satisfies the following properties.

e All rows have exactly \/n 1’s.
e Any two rows have at most log S(n) 1’s in common.

e There is a logspace machine that will output A, on input 1”.

Let h € E be S*(n) hard. We will construct a generator g based on h. Let
v = (21,T2,...,T,) be an n bit string. V1 < i < S(n), the i bit of output of
g(z1,73,... ,1,) is obtained by applying h to the \/n bits of , indicated by the "
row of A,,.

Clearly ¢g(X) is computable in time O(2"), and it has stretch S(n). We will show
that g is ﬁ pseudorandom generator.

Observe that each bit when view individually is S(y/n) hard (random), since the value
of a bit at position i is just obtained by applying A to a uniform distribution over \/n
bits on which bit ¢ depends. However, the intuition is that since the bits are based
on nearly disjoint sets, they remain hard (random) even when looked at together.

The proof is organized as follows. We will assume that ¢ is not a pseudorandom
generator and derive a contradiction to the hardness assumption of h.

If g is not pseudorandom, there is a circuit A such that

|PracusinA(@) = 1] = Preey,[A(G(z) =1]] 1
Size of A S(n)

We will now consider the following lemma, due to Yao.

Lemma 39.5 (Predictor Lemma) [Yao/ Given the circuit A (as described above)
exists, there exists a circuit B and i(n) € N, such that B can predict the next bit of
g(x) given i(|x|) bits of g(x) and,

Procu, |B( First i(n) bits of g(x)) =i + 1" bit of g(v)] 1
Size of B ” S2(n)
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Proof:[Yao’s Lemmal Let ¢g(x) = y1,42,... ,ys@). Without loss of generality, as-
sume that Pryepg, [A(z) = 1] < Preep,[A(G(7)) = 1].

Define hybrids H;, for 1 <i < S(n).
H; = First ¢ bits of g(z)|S(n) — ¢ random bits

By the Gap Lemma in Lecture 11, 37 such that A has gap on H;, H; .

1
S%(n)

Fix the random bits so as to maintain the gap of A and define the predictor B(y1, ya, - - . , ¥i)
as follows:

If A(yy,. .., 0,fixed bits) = A(yy, ...,y 1, fixed bits) then flip coin and randomly
output a bit.

Else if, A(y1,...,v; 0, fixed bits) # A(y1, ... ,v;, 1, fixed bits), then
if A(y1,...,v;0,fixed bits) = 1 then output 0, else output 1

Thus we have a circuit B which takes the first i bits of g(x) as input and outputs the
i+ 1" bit such that

|P7"[B(y17y27-.. ’yl):yz+1]—%| - 1
Sizeof B S2(n)

To achieve a contradiction to the hardness assumption we need a circuit which will
compute y; 41 from © = x1,... ,z,. Without loss of generality we can assume that

Yit1 = h(fL'l, y L2 - 71‘\/5)

Since y;41 does not depend on other bits of z, we can write Pr[B(y1, Y2, - .. , Yi) = Yi+1]
above, as the probability Pr[B(y1,ys,--.,yi) = yi+1], where the probability is over
x chosen at random, such that only zi,... ,z 5 are chosen at random. Thus we can
fix x 544,..., 7, while maintaining the success over size ratio of predictor B. Now,
since we have a (logS(n),/n) design, each one of yi,...,y; depends on no more
than log S(n) of the 2's. So, given the z's a circuit of size S(n)i can be constructed
to compute yy,...,y; by simulating the pseudorandom generator. Now apply B to
Yi,..-,y; computed from z to get a prediction of y;,,. It is clear to see that the
success over size ratio of this circuit is at least S+(n) Thus contradicting the hardness
of h. Thus the proof follows.
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In fact, there is better block design. We can construct a (log S(n),cn) design with
S(n) as large as 2°n. This construction uses the following Greedy Method. For the it
row pick the first set you find that is nearly disjoint from other sets so far. It can be
shown using a counting argument that this is possible.

Observe that the greedy method above takes 2" time. If n = O(logS(n)), then
2" = S(n)° time.

40 Amplification of Hardness (Yao’s XOR-Lemma)

In the previous section, we considered hard functions in a very strong sense. The
functions we considered hard previously were the ones which could not be approxi-
mated almost everywhere. However, we can use Yao’s XOR-Lemma to prove similar
results about functions which can be approximated almost everywhere. In particular,
we can prove similar results about functions f such that

Pr{C(x) £ f@)] _ 1
SizeofC, nk

for some k.

Theorem 40.1 (Yao’s XOR-Lemma) Suppose fi, fa, ..., fr are hard in the fol-
lowing sense:
If for any C,, |Cy| < S(n) has
Vi, (Pr[C(z) = fi(z)] = PriC(z) # fi(x)]) <€
then f(xy,x9,...,2%) = @le fi(z;) is harder in the following sense:
V§ > 0,VC! such that |C! | < §%(1 — €)?S(n), then
(PriC'(f(y) = C(y)] = PrlC'(f(y) # C(W)]) < €+

This gives us following:

Corollary 40.2 If f is a function computable in TIME(2°™), such that for all cir-
cuits Cy, |Cy| < S(n) and

(PrlCa(s) = @) = PriCa@) # f@)) < (1= )

for some k, then 3f" € TIME(2°™) such that f' is S(n®) hard for some ¢ > 0.
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In other words, if f € TIME(2°() cannot be closely approximated by a polynomial
sized circuit, then there exists a function f’ € TIME(2°() that cannot be slightly
approximated by polynomial sized circuits.

41 Conclusions

Using the results in the previous sections we can conclude the following:

1. If TIME(29™) contains a language that cannot be approximated to with (1—-¢)

by a polynomial-sized circuit family, then BPP C N (2" TIME)

2. If TIME(2°(™) contains a language that cannot be approximated to with (1— )
by circuits of size 2" for some € > 0, then BPP C TIMEn!°s"" (for some ¢ > 0).

3. If TIME(2°(™) contains a language that cannot be approximated to with (1— k)

by circuits of size 2"¢ for some € > 0, then P = BPP.

But there is an E-Complete problem that is randomly self-reducible. So, we can
change to worst case assumptions:

1. If dh € E, and h cannot be computed by polynomial size circuits then BPP C
N TIME(2™)

2. If 3h € E, and h cannot be computed by circuits of size 2" for some € > 0,
then BPP C TIMEn!°"" (for some ¢ > 0).

3. (Due to Impagliazzo and Wigderson) If 3h € E, and h cannot be computed by
circuits of size 2" for some € > 0, then P = BPP.
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42 Valiant-Vazirani’s Lemma

Suppose we are given a boolean formula ¢ and we know that, if ¢ € SAT then ¢ has
only one satisfying assignment. Can we decide ¢ € SAT efficiently?

Definition 42.1 An algorithm f is good for formulas guaranteed to have at most
one solution if
accept if ¢ has exactly one
f(o) = satisfying assignment
reject if ¢ ¢ SAT

Theorem 42.1 (Valiant, Vazirani [2]) If there exists an RP algorithm f which is
good for formulas guaranteed to have at most one solution, then RP=NP.

Proof: Assuming there exists f as in the statement, we will provide an RP algorithm
for SAT. Since SAT is NP-complete, this will imply that RP=NP.

Given positive integers n and k, a k x n 0, 1-matrix M and a vector a € {0, 1}*,
let T g, mra(®1, ..., ) be the boolean formula on the variables (zy, ..., zx) such that
L1, ..., ) is satisfied if and only if

o
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Given a set S C {0,1}" such that 2872 < |S| < 2571 if the coefficients of the matrix M
and of the vector « are chosen uniformly at random, then (by Homework 3, problem
4b)

Pri3lz € Sst. Mx =al >

ol =

Given any boolean formula ¢, then f(¢) rejects with probability 1 if ¢ ¢ SAT, f(¢)
accepts with probability at least % if p € SAT.
If S C {0,1}™is the set of satisfying assignments for ¢, then

1
Pr[2F2 < |9 < 21 = —.
n

Thus, for any formula ¢ € SAT, the probability that ¢(x1, ..., 2,) ALp kara(21, s T0)
has exactly one solution is, at least #.

We define an RP algorithm for SAT as follows.
Given a boolean formula ¢(z1, ..., z,):

e Pick k at random in [1,...,n].
e Pick M a k x n 0,1-matrix at random.

e Pick o a k bit 0, 1-vector at random.

e Output f(d(z1,..., Tn) A Lnparal(Tr, .y n))-

If ¢ ¢ SAT, then f(¢(z1,...,20) A Tpporra(®1, ..., Tn)) rejects with probability 1, if
¢ € SAT, then, by the above arguments, f(¢(x1, ..., 2n) Alngara(21, ..., T,)) accepts
with probability at least . Choose a parameter a such that (1 — %) < 2. Notice
that a only need to be polynomial size in n. Choose uniformly at random a integers
kiin [1,...,n], a k; x n 0, 1-matrices M; and a k-bit 0, 1-vectors «; (1 < i < a). Given
¢ € SAT, the probability that, for some i, f(¢(z1,...,2n) A Tyt ny 05 (T1, s ) =1
is at least % [

An analogous statement holds for BPP:

Theorem 42.2 If there exists a BPP algorithm f which is good for formulas guar-
anteed to have at most one solution, then NPCBPP.
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43 Toda’s Theorem

We have already observed that any language in the Polynomial Hierarchy can be
decided using polynomial space. Moreover, every counting problem in #P can be
solved using only polynomial space; in fact one can enumerate all the possible solu-
tions reusing the space. How do PH and #P compare in power? Toda’s theorem
answers to this question.

Theorem 43.1 (Toda [1]) PHCP#P,

In order to prove Toda’s theorem we need to introduce the concept of Direct Connected
Uniform Clircuits and to prove some intermediate results.

43.1 DC Uniform Circuits

Definition 43.1 Let {C,} be a circuit family of size S(n). Let TY PE(n,i) be an
indexing function that outputs the type (AND, OR, NOT, INPUT X5, OUTPUT, ...
) of gate i in circuit C,,. Let IN(n,i,0) = j where j is §th in the ordered list of indices
to the gates that feed into i ( if there is no §th gate, j =NONE). Let OUT (n,i,d) = j
where j is §th in the ordered list of indices to the gates that i feeds into ( if there is no
dth gate, j =NONE). FINDINDEX (n,T) =i where i is the index of type T where
T can be either of the form INPUT X, or OUTPUT. If all the above functions are
computable in deterministic O(log(S(n))) time, we say that {Cy} is Direct Connect
(DC) uniform.

In Homework 4, problem 5, we proved the following results.

Lemma 43.2 PH is equivalent to the set of languages accepted by DC-uniform fam-
ilies with constant depth, exponential size, with unrestricted NOT gates, unbounded
fan-in AND, and unbounded fan-in OR gates.

Lemma 43.3 ®P is equivalent to the set of languages accepted by DC-uniform
families with constant-depth, exponential size, and four types of gates (XOR, NOT,
AND, and OR) such that the XOR gates have unbounded fan-in, the AND and the

OR gates have polynomial fan-in, while the NOT gates are allowed to occur anywhere.

Another technical result we will need is the following:
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Lemma 43.4 FEvery function computable by an exponential size, DC-uniform family
of circuits with unbounded fan-in size (+) gates and polynomially bounded fan-in size

(x) gates and polynomially bounded number of constants can be computed by an Fp#P
function.

43.2 Proof of Toda’s Theorem

Tn order to prove Theorem 43.1, we will first show that PHCRPPP and then RPPP cp#P .
To accomplish the first step, we state the following.

Theorem 43.5 An OR gate with fan-in of size 2¢ can be replaced by a constant-depth
circutt Cppap containing AND, OR and XOR gates where the AND and OR gates
have fan-in of size d* for some k and the XOR gates have fan-in of size 2¢, such that

1
PraaplCrran(®) = 1] OR(z) = 1] 2 o,
where M, o and k are, respectively, a randomly chosen k x d 0,1-matriz, a randomly
chosen 0, 1-vector of length k and a randomly chosen integer in [1, ..., d].

Proof: Let (zy,...,7;) (where [ = 2%) be the input of an OR gate. Construct a circuit
Ok has follows. Pick at random an integer k in [1,...,d], a k x d 0, 1-matrix M and
a 0, 1-vector o of dimension k. Construct a hash filter Hj;, , which takes as input
a variable z; and returns z; if M7 = «, 0 otherwise, where 7 is the binary vector of
length d corresponding to the binary representation of ¢. Such a hash filter can be
built in constant depth, size polynomial in d, using only AND and OR gates with
polynomially bounded fan-in.

Replace the original OR gate with an XOR, only instead of feeding in directly the
values of the variables (z1, ..., z;), we feed in the values of (Hps o k(21), .. Hara k(1))
Given an assignment (zy,...,7;), let S = {i | z; = 1}. If 2872 < |S]| < 2871 then the
probability that there is a unique ¢ € S such that H,, o x(%;) = 2; = 1is é (as proved
in Homework 3, problem 4b). As before the probability that 2872 < |S| < 2k s L.
Therefore, if OR(xy,...,x;) = 0 then Cyrai(2,...,2;) = 0 with probability 1, if
OR(x1,...,z;) = 1 then Chrak(z1, ..., 7)) = 1 with probability at least 8_1d‘ n

Theorem 43.6 PHQRP@P.
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Proof: By Lemma 43.2, using De Morgan equality, PH is equivalent to the set of
languages accepted by DC-uniform families with constant depth, exponential size,
with unrestricted NOT gates and unbounded fan-in OR gates, since we can replace
any AND gate by a constant depth circuit using only OR and NOT gates.

Let {C,} be a DC circuit family of this form where n is the input size of C},. By
Theorem 43.5, every OR gate of C, with large fan-in size (at most 27" for some
constant h), can be replaced by a constant-depth circuit C o containing AND, OR
and XOR gates where the AND and OR gates have fan-in of size n* for some & and
the XOR gates have fan-in of size 2", such that

PryaxlCuoer() =1|O0R(z) =1] > —.

Given a constant a, construct a circuit C' composed by an OR gate with fan-in size
a, in which the inputs are the outputs of Cys, o, 1, (71, ..., 1), where 1 <7 < a and M,
«;, k; are picked uniformly at random.

If OR(z1,...,2;) = 0 then C(z1,...,x;, My, 01, ky, ..., My, ay ko) = 0 with probability
1, if OR(xy,...,z;) = 1 then

1 @
Pr [O(ZL’, Ml,al,kl, ...,Ma,aa,ka) =1 | OR(J,‘) = 1] Z 1— (1 — —) .

M17a17k1 th
Ma,0q,ka

We want to fix the amplification constant a so that

1 .* 1
(1-— W) <3
Notice that a only need to be polynomial size in n, therefore the AND and the OR
gates in C' have polynomial fan-in size.
Therefore we can construct a circuit C,, with constant-depth, exponential size, and
four types of gates (XOR, NOT, AND, and OR) such that the XOR, gates have un-
bounded fan-in while the AND and the OR gates have polynomial fan-in, by replacing
each OR gate in C,, by an XOR gadget as above, using the same random bits R in
each gadget. At least half of the choices of R will force each XOR gadget to perform
properly (i.e. to accept every input (z1, .., ;) accepted by the correspondent OR gad-
get in C,,), therefore any input rejected by C,, will be rejected by C,, with probability
1 and every input accepted by C, will be accepted by C, with probability at least %
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By Lemma 43.3, for a fixed choice of the random bits R, the set of inputs accepted
by {C,} is in ®P, therefore PHCRPOP. m

Theorem 43.7 RPOP cp#P.

Proof: Let L be a language in RPEBP, then, by Lemma 43.3, there exists a DC
uniform family {C,,(R, z)} of circuits with constant-depth, exponential size, and four
types of gates (XOR, NOT, AND, and OR) such that the XOR gates have unbounded
fan-in, the AND and the OR gates have polynomial fan-in, while the NOT gates are
allowed to occur anywhere, where |R| is polynomial in n and |z| = n, such that if
x ¢ L then Ciy(R,z) = 0 for every choice of R and if x € L then Cj;(R,z) = 1 for
at least half of the possible choices of R. Furthermore, using De Morgan inequality
we can suppose, w.l.o.g., that each {C,} only uses XOR, AND and NOT gates.

For any n, let C! (R, x) be the circuit obtained from C, (R, x) by replacing each XOR
gate with a (+) gate, each AND gate with a (x) gate and each NOT gate with a gate
which increases the input by 1. Notice that, for any fixed choice of R and for every
z, Cp(R, z) outputs a 1 if and only if C} (R, x) outputs an odd number. Therefore, if
x ¢ L then C|, (R, ) is even for every choice of R and if z € L then C|, (R, z) is odd
for at least half of the possible choices of R.

[00.00] x | [oo0.01] x | [1ea0] x | 1.1 x|
c c c c
Toda’s Toda’s Toda’s Toda’s
gadget gadget | *cccecece gadget gadget
+

Figure 18: Construction of the type (+) circuit deciding L.

In order to derandomize, we introduce Toda’s gadget T'(x), which is a circuit with ()
and (x) gates both with constant fan-in, with the property that 7'(z) = 0 (mod m)
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if z is even, T(z) = —1 (mod m) if z is odd, where 21 < m < 27" for some k.
Assuming the existence (which we are going to prove later) of such a gadget, consider
the circuit C) () obtained as follows: for every choice of R, feed T'(C),(R,z)) into a
(+) gate with fan-in 2/%l. The construction is better explained in Figure 18. Thus,
if v ¢ L then C!(z) = 0 (mod m), otherwise C/(x) # 0 (mod m), which can be
checked in polynomial time. By Lemma 43.4, C/(x) can be computed by an Fp#P
function, therefore L can be decided by a piP algorithm.

We now only need to show how to construct a Toda’s gadget. Observe that, for every
z € Z, for every i € N, z = —1 (mod 2?') if and only 423 + 3z* = —1 (mod 22"").
This polynomial can be computed by a constant depth circuits Sy with (+) and
(x) gates with constant fan-in. Toda’s gadget is accomplished in [log(|R|)] stages,
where the output of stage zero is Sy(z), while the output of the (i + 1)th stage is
Siv1(x) = So(Ss(x)) for 0 < i < |log(|R])|. Given m = 22" the final result is
given by T'(x) = Spog(/r|)1(¢), and one can see that this gadget behaves as desired. =

References

[1] S. Toda, On the computational power of PP and &P, Proc. 30th IEEE Symp. on
the Fundations of computer Science, pp. 514-519, 1989.

[2] L. G. Valiant, V.V. Vazirani, NP is as easy as detecting unique solutions, Theor.
Comp. Science, 47, pp. 85-93,1986.



CS 15-855 Computational Complexity Theory October 18, 2000

Lecture 16: Interactive Proofs

Lecturer: Rudich Scribe: Kedar Dhamdhere / Editor: Kedar Dhamdhere

Synopsis: Definition of interactive proofs. Arthur Merlin proofs (public
coin interactive proofs). IP= PSPACE.

44 What are proofs?

Traditional proofs are static sequences of symbols to be perused by a verifier. NP con-
sists of short traditional proofs.

45 Adding randomness to proofs

An interactive proof is a conversation between a prover and a verifier. The prover
is computationally all powerful, whereas verifier has bounded resources (polynomial
time). Prover tries to convince verifier of certain assertions. We say that a language
is in IPif there is an interactive proof that “x € A” Vx € A, where the length of the
proof is polynomial in |x|.

Clearly, NP C IP, since a traditional proof is just one round of conversation.
Do we add more power by adding interaction 7

Is IP more powerful than NP?

Example: Let 1ISO = {(G,H) | G = H}. G = H if 3 1-1 onto map A: V(QG)
V(H), such that (u,v) € E(G) = (A(u),A(v)) € E(H). Let NONISO
{(G. H) |G #H}.

4

We know that ISO € NP. Because we just have to guess an isomorphism between the
graphs. However it is unlikely that 1ISO € NP-complete. Because it would imply that
PH = Y,. On the other hand, we can ask whether NONISO € NP. This problem is
still open. And it seems quite hard to tackle.

114
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However, we can show that NONISO € IP.

Proof: Verifier picks randomly either G or H. She, then, generates a random permu-
tation of that graphs and presents it to the prover. The prover tries to guess the graph
from which it came from. If the two graphs G and H are isomorphic then random
permutation of one will be indistinguishable from random permutation of another.
But if the prover guesses correctly, then the verifier can be certain with probability
1/2. The prover can repeat the procedure several times to amplify the confidence. =

45.1 Formal Definitions

An Interactive Proof System has two players: A polynomial time verifier given by

the function, V': ¥*XX*xE* — ¥*U{qaccept, Greject }, Where V (z, 7, S1#So#Ss# ... #Si-1) =
S;. Here z is input and r denote the random bits known only to the verifier.

And a prover with unlimited computational power, represented by the function:

P: ¥* x ¥* — ¥*, where P(x,S1#S2#Ss# ...#S; 1) = S;. Here P can be any
function, not necessarily efficiently computable.

Notation: We will use (V < P) for the interactive proof system. We say that
(V <> P)(x,r) produces the conversation S1#Sa# ... #S;, if

L. Sl = Gaccept O Greject

2. V odd 1,
Si =V(x,r,S1#S27# ... #Si 1)
Y even ¢
Si = P(x, S1#So# ... #Si1
Sy =V(z,re€)

The interactive proof system (V < P)(x,r) accepts, if the conversation it produces,
ends in accept.

Pr{(V < P)(x) accepts| = Pr,[(V < P)(x,r) accepts]
PrlV accepts x| = maxp{Pr|[(V <> P)(x) accepts|}

We say that, A € IP <= 3 a probabilistic polynomial time verifier V' such that
z €A = PrlV acceptsz] > 2
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v ¢ A = Pr[V acceptsz] < 3
And the conversation should be short, i.e. |S;#S2# ... #S| = O(|=|F)

Example: NONISO € IP

45.2 IP C PSPACE

A verifier accepting x is equivalent to a variant of alternation. And IP-machine is
like polytime alternating machine except instead of AND, OR nodes, it has coin flip
(AV @) and maximum (M AX) nodes.

Now A € IP <= 4 an IPmachine M such that,
x €A = Pr[M(x) accepts| >
r¢ A = Pr[M(x) accepts| <

W= N

( <= ) The probabilistic polytime verifier V' runs the machine M until she gets
to MAX node. At MAX node verifier asks prover which path to choose. Prover,
trying to maximize the probability of V' accepting the proof, chooses a direction which
maximizes the probability of reaching accept. Then verifier again runs machine M
till she gets to another M AX node. At M AX node, again prover tells which way to
go and so on.

(=) We want to construct the machine M. So we change the verifier V' so that at
points when she takes input from prover, the machine M uses a M AX node.

So we have proved that A € IP = A has an IP-machine M. M can be simulated
in PSPACE by depth-first search keeping track of the probability that the currently
scanned node leads to an accept.

So we have NP C IP C PSPACE.

46 Arthur Merlin Proofs

In interactive proofs, the random bits r of verifier are not known to the prover.
However a slightly different notion of proof arises if we assume that all random bits
are publicly known. Thus, in Arthur-Merlin proofs, Arthur is polynomial time verifier
and Merlin is computationally all powerful prover. We can even assume that Arthur’s
comments are all uniformly random. Formally
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Definition 46.1 Let (V <> P) denote Arthur Merlin (AM ) proof system. The con-
versation generated by (V <> P) is a function of x (input) and r1,7a, ... ,r; (random
bits).

(V& P)(x)(r,r2y...,1) =

1. S; = accept or reject
2. Sl = T

3. For odd v, S; = 19
For even i, S; = P(x, S1#S27 ... #S; 1)

A e AM[l] < 3 probabilistic polynomial time verifier V' such that
r €A = Pr[V accepts x] > 2/3

r g A = Pr[V accepts ] < 1/3

such that |S1#Se# ... #S1| = O(|z]*).

Finally, we define AM as U;>o AM[I].

In previous section we saw, NONISO € IP. So it is natural to ask: NONISO € AM?
The proof of NONISO € IP seems to rely on the fact that the random bits generated
by the verifier are not known to the prover. Goldwasser and Sipser proved in 1985
that, in fact NONISO € AM. The proof uses hashing technique to prove that there is
an IP machine which accepts the input.

Theorem 46.1 (Goldwasser—Sipser) NONISO € AM

Proof sketch: Let us consider the proof that NONISO € IP. In that proof, verifier V'
generates random permutation of either graph GG or graph H and presents it to prover
P. If the graphs GG and H are isomorphic then all random permutations generated by
the verifier V' are same. On the other hand, if G # H, then the graphs generated by
the verifier won’t all be same. Thus number of possible conversations in both cases
will be different. For example, if G = H, then there will be n! conversations (module
some factors) and if G # H, then there will be 2n! conversations. So to prove that
G # H, Merlin can prove to Arthur that number of conversations is strictly greater
than n!, thus proving that G # H. [

Proof: With loss of generality, assume that the graphs G and H are rigid, i.e. they
have no non-trivial automorphisms. Let ISO(G) = {G' | G = G'} and ISO(H) =
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{G" | H = G"}. Since G and H are rigid, then [ISO(G)| = [ISO(H)| = n!. More
generally,

n!
- JAUTO(G))|
where AUTO(G) = {r | m: V(G) — V(G) takes G to G}. Now, since G and H are
rigid,

[150(G))]

|IISO(G)UISO(H)| = n! if G=H
= 2n! if G#ZH

Let H: U — T be an independent family of hash functions such that |T| = 4nl.
Let W = {G" | G = H or G = G}. So |W| = n! or |W| = 2n!. Arthur picks
h € H,a € T at random. Let § = Pry, o[3G" € W h(G’) = a]. Then by Problem Set
3, # 4(a), we know that,

Wi LW W]

T 20T T T

So if [W| = nl, then § < 1. And if [W| = 2n!, then § > 2. Hence we can use

amplification technique by using more than one hash functions i and hash values «
picked independently.

Now if G and H are not rigid, then we construct graphs G from G and H; from H
by adding a vertex to each and connecting the new vertex to all of the old vertices.
Let M = G, U Hy, i.e. M is made up of one copy of G; and one copy of H;. And
let N = G; UG, disjoint union. Now [[SO(N)| = 2-|[SO(G)|*. If G # H, then
|[ISO(M)| = |ISO(G)| x [ISO(H)|. Further, we can show that ISO(M) < ISO(N)
by showing bounds on AUTO(M) (left to the reader as an exercise). Thus we can use
the technique described above to get the result NONISO € AM|[2] with exponentially
small error for Arthur.

46.1 Graph isomorhpism revisited

We can use any of the four different methods of showing BPP C P /poly, to conclude
NONISO € NP /poly.

Coming back to graph isomorphism problem, if ISO € NP-complete, then NONISO &
coNP -complete. It would imply that coNP C NP/poly and hence PH = II,. Thus
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if 1ISO is NP-complete then polynomial hierarchy collapses to level 2. This string
evidence suggests that graph isomorphism is not NP-complete.

Theorem 46.2 (Babai) ¥ k> 2, AMk]=AM]2]
Theorem 46.3 (Goldwasser—Sipser) ¥ k > 2, IP[k] = AM[2]

Thus, for a fixed k, we have AM[k] C NP/poly. Using similar ideas as in theorem
46.1, Goldwasser and Sipser proved that for polynomial interaction, IP = AM[poly] =
PSPACE.
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Lecture 17: IP = PSPACE

Lecturer: Rudich Scribe: Bryan Clark / Editor: Joshua Dunfield

Synopsis: In this lecture we will prove that IP = PSPACE. This will be
done directly as opposed to through a PSPACE complete problem.

47 Introduction

The proof and major steps leading up to the proof of IP = PSPACE all happened
in a fateful week in 1989. First, Fortnow, Karloff, Lund, and Nisan showed that
Permanent € IP which leads to the direct corollary that P* C IP. Then Babai gave
an alternative proof that P* C IP by utilizing 43SAT. Finally, Shamir showed that
IP = PSPACE using TQBF. In this lecture we do not utilize this method to prove that
IP = PSPACE. Instead do it directly by examining space bounded Turing Machines.
In so doing, we will revisit the ideas in Savitch’s theorem.

48 Proof of IP = PSPACE

First we will demonstrate that IP C PSPACE. To begin with, we know that IP = AM.
Now, PSPACE can simulate Merlin. Whenever “Merlin” has to respond, PSPACE has
the ability to examine each possible response and calculate (recursively) the proba-
bility that Arthur will accept. Then PSPACE assumes that Merlin will say the thing

that will make Arthur most likely to accept. Therefore, we have concluded that
IP C PSPACE.

For the rest of the lecture we will prove that PSPACE C IP. Intuitively, what this is
demonstrating is that it is possible for someone to convince you that some particular
move “x” is the optimal move in the game of Go. This will be done by transforming
into a space where the optimal strategy against random moves is the same as the
optimal strategy against optimal moves. Then this space will be transformed into a

space where complete random moves are optimal.

120
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We begin by creating a number of notational abbreviations and definitions that will
allow us to encode the running of a Turing machine with a low degree polynomial
PATH. First, let M be a Turing machine which runs in Space O(n*), where n is the
length of the input. All configurations of the machine M (z) can be described using
a string of [ = O(n") symbols taken from a finite alphabet I' = {1,2,3,... ,k}. Let
A be the set of transition rules of M. Let

= aiay...ap, B:blbg...bl
be two configurations of M (where the a;’s and b;’s are from T).

We take am 3 to mean that configuration 3 can be reached from configuration a in
no more than m steps.

We now describe the coding of the PATH polynomial. PATH is defined thus:
PATH()(OQOQ, <A, 617 BZ: s 761) =
> [l EQ(aj,b) LEGAL, { Qi Qi1 Giv2 }

1<i<Ii—3,6€A j¢{i,i+1,i4+2} bi bi+1 bi+2
where EQ(a,b) = 1 if a = b and 0 if a # b, and

a al all

LEGAL;[ Y

] = 1if § changes [a a' a"] to [b b V"], and 0 otherwise.

Notice that EQ has degree < |I'| and LEGAL has degree < |T'|°. We will define

PATH; (o, 8) = ) PATH;_y(cv,7) PATH; (7, )

yert

Now, notice the link between the Turing Machine and the polynomial. For all le-
gal configurations o, 5, PATH(a, 3) = 1 if a1, and 0 otherwise. For all legal
configurations «, 8 PATH;(«, ) = 1 if @24/ and 0 otherwise.

We can now examine how difficult each of these are to evaluate. Each variable in
PATH, has degree < d. Therefore given any «, 3 € Z;) we can evaluate PATH,(«, /3)
in time polynomial in n. (A general o, 3 € Zzl, has no intuitive interpretation in terms
of M. Nonetheless it will become useful to be able to evaluate PATH, for general
a,f € Z;J.) Each variable within PATH,(«, 3) has degree bounded by d. Each term
has degree < 2ld = Poly(n). For i = w(logn) it is no longer clear that we can evaluate
PATH;(«, ) in time polynomial in n. Nonetheless, if the prover could convince you
that PATH,.x (Cgtart: Caccept) = 1 (mod p) then you would accept. (This is because
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the prover would have convinced you that the Turing Machine would have accepted
if the polynomial was 1 (mod p).)

Now, we are going to take a short hiatus from our proof to demonstrate the idea
between many known interactive proofs. Essentially what happens is that we break
an amazing proof into a bunch of little proofs. Consider Interactive Proofs which are
from assertion to assertion.

If Q is true then R is True. If Q is false then R is falsehood (i.e. If the prover is lying
at the beginning then the prover has no choice but to be lying at the end)

A slightly weaker requirement is to have the following:
If Q is true then R has to be true,

If Q is false then R is probably false.

We call this an € link between () and R.

Example: Working over Z,, take 2 univariate polynomials A, B of degree < € - P.

The prover claims these are the same. The verifier picks a random element R of
the field Z, and gives it to the prover. The prover asserts A(R) = B(R). If the
polynomials are equal then A(R) = B(R). If the polynomials are not equal, then
A(R) = B(R) only in very few cases.

Theorem 48.1 If N is an €; link and Ry is an ey link, then Ry + Ny is an €1 + €3
link.

Returning to our main proof, the strategy is as follows. Develop a % = €

-link called the “halving protocol”: H. The input assertions will have the form
PATH;(c, 5) = 0. The output assertion will have the form PATH; ;(«/,5") = o/
The halving protocol will be broken into two parts. To begin with, in part 1 we will
construct a bridge of Hybrid Polynomials that will create a polynomial that the veri-
fier can check. In the second part, we will utilize Savitch’s space saving trick encoded
by low degree polynomials.

We will now proceed to constructing Hybrid Polynomials necessary for the halving
protocol to function. The first of these will be PATH,: 1(cy, 1) = ;. The second of
these will be PATH,,t (g, f2) = d3. This will continue down to PATH (e, Bnt) =
Ont. Effectively the £’th hybrid takes in k£ variables functioning as constants and sums
over all the ways of getting from « to v and from v to 3. Essentially, these hybrids
look partially like initial machines and partially like something else. Formally, for all



123

o, € Zl and i € N define Hy, Hy, Hy, ..., H; as follows:

Hy(C,Cy, ..., Ck) = > PATH;-1(, v) PATH; -1 (7, B)
v=C1,Ca,....CryY '€k
There are a number of virtues associated with creating the hybrids in this manner.
First, PATH, is something that can be checked in polynomial time. Moreover, each
time a hybrid is created we only get € additional error, so the probability of error is
going to be at most n' - e . Also notice that:

1. Hy = PATH;(a, §)
2. H)(y) = PATH, (o, v) PATH; (v, B)

3. Zje’ka(fyl""’fYk_l’j) = Hk:—l(f)/laf}/?a"'af}/k—l)

4. For any fixed 1,72, .-, Ye—1, Hr(71,72,---, V-1, %) is a degree 2d univariate
polynomial that can be written down in space polynomial in n. (This is written
down for you by the prover).

Now, we need a protocol to go from the k’'th hybrid to the (k + 1)’th hybrid. Let

S(z) = PATH;_, (v — &)z + o, (B — )z +7)
S(0) = PATH;_,(a, )
S(1) = PATH,_ (7, 8)

Hence S(z) is a univariate degree poly(n) polynomial, because for each variable in
PATH; we substitute an expression that is linear in x.

Now let us say that the prover wishes to prove
PATH; 1 ((y — )z + o, (B—7)z +7) =¢

To accomplish this the prover sends S(x). Then the verifier does a reality check on
this polynomial by verifying that S(0) - S(1) = 0. (This is where we utilize Savitch’s
space saving theorem.) If the polynomial checks out, the verifier sends a random
¢ € Z,. Then the verifier checks R: PATH, ,(o/, ') = S(¢) where ¢/ = (y —a)c+ «
and ' = (8 —7)c+ . If the initial statement the prover was trying to establish was
true, then R is true. If the initial statement was false and the polynomial was correct
(which we have already done a reality check on earlier) then we know that

Poly(n)

Pr[PATH, (o, ) < S(0)] < —;

Therefore, PSPACE C AM C IP.
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49 Concluding remarks

For millennia man has sought a proof of the existence of God. We have shown a
partial result: if a demi-god exists then he/she can prove this fact to you.
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Lecture 18: Approximation Algorithms

Lecturer: Steven Rudich Scribe: Sangit Seshia / Editor: Bartosz Przydatek

Synopsis: Introduction to Approximation Algorithms. A few representa-
tive examples: Max-Cut, Maximum Satisfiability and the Knapsack prob-
lem. PTAS and FPTAS. Hardness of Approximation.

“We show why it’s hard for Santa Claus to effectively steal elephants from
a museum”.

Steven Rudich

50 Introduction

As Papadimitriou mentions in his book [P94], although we group NP-complete prob-
lems together and have talked about them in the same breath for most of this course,
the grouping of these problems into one class based on worst case complexity is about
all that they share in common. The notion of approximation is one viewpoint from
which they display what he calls a “healthy, confusing” diversity.

Approximation algorithms are defined (Williamson [W98]) as follows:

Definition 50.1 An algorithm A is an a-approzimation algorithm for an optimiza-
tion problem 11 if

1. A runs in polynomial time

2. A always produces a solution which is within a factor of o of the value of the
optimal solution.

The factor « is called the performance ratio. Often, for minimization problems, « is
defined to be > 1 and for maximization problems a < 1. We will define o > 1 for
both types of problems but just vary how we compute the ratio of the cost of the
approximation over the cost of the optimal solution.

In this lecture we will limit ourselves to a discussion of “worst-case approximation”
algorithms; i.e., algorithms that guarantee an approximation factor of o in the worst
case.
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50.1 Max Cut

Consider the Max-Cut problem. Informally, the problem is, given a graph, to find
the cut with the maximum number of edges. An instance of the decision version of
Max-Cut can be formally defined as follows:

Definition 50.2

Max-Cut = {< G,k > |G has a cut which has at least k edges crossing it}

The set of all feasible solutions is just the set of all cuts. In the above definition, we
measure the cost of a cut by the number of edges crossing it. But clearly, we can
define other versions of Max-Cut if we change the cost function. Two such variants
are finding Minimum Weight and Mazimum Weight cuts in a graph G, given that
each edge e in G is assigned a weight w(e).

Although these two variants seemingly arise from the same problem, their worst-case
complexities are very different. The minimum-weight cut problem is known to be
in P(solved using flow techniques), whereas the maximum-weight problem is known
to be NP-complete. This latter problem is the subject of this section, and we will
hereafter refer to it as “Max-Cut”.

Max-Cut is NP-complete. Given a graph G = (V, E), we can non-deterministically
choose a cut, and check if it has weight > & in O(|E|) time (where E is the edge set).

We can get a 2-approximation algorithm for Max-Cut. Consider the following simple
randomized algorithm. Pick a subset S C V' of vertices and consider these to be on
one side of the cut, with the remaining vertices on the other side. If we pick the
vertices in a pairwise independent manner, we can show that the expected number
of edges crossing the cut is |E|/2. To get a polynomial time algorithm from this, we
can derandomize this algorithm by the bit-amplification technique we’ve seen earlier
in this course.

Given one approximation algorithm for a problem like Max-Cut, a natural question
to ask is: What is the smallest € such that an approximation algorithm with ratio
1 + € can be found?

This question has been somewhat well studied in the case of Max-Cut. Goemans and
Williamson [GW95] found a 1.138 algorithm that uses Semi-definite programming.
Recently, it has also been shown that finding a 1.0624 algorithm is not possible unless
NP=ZPP. These upper and lower bound results give us some feeling for how hard the
approximation problem is.
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These results also bring up the point that approximation algorithms are indeed very
diverse with a mind-boggling range of approximation ratios. How does one go about
categorizing such a diverse set of results? This lecture describes attempts to address
this problem.

51 Maximum Satisfiability

As in the case of almost all complexity classes, we can define an appropriate version
of SAT for approximation algorithms. The discussion of this problem also enables us
to demonstrate the use of a common randomized approximation technique called the
“Conditional-Expectation” method.

We define two problems related to satisfiability.

Definition 51.1 k-MaxSat: Given a formula ¢ that is a conjunction of disjunctive
k-clauses, how many of them can we satisfy by an assignment?

Definition 51.2 k-MaxGSat: Given a sequence (¢1, ¢2, ... ,¢m) of boolean formu-
las, each of which depends on < k wvartables, how many of them can be satisfied by a
single assignment to the variables?

As you might have guessed, the “G” in the name of the second problem stands for
“global”. Tt might also stand for “general”, since this problem is more general than
k-MaxSat. More precisely, an instance of k-MaxSat can be mapped to an instance
of k-MaxGSat by merely considering each clause of k-MaxSat as a separate boolean
formula. Therefore we will focus our approximation efforts on k-MaxGSat.

Here is a deterministic approximation algorithm for k-MaxGSat that apparently arises
from a starting point that seems to indicate randomization. Let ¢q, ¢o,... , ¢, be
the m boolean formulas each of which depends on < k of the variables zy, zo, ... , z,.
Define a random variable Y; as follows

v {1 if ¢ is True,

0 , otherwise.

Now, the expectation E[Y;] is just the probability that the formula ¢; is satisfied by
a random assignment to the variables z;, ... ,z,. Define A = ). E[Y;]; thus A is the
expected number of ¢;’s to be satisfied.
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Now, notice that since each ¢; depends on < k variables, we can compute A by the
brute force approach, computing each E[Y;] (in 2F-time, which is O(1) since k is a
constant).

Here is the conditional expectation trick. Pick the first variable, say z1. Set 1 = 0 and
compute the new expectation Ag with this constraint. Similarly, calculate A;. Since
A = %(AU + Ay), one of Ay and Ay must be larger than A. Let A; = maz(Aq, Ay).
Fix x; = i. Continue this procedure until all x;’s have been assigned.

Since at every step we maximize the “expectation-to-go”, we will end up with an
assignment that satisfies more than A of the formulas ¢q, ¢, ..., dm.

Throw out any formulas that are not satisfiable. Let m’ denote the number of the
remaining formulas. Define

§ = mini<j<m E[Y]
Clearly, A > 0m/. Furthermore, the optimal value opt < m’. Thus, we get

By Poa
opt 1/6

We can conclude that our algorithm gives a 1/6 approximation to k-MaxGSat.

We can use this 1/§ approximation to k-MaxGSat to give an approximation for k-
MaxSat. Consider any clause in the k-MaxSat instance. If it has exactly k£ variables,
the probability that it is satisfiable is exactly 1 —27%. We can combine this with the
preceding discussion to get the following theorem.

Theorem 51.1 There is a (1—27%)"! approzimation for k-MazSat when each clause
has exactly k variables.

In fact, it is known that this is the best approximation possible for & > 3, unless
P=NP (due to Hastad). In particular, an %th approximation algorithm is the best
we can do for 3-MaxSat.

Another interesting point is that even though 2-SAT is known to be in P, 2-MaxSat is
not! Moreover, 2-MaxSat has a 1.0741 approximation, but no 1.0476 approximation.

52 The Knapsack Problem, PTAS and FPTAS

This section is mandatory reading for prospective department store thieves and Santa
Clauses with dark sides to their personality :-) .
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Recall the well known Knapsack problem:

Definition 52.1 Knapsack: Consider having a knapsack of weight capacity W. We
have a set of objects of weights wq, ws, ... ,w, with corresponding values vy, vy, ... , v,.
We wish to find a subset S of these n objects such that Y, qw; <W and Y. o v; is
mazimized.

1€S

A natural approach to this problem is to use Dynamic Programming.

Define W (i,v) to be the minimum weight attainable by selecting among the first i
items so that their total value is exactly v. We have the following recurrence relations

W(0,v) = oo Vv
W(i+1,0) = MIN{W(i,v),[W(i,v—vi1)+wi]}

By building a table for W we can solve the Knapsack problem in time polynomial in
n and in the number of possible values of the v;’s. This is not very good because the
value of the v;’s can be potentially exponential in n.

Instead, we work with values v}, v),..., v/, where v} is obtained by truncating v; to
klogn bits. If we do this, each v; can only have O(n*) possible values. We will show
how this truncation strategy can yield a 1 + € approximation for any € > 0.

Without loss of generality, assume that w; < W for all ¢ (i.e., toss out the useless
items that you can’t put in anyway). Let v = max; v;, and let [ be the the number
of bits needed to express v precisely. Pick k£ such that Z—Q < €. Use this k to truncate
each v; to a value v} of precision at most klogn bits (i.e., set all but the & logn most
significant bits of v; to 0). We run our dynamic programming algorithm with the v]s
instead of the v;s.

Now, notice that any feasible solution obtained using the v;s that gives a total value
of V' will have a feasible counterpart solution using the v;s with total value V' such
that V! > V — n2l=klesn+l  (We get this by counting the value lost due to missing
precision).

L

The loss in value is L = n2=%1°87*1 and we can check that 5= Z—’,ﬁ < €.

Therefore, our truncation-based algorithm returns a value within (1—e¢) of the optimal.
In other words, we have a 1 4 ¢ approximation. Moreover the algorithm runs in time

O(n?/e).

Notice that the approximation algorithm includes the approximation parameter in
its running time complexity. This fits in with our intuition as well - the closer the
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approximation, the longer we expect the algorithm to take. In fact, we have a formal
way of characterizing algorithms that exhibit this tradeoff and this is embodied in
the following definitions.

Definition 52.2 PTAS: A polynomial-time approximation scheme (PTAS) is an
algorithm A for an optimization problem Il where on input (z,€), A returns a solu-
tion which is a 1+ € approzimation of the optimal in time P,(|x|), where P.(-) is a
polynomial dependent on €.

Definition 52.3 FPTAS: A fully polynomial-time approximation scheme (FPTAS)
is a PTAS that runs in time polynomial in |z| and 1/e.

Thus we see that Knapsack has an FPTAS.

On the other hand, we see that Max-Cut and 3-MaxSat cannot be approximated to
within ratios of 1.0624 and 8/7 respectively. The problem of finding the maximum
size clique cannot even be approximated to within n'~¢ for any € > 0! This clearly
indicates there is a hierarchy of hardness in approximation. We will take this up in
the next section.

53 Hardness of Approximation

Much of the material in this section is based on an excellent survey by Arora and
Lund [AL96].

Just as 3-SAT is the “ancestor” of all NP-complete problems, 3-MaxSat will be the
starting point of the theory of hardness of approximations. The following theorem by
Arora et al. [ALM+92] gives a way of defining hardness of 3-MaxSat by quantifying
the amount of unsatisfiability in it.

Theorem 53.1 There exists € > 0 and a polynomial time reduction R from SAT to
3-MaxSat such that

VI € SAT, R(I) is satisfiable.
1
VI ¢ SAT, R(I) will never have more than ;

+e€

fraction of its clauses satisfiable
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This result leads to the corollary that Je > 0 such that 3-MaxSat cannot have a 1+ €
approximation unless P=NP.

In their survey, Arora and Lund give a classification of approximation hardness re-
sults. They outline four broad classes as shown in the table below:

Class Approximation Hardness factor | Representative problems
I 1+e€ 3-MaxSat, Vertex-Cover
(Max-SNP) Max-Cut, Metric TSP
II O(logn) Set Cover, Hitting set
111 2log' " n 7§ > () Longest Path
Nearest Lattice vector
v n¢ Clique, Chromatic #

53.1 Gap Preserving Reductions

Proving the NP-hardness of approximating a problem II involves giving a special
kind of reduction to II from an NP-complete problem; the reduction must produce
a gap in the value of the optimum for II. Such a reduction is said to be a gap-
producing reduction [AL96]. For example, suppose we want to prove the NP-hardness
of approximating a minimization problem II to within a factor g. We can do this by
constructing a gap-producing reduction from SAT to II that maps satisfiable formulae
to instances whose solution is of value at most ¢ (for some ¢), and unsatisfiable
formulae to instances with solutions of value at least gc (see Figure 19).

To see how this works, assume II has a polynomial time approximation algorithm
Ap that guaranteed a factor g* < g. Consider an arbitrary satisfiable formula; this
will map to an instance whose optimum is < ¢. Therefore, on this instance of II, Ay
would return an answer x, where z < g*c < gc. Now, we know that any unsatisfiable
formula will map to an instance of IT with optimum greater than gc; furthermore, Ay
can only return an answer greater than gc for this instance. This means that we can
correctly conclude in polynomial time that the formula is satisfiable, and this works
for an arbitrary satisfiable formula. In other words, we can solve SAT in polynomial
time, which in turn implies that P = NP! Therefore, assuming P # NP, II is hard to
approximate to within a factor of g.

The above method of proving the hardness of approximation of II uses a reduction
from a known NP-complete problem. It is sometimes desirable to have a mechanism
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SAT Ig
m I o >g’c’
Tr

Figure 19: Gap Preserving and Producing Reductions

that allows us to conclude the approximation hardness of a problem II', given the
approximation hardness of a problem II, instead of having to find a mapping from
an NP-complete decision problem to IT'. This is achieved using the notion of a gap-
preserving reduction.

Definition 53.1 Gap-Preserving Reduction: [AL96] Let 11 and 1T be two min-
imization problems. A gap-preserving reduction from II to II" with parameters (c, g)
and (¢,4"), (9,9" > 1), is a polynomial time algorithm f, which for each instance
I of I1 produces an instance I' = f(I) of I'. The optima of I and I', denoted O; and
Op respectively, satisfy the following two properties:

Or<c¢c = Op </ (1)
Or>gc = Op>gcd (2)

Suppose we have a gap-producing reduction r from SAT to II. The existence of a gap-
preserving reduction 7’ from II to II' proves the existence of a gap-producing reduction
s from SAT to II'; s is the composition of r and r’. In other words, the reduction s
shows that achieving a performance ratio of ¢’ for IT" is NP-hard. Figure 19 clarifies
this concept.

Note however, that the gap-preserving property of a reduction does not suffice for
exhibiting the ease of approximating IT given that IT’ is easy to approximate.

Also, the term “gap-preserving” is somewhat misleading, because the gap is really
not preserved. “Gap-accounting” might be a somewhat more appropriate term.
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53.2 Max-SNP problems

Definition 53.2 Max-SNP: An optimization(mazimization) problem I1 with in-
stance I is in Maz-SNP if 3k > 0 and a polynomial time algorithm A such that
A(I) outputs a list of boolean formulas where each of them depends on at most k

variables, and the optimum of I is the mazimum number of simultaneously satisfiable
formulas in A(T).

The above definition just says that we should be able to map II in polynomial time
to k-MaxGSat for some constant k.

A problem is Max-SNP-hard if it has a gap-preserving reduction to any problem in
Max-SNP. We know that both 3-MaxSat and Max-Cut are in Max-SNP.

Notice that if we could give a PTAS for any problem in Max-SNP, then we could give
one for 3-MaxSat, but we know that this is not possible (assuming P # NP).

Papadimitriou and Yannakakis have defined a different kind of reduction called L-
reduction, and we can show that 3-MaxSat is Max-SNP complete under L-reductions.
Here is a sample of problems are Max-SNP hard under L-reductions: Max-Cut, 2-
MaxSat, Max-Independent-Set, Shortest-Superstring, Chromatic Number.

If any one of these problems has a PTAS, then all of them do.
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Lecture 19: PCP — Holographic Proofs

Lecturer: Rudich Scribe: Bartosz Przydatek / Editor: Sanjit Seshia

Synopsis: We introduce the notion of Probabilistically Checkable Proofs
and define the associated complexity classes PCP(r(n), ¢(n)). We present
also an overview of one of the most important results in Theoretical Com-
puter Science in the last decade: a proof of the PCP Theorem, which
states that NP = PCP(logn, 1).

“Today’s lecture is carefully designed around today’s homework.”
Steven Rudich

54 Introduction

So far we have worked with the standard NP proofs. These proofs are very brittle:
if there is a tiny error somewhere in the proof the entire proof is wrong! In this
lecture we will learn a new characteriztion of NP, which is more robust. Also, this
characterization is quite surprising and of great importance: it has a major impact on
the study of combinatorial optimization. In particular, it provides powerful techniques
for proving lower bounds on the performance of approximiation algorithms.

The new characterization of NP is based on the notion of Probabilistically Checkable
Proofs (PCP), which is defined below.

A werifier is a polynomial-time probabilistic Turing Machine, with an input tape,
work tape, a source of random bits and a and a random acces to a (read-only) proof
string II. We say that a verifier is (r(n), ¢(n))-restricted, if on each input of size n
it uses Or(n) random bits and queries Og(n) bits of the proof. We assume, that the
verifier works non-adaptively, i.e. the positions on which the verifier queries the proof
are chosen in advance, depending only on the random bits used by the verifier.

134
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Definition 54.1 A language L is in PCP(r(n), q(n)) if there exists a polynomial time
(r(n), q(n))-restricted verifier V- such that

rel = Faproofll, st Pr.[V(z,r)=yes =1 (completeness)

gL = VY proof I Pr,[V(x,r)=yes < . (soundness)

1
2
55 The PCP Theorem

Theorem 55.1 (The PCP Theorem)
NP = PCP(logn,1).

One inclusion, PCP(logn,1) C NP is pretty easy (cf. Problem Set 7). The other
one, NP C PCP(logn, 1), is more involved and is the topic of this lecture. More
explicityly, it says that for any set A € NP there exists a polynomial time verifier V'
with a random access to a “proof string” II, tht uses Ologn random bits and queries
IT at O1 places, such that

r€A = FJaproofIl, s.t. V(z) always accepts
1
xr&A = VoproofIl Pr, [VH(x,r) accepts] < 3"

Remark: Some stronger versions of the PCP Theorem are known. In particular,
Hastad’s “Ultimate PCP Theorem” shows that there exists a verifier, which uses
Ologn random bits, queries only 3 (!) bits of the proof (instead of O1 bits) and still
achieves the required soundness, with completeness weakened by only an arbitrarly
small € > 0.

56 PCP and Hardness of Approximation

In the previous lecture we have seen a theorem (without a proof), that there ex-
ists a gap preserving reduction from SAT to MAX —3—SAT [ALM+92]. Now, with
a help of the PCP Theorem, we can actually prove it, as the following lemma
shows. Since we know also, that MAX—3—SAT is MAX-SNP-complete and that
(MAX—3—SAT has a PTAS < P = NP), we get immediately that

all of MAX-SNP has a PTAS < P =NP..
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Lemma 56.1 If NP = PCP(logn,1), then there exist ¢ > 0 and a polynomial time
reduction R from SAT to 3CNF such that

p € SAT = R(yp) is satisfiable
o & SAT = no assignment satisfies more than

a eJ%l fraction of clauses of R(y) .

Proof: Let ¢ be a Boolean formula and n = |¢|. Since SAT € NP and NP =
PCP(logn, 1), there exists a PCP(logn, 1) verifier V which takes (¢, IT) as input (where
IIT| is polynomial in n) and decides if IT is a proof that ¢ € SAT.

V' picks Ologn random bits r and checks the proof at < k (constant) of places. Let
Yi,,..., Y, denote the k bits read by V, and let f,(Y;,,...,Y;, ) be the function that
describes the output behavior of V' for given the random string r. Since |r| = Ologn,
there are polynomialy many such f’s, say fi,... fne, for some constant c. Each f, can

be expressed as a k-CNF formula with at most 2* clauses.

Let ® be the conjunction of all the clauses over all f’s. Formula ® has at most 2¥n¢
clauses of size k, so |®| is polynomial in n.

If o € SAT, then there exists a proof Il that satisfies all f’s, and hence satifsfies ®.
If ¢ € SAT, then for every proof Il only a constant fraction of f’s return true, hence
only a constant fraction (1 — #) of clauses in ® can be satisfied simultaneously.

Finally, we transform ® into a 3CNF formula by replacing each k-clause (a; V ag V
-+-Vag) by (a1 VasVzy)(azVziVz) ... (ag_1VagVZ_3). Clearly, this transfomation
preserves the constant fraction property (with a different constant). n

57 Proof of the PCP Theorem: An Overview

We construct a PCP(logn, 1) verifier for 3SAT by composing two “less efficient” ver-
ifiers:

e a verifier V4, which shows that 3SAT € PCP(n3, 1) (cf. Problem Set 7)

e a verifier V, which shows that 3SAT € PCP(log n, polylogn) (this construction
comes in a later lecture).
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For the compostion to work out we will require both V4 and Vp to be in normal
form, which is a bit mysterious and technical, but is designed to have two important
properties:

1. Bits that must always be read together will be grouped and viewed as a single
symbol in a larger alphabet. The size of the alphabet will be allowed to grow
as a function of the input (theorem) size.

2. (theorem, proof)-pairs will be written in such a way, that the verifier can check
their consistency by reading Q1 symbols, i.e. there is no need to read the theorem
to check the proof! The magic used to accomplish this are the error correcting
codes.

We can state this more formally:

Definition 57.1 A 3SAT wverifier is in normal form if

1. For an input formula ¢ with n variables the verifier expects the proof 11 to be a
string over an alphabet ¥, whose size is a function of n. A query of a verifier
involves reading a symbol of ¥, not just a single bit.

2. The verifier has a subroutine, which can efficiently check proofs of a very special
form. More precisely, for any given positive integer p the subroutine behaves as
follows:

(a) It defines an error correcting code C, over X, with 0y, > 0.3 and a 1-1
encoding function o : {0, 1}"/? — C,.

(b) It expects the proof string S to have the form
S =o(a;)oo(az)o...00(ap)oll,

where ay o ...0a, is an assignment satisfying ¢ and I is a proof that this
15 indeed the case.

Formally, we say that the subroutine checks assignments split into p parts
if on the proofs of the form S = z10...02,0lIl, S € X%, it has the following
behaviour:

o Ifz,...,2, are codewords, such that 0="(z1) 0...007'(z,) is a satis-
fying assignment then there exists 11 such that

Pr[subroutine accepts zy0...0z,0ll] =1.
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e If3i:1 < i< p such that z; is not dmin/3-close to a codeword, then
for all 11

Pr[subroutine accepts zy o...0 z,oIl] <

DO | —

o IfVi:1<i<pzisdmn/3-close to a codeword N(z;), but o (N (z1))o
...00 ' (N(z,)) is not a satisfying assignment, then

Pr[subroutine accepts z; 0...0z,01l] <

DN | =

Definition 57.2 A verifier in normal form is (r(n), ¢(n), t(n))-restricted if on inputs
of size n

it uses Or(n) random bits,

e it reads Oq(n) symbols from the proof 11,
e its decision time® is poly(t(n)), and

e its special subroutine for checking assignments split into p parts reads Op - q(n)
symbols.

Remark: In the above definition verifier queries Og(n) symbols, i.e. Og(n)log |X|
bits. There is no need to put an explicit bound on |X|, since it is already implicitly
bounded: the decision time includes the time needed to process Og(n)log|X| bits of
information, so Og(n)log|X| < poly(t(n)).

Indeed, the definition of a normal form verifier looks pretty esoteric. Let’s have a
look at an example, i.e. let’s construct a normal form verifier V4 from the verifier
found in the homework (Problem Set 7), which showed that 3SAT € PCP(n31):
The “homework”-verifier, say Vj, works as follows: the prover takes a satisfying
assignment a; ...a, and encodes it holographically using three “boxes”:

Bi(z1,-.-,20) = Zaizi
By(11,- - 2m) = D (0i0)7;
B3(z1115 - -+ Znnn) = Z(aiajak)zijk :

6Decision time is the time the verifier needs after reading all the symbols to make its final decision.
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Verifier checks that each B; is close to a linear function, and that By = By ® By and
Bs; = B; ® By ® B;. Finally, V; checks whether the assignment encoded in By, By
and Bj is satisfying, by evaluating a polynomial derived from the ¢.

The normal form verifier V4 works in a similar way. Suppose that n
and consider the assingment a; ... a, split into p parts: [a ... any], [@amyr -

[a(p—1)m+1 - - - Gpm)- Let

= p-m,
agm],...,

m
filzy ey 2m) = Zaizi
i=1

2m
folZmats -+ s 2om) = Z a;z;

i=m+1

pm

folzptymits o zm) = D a4z

i=(p—1)m+1

A normal form verifier expects a proof string of the form

floni"'oonBloB2OB3 .

encodes an proves, that

assignment the encoded
assignment
satisfies

Verifier V4 performs the same checks as Vi (i.e. V4 checks the linearity of By, By, Bs,
whether B, = By ® By and By = B; ® B; ® By, and whether the encoded assignment
is indeed satisfying). Additionally, V4 verifies that Vi f; is close to a linear function fi,
and every point x for which B, (z) is queried, Vi checks whether B, (z) = >7_, f(x).

It follows that V4 is a normal form (n?,1, 1)-restricted verifier for 3SAT, because

o If fiofyo...0f,0B)0B;o0 B;is correct, then verifier V4 always accepts.

e [f there is f; which is not close to a linear fi, the linearity test will catch it and
V4 will reject.

o If all f;’s are close to linear functions fi, whose coefficients do not make a
satisfying assignment, then either By, By, By are not valid or By (i) = >2"_, f;(v)
will not always be true, and V, will reject.
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Remark: Verifier V4 reads only O1 bits of fio...0 f,, so it does not even know what
it just verified.

Lemma 57.1 (Composition Lemma) Let Vi and V, be normal form verifiers for
3SAT that are (R(n),Q(n),T(n))-restricted and (r(n),q(n),t(n))-restricted, respec-

tively. Then there exists a normal form verifier for 3SAT that is (R(n)+r'(n), Q(n) -

¢ (n),t'(n))-restricted, where r'(n) = r(poly(T'(n))), ¢'(n) = q(poly(T(n))), andt'(n) =
t(poly(T'(n))).

Remark: When we use this lemma, both Q(n) and ¢(n) are O1, hece the three
verifiers have bounds (R(n),1,7(n)), (r(n),1,t(n)) and (R(n) + r'(n),1,¢'(n)), re-
spectively. Furthermore, if #(n) is a slowly growing function, say logn, then the

decision time for the new verifier is Olog(7'(n)), an exponential improvement over
T(n)!

How do we get the PCP Theorem from the Composition Lemma? As mentioned
earlier, we use two verifiers:

e (n?,1,1)-restricted verifier V (cf. the construction described above),

e (logn,1,logn)-restricted verifier Vg (cf. notes of a later lecture).

First we compose Vg with itself (i.e. apply the Composition Lemma with V; =V, =
Vi), to get a (logn, 1,loglogn)-restricted verifier V'. Finally, we compose V' with
Va (Vi = V' Vo = Vy) to get (logn, 1,1)-restricted verifier V', which completes the
proof of the PCP Theorem.

Proof sketch: (of Composition Lemma, cf. [A94, Chapter 3]) Once we fix the random
string r of the verifier V3, its decision depends upon p = OQ(n) symbols of the proof
string, and is computed in poly(7T'(n)) time. By the Cook-Levin Theorem there exists
a 3CNF formula ® of size poly(T(n)), which is satisfiable if and only if V;(r) accepts.
Instead of having Vi (r) actually query the proof string and decide, we modify V;(r)
to use the verifier V5 to verify that Vi (r) would accept if it only took the trouble to
read p symbols of the proof. In other words, V5 checks whether the symbols of the
proof V; would have read form a satisfying assignment for ®. Doing this involves
using V5’s ability to check split assignments and requires that relevant portions of the
proof-string be present in an encoded form (using V5’s encoding). m
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Lecture 20: The PCP Theorem: 1

Lecturer: Madhu Sudan Scribe: Amitabh Sinha / Editor: Abraham Flazman

Synopsis: Introduction to the PCP Theorem. History. Constraint Sat-
isfaction Problems. Gap Problems. Preliminaries towards the PCP The-
orem.

58 Introduction

The PCP Theorem is a new characterization of the complexity class NP in terms of
proof verification systems. In terms we will soon formally define, it can be stated
as NP = PCP|[O(logn),O(1)]. This surprising result has numerous consequences in
computational complexity theory and hardness of approximations.

In this lecture, we will introduce and explain the concept of probabilistically checkable
proofs. We will formally state the PCP Theorem, and we will build up some machinery
which will be used in later lectures to actually prove the PCP Theorem. In this lecture
we will not actually prove anything.

Informally, the PCP Theorem can be stated as follows:

Theorem 58.1 Consider a language L € NP, and a string x which may or may not
be in L. There exists a format for writing a proof that x € L and a probabilistic
polynomial time algorithm for verifying this proof with the following properties:

The verification method reads only a constant number of bits of the proof.

(Completeness:) Correct proofs are accepted with probability 1.

(Soundness:) Proofs of false assertions are accepted with probability no more
than 3.
4

The proof is only polynomially longer than “classical” proofs.

142



58.1 Formal Definition 143

The soundness parameter need not be exactly %; it can be made any arbitrary number
greater than %

This theorem displays a surprising co-existence of probability and logic. It also pro-
vides a machinery to prove that for many NP-hard combinatorial optimization prob-
lems, finding approximately optimal solutions is also NP-hard. This has spawned a
new industry in the study of combinatorial optimization problems and approximation
algorithms.

58.1 Formal Definition

Definition 58.1 A verifier is a probabilistic polynomial time algorithm V7™, with
oracle-access to a “proof” .

Definition 58.2 A verifier is (r, q)-restricted if on inputs of length n, it uses r(n)
random bits and queries q(n) bits from the oracle.

Definition 58.3 A language L is in the class PCP4[r, q| if there exists an (r,q)-
restricted verifier V™ satisfying the following properties:

e (Completeness) If v € L, then there exists a proof m such that V™ (x) accepts
with probability at least c.

e (Soundness) If x ¢ L, then for all proofs m, V™ (x) accepts with probability no
more than s.

A PCP class is therefore parametrized by four quantities. Often, the completeness
parameter c¢ is 1, in which case we skip mentioning it. If neither of the subscripts ¢, s
are mentioned, we have ¢ = 1 and s = % Here n is the length of the test string x.

Using this definition, the PCP Theorem states that NP = PCP[O(logn), ¢] for some
constant gq.

The size of the proof is roughly exponential in the amount of randomness r(n) (as-
suming that r is at least linear). The reason is that our verifier is restricted to be
polynomial time, so it can access only polynomially many bits of the proof determin-
istically, and the number of bits it can address for oracle access is exponential in the
number of random bits it has. If the proof was super-exponential, there would be a
large number of bits which the verifier is never going to ask for, and we could simply
prune them out of the proof.
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59 History

59.1 History of Definitions

The origins of checking proofs probabilistically and interactively are in the seminal
works of Goldwasser, Micali and Rackoff [GMR, 1985], and Babai [Ba, 1985] on in-
teractive proof systems. A probabilistic verifier with oracle access can be traced to
the work of Fortnow, Rompel and Sipser [FRS, 1988].

Babai, Fortnow, Levin and Szegedy [BFLS, 1991] focus on the computation time and
size of the verifier and the proof (transparent/holographic proofs). PCP verifiers
were implicitly defined in the work of Feige, Goldwasser, Lovasz, Safra and Szegedy
[FGLSS, 1991], and explicitly in the work of Arora and Safra [AS, 1992].

59.2 History of Results

The sequence of results culminating in the PCP Theorem is long and interesting.
We briefly overview this history and our proof of the PCP Theorem will follow the
historical lines.

Phase 0: Triviality. It is automatic that NP = PCP|0, poly(n)], because this allows
the verifier to deterministically read the entire proof, and NP sets have polynomial
length proofs. Note that allowing our verifier to use logn random bits does not add
any power. The verifier can simply enumerate all possible values of these random

bits. Hence NP = PCP|logn, poly(n)].

Phase 1: Opening results. The first non-trivial results came about in the works
of Babai, Fortnow and Lund [BFL, 1990], [BFLS, 1991] and [FGLSS, 1991]. They
showed that NP C PCP[polylog(n), polylog(n)], where polylog(n) means a polyno-
mial in log(n). This was a remarkable breakthrough because it has an exponential
reduction in the number of queries. However, the amount of randomness required is
still super-logarithmic, and hence the containment is strict.

Phase 2: Characterizations. Arora and Safra [AS, 1992] first showed that NP =
PCP[O(logn),o(logn)]. This was subsequently improved by Arora, Lund, Motwani,
Sudan and Szegedy [ALMSS, 1992] to the exact characterization NP = PCP[O(logn), O(1)].
This is asymptotically optimal in both parameters, but not tight. To be more
precise about the notation, what the theorem really means is that there exists a
constant ¢,, such that for all NP languages L, there exists a constant ¢, such that
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L € PCPJc, logn, ¢;]. The surprising fact about this proof was that the query com-
plexity of the system was completely independent of the proof size!

Phase 3: Near-optimal characterizations. The next major development in this
direction was a result of Polishchuk and Spielman [PS, 1994] showing that for every
€ >0, SAT € PCP[(1+¢)logn,O(1)]. It was also known that the number of queries
required to check a proof was at least 3. Hastad [Ha, 1997] showed that this in fact
could be achieved, but with a slight loss in the perfect completeness we were dealing
with earlier. Specifically, he showed that NP = PCP, . [O(logn), 3], for every € > 0.

60 Proof Outline

We will roughly follow the historical path in proving the PCP Theorem. We will
begin by showing the main steps in the Phase 1 result above, NP = PCP[O(logn),
polylog(n)]. Two tools we will use in this are arithmetization and low degree testing.

We will then digress briefly to study Multiprover Interactive Proofs (MIPs) and Opti-
mal Inner Verifiers. These will be useful in later stages. We will then compose PCPs
to obtain, first,

NP = PCP[O(logn), O(1)],

and with one more composition,

NP =PCP,_,1[O(logn), 3].

61 Constraint Satisfaction Problems and Gap Prob-
lems

Definition 61.1 An instance of a Max w-CSP(B) (Constraint Satisfaction Prob-
lem) consists of n B-ary variables, and t w-ary constraints Cy,Cs, . .. ,Cy on the vari-
ables. The objective is to find an assignment to the variables mazimizing the number
of satisfied constraints.



146 61 CONSTRAINT SATISFACTION PROBLEMS AND GAP PROBLEMS

CSPs arise naturally in the study of PCPs. There is a rough correspondence between
PCPJr, ¢] and w-CSP(2) as follows. The bits of the proof correspond to variables, so
that B = {0,1}. The verifier's examination and verdict on each string corresponds to
a constraint. Hence we have ¢ = 2" constraints. The number of queries ¢ is the width
w of the CSP. Now it is clear that the probability of acceptance by the verifier is
simply the proportion of maximum satisfiable constraints among all the constraints.

61.1 Gap Problems

Gap problems allow us to deal in a decision-problem framework (which is often used
in the world of complexity) with approximation problems. For example, we could
define the following gap version of a CSP: Gap w-CSP,.(B) is a decision problem
where:

e (YES instances:) © € Gap w-CSP.4(B) if there exists an assignment to the
binary variables satisfying at least a ¢ fraction of the constraints.

e (NO instances:) = ¢ Gap w-CSP.4(B) if for all assignments to the binary
variables, no more than a ¢ fraction of the constraints are satisfied.

Our task is to distinguish YES instances from NO instances. Of course, some instances
are neither YES nor NO instances; in that case we don’t care what we output.

In the next lecture we will show that GAP 3—CSP1_€,%(2) is NP-hard.

61.2 Polynomial Constraint Satisfaction

Coming again from the perspective of CSPs, suppose B is a finite field [F'. Let IF™
be an m-dimensional vector space such that n = |IF'|™, where n is the number of
variables. Assignments to the variables are therefore functions f : F™ — IF. We
now define the Polynomial Constraint Satisfaction (PCS) problem.

Definition 61.2 An instance of a w-PCS(d, IF') (Polynomial Constraint Satis-
faction Problem) consists of w-ary constraints on functions f : '™ — IF. The
objective is to find an m-variate polynomial of degree at most d which satisfies all
constraints.
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This is essentially a constraint satisfaction problem, with an extra low-degree re-
striction. We can also define the Gap version of the PCS, in terms of a parameter
t.

Definition 61.3 An instance of Gap-PCS;(m,w,d,q) has the usual completeness
and soundness parameters (1 and €), along with the restrictions that m = mf(t),

d=d(t), w=w(t) and |IF| = q(t).

We will now state three Lemmas which play a very important role towards proving
the PCP Theorem. The first deals with the hardness of Gap-PCS.

Lemma 1. For everye > 0, Gap-PCS, ((m,w,d,q) is NP-hard for w,d, q = polylog(t)
and m = logt/loglogt.

This Lemma immediately gives us a problem where we have a gap. Moreover, since
¢ is polynomial in £, we can just ask for the function f to be listed as a table of
all its values. The verifier can pick a random constraint (from the ¢ constraints) and
verify it in time polylogarithmic in ¢. These seem to give us a lot of power. On the
flip side, however, we have a low-degree restriction on f which a priori may seem to
be troublesome.

61.3 Low degree Testing

This brings us to the problem of being efficiently able to test for low degree poly-
nomials. We’d like to be able to do the following, though it turns out that it is
impossible.

Definition 61.4 Given a positive integer d and oracle access to a function f . ™ —
IF, the low degree testing problem is to test whether f is a polynomial of degree no
more than d in time polynomial in m and d. If yes, we should accept (completeness);
if no, we should reject with high probability (soundness).

This is really asking for too much. For example, let f be a function which is exactly a
degree d polynomial everywhere except at one point in F™. We are therefore forced
to weaken our soundness requirement. We first define closeness of two functions.

Definition 61.5 Functions f and g are §-close if Pr,[f(x) # g(x)] <8, for x chosen
uniformly at random.
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We now revise our definition of the low degree test to one which is actually achievable.

Definition 61.6 Given d, § and f : ™ — IF', the low degree test is to verify
if fis close to a polynomial of degree mo more than d. If it is, we should accept
(completeness); but we should reject with high probability if it is not §-close to any
degree d polynomial (soundness).

We are now ready to state our second Lemma.

Lemma 2. There is a low-degree test, which has running time polynomial in m, d,%
and which uses O(mlog|IF|) random bits.

61.4 Self correction of polynomials

Definition 61.7 The problem of self correcting a polynomial can be stated as
this. Given d,0, a function f : IF™ — IF and an element x € IF such that [ is
d-close to a degree d polynomial p, can we compute p in polynomaial time?

We can answer this question in the affirmative.

Lemma 3. There is a randomized Self-corrector for polynomials that runs in time
polynomial in m, d,% and uses O(mlog|IF|) random bits, provided § is sufficiently
small.

None of these Lemmas have been proved as yet. We will prove them in the coming
lectures. First let’s see what we can do with them.

62 PCP verifier for Phase 1

Suppose we are given a string = to test for membership in some NP language L. We
compute a corresponding ¢, which is in Gap PCS if and only if z € L. The prover
provides an oracle for the satisfying assignment f. We first run the low-degree test
on f, and reject the proof if the low degree test rejects. We next pick a random
constraint C' of ¢, and verify that Self-Correct(f) satisfies C. If not, we reject. If we
pass all these tests, we accept the proof that x € L.

This requires only polylog(|z|) bits of the proof, and uses only O(log|z|) random
bits. We have perfect completeness, and soundness s << % This proves the first PCP
theorem.
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Theorem 1. NP C PCP|logn, polylog(n)].

The next lectures will prove the Lemmas, and then work towards formally proving
the main PCP Theorem.
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63 Multi-Prover Interactive Proofs (MIP)

So far all of the Interactive Proofs we have seen (IP, AM, and to an extent, PCP) have
involved a probabilistic, polynomial time verifier V' interacting with a single prover or
oracle. As we have seen, these proofs can be extremely powerful, as they are capable
of proving membership in any language in PSPACE. Still, we might wonder, what
can be proved if we allow our verifier to interact with more than one prover? If we
allow the verifier to interact with p provers who are not allowed to communicate once
the proof begins, and ask each only a single question, we get a model of computation
called Multiprover Interactive Proofs. We’ll flesh out this informal idea with some
definitions.

Definition 63.1 A probabilistic polynomial time interactive Turing machine V is
called a (p,r,a)-restricted verifier if it makes one query to each of p provers, receives
at most a bits of response, and tosses at most r coins.

With this definition, we can define parameterized complexity classes for MIP, just as
we have for PCP.

Definition 63.2 A language L is in MIP. s[p,r, a] if there exists a (p,r, a)-restricted
verifier V' checking x € L with completeness ¢ and soundness s.

As usual, we will leave off the completeness and soundness parameters when it is clear

from the context what they should be, or when ¢ =1 and s = %

150



63.1 3 Prover MIP for NP 151

Why should we study MIP? First, they give us another clean model in which to think
about interactive proofs. Second, this model is more restrictive than PCP — it gives
us more fine-grained accounting of the parameters of interest, since MIP[p,r,a] C
PCP[r,pa]. That is, we can always construct a PCP oracle for which each bit of
a single prover’s response to a particular question can be queried individually, and
then the MIP verifier can be run on the results. In this section, we’ll demonstrate
the opposite — that is, we’ll take our (logn, poly(logn))-restricted PCP verifier for
NP and turn it into a 3-prover MIP verifier with similar efficiency. Surprisingly, it

will turn out that this is a central intermediate step towards our goal of showing
NP = PCP[O(logn), O(1)].

63.1 3 Prover MIP for NP

Recall that in the previous lecture, we demonstrated a PCP[O(logn), poly(logn)]
verifier for NP via Gap-PCS. The proof consists of a supposed low-degree polynomial
allegedly satisfying the constraints; our verifier performs a low-degree test and then
checks that the closest low-degree polynomial to the proof satisfies a randomly chosen
constraint. The first part of this procedure is already a 2-prover MIP: ask one prover
for P(x) and another for the line P, ,; do the low-degree test. But we can’t just
ask a third prover for the values of P at the w points x1,zs, ..., 2, making up our
randomly chosen constraint, because that would violate soundness — the prover could
realize which constraint we're checking and reply with values satisfying only that
constraint. So we need to find a way to query the third prover at w points without

revealing which constraint we’re checking.

The solution to this problem is to pick a “random curve” C passing through the points
T1,T3, ... , Ty and ask the third prover for the value of P restricted to C, P|c. If the
prover responds with P|c where P satisfies the constraints, we’re fine; completeness
is preserved. On the other hand, if the prover responds with some wrong polynomial
h then with high probability P(C(t)) # h(t) on a random point ¢, so we also preserve
soundness.

63.2 Random Curves

Thus we need only to refine our notion of a “random curve” through F™. We’ll
define a curve C: F — F™ as a collection of m functions C;: F — F, and define
deg C = max;{deg C;}. Then it should be obvious that for any x,... ,x,, there are
many such curves:



152 63 MULTI-PROVER INTERACTIVE PROOFS (MIP)

Proposition: For any xg, z1,. .., z, there exists a degree w curve C with C(j) = z;.

Proof: We can perform polynomial interpolation on each of the m coordinates of the
w + 1 points, yielding m degree-w polynomials. Thus the degree of the curve will be
w as well. [

We also need to know that in restricting the polynomial P to a curve, we don’t
cause the degree to increase so much that our low-degree tools won’t work. This
next proposition gives us what we need, since we’ve chosen both w and d to be
polylogarithmic in n.

Proposition: If the polynomial P has degree at most d and the curve C has degree
at most w then the polynomial P|c has degree at most wd.

Proof: Each variable in the expression for P can be replaced by a degree-w polyno-
mial by the curve C. The degree of each term in P will then be increased by a factor
of w, resulting in a polynomial of degree wd. n

Finally, we need to know that we really can get “random points” from the curve C to
give to provers 1 and 2 in the low-degree test. The following proposition satisfies our
needs, guaranteeing that while the points on a “random curve” are not independent,
they are distributed uniformly.

Proposition: For every xq,x9,... ,x,, call the curve resulting from picking xy uni-
formly at random and fitting C to the points x¢, z1, ..., T, as above a random curve.
Then for ¢ ¢ {1,2,... ,w}, C(¢) will be distributed uniformly at random over F™.

Proof: We need to show that for arbitrary = € F™, Pr,[C(t) = z] = 1/|F|™.
Suppose we are given x1,...IT,, t, and z, and we want to find the curve C’ defined by
C'(j) ==, for j € {1,... ,w}, and C'(t) = x. Since there is a unique degree w curve
satisfying these points, there will be a unique value for xy such that C’'(0) = zo. The
probability that we pick this xy when we define the curve C is 1/|F|™, as required. m
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63.3 Summarizing the MIP verifier

So in summary, our 3-prover MIP for Gap-PCS has the following steps, where I1; will
be our “random point” prover, II; will be our “random line” prover, and II; will be
the “random curve” prover:

e Random Choices:

1. Pick a constraint C; at random.

2. Pick a random curve C passing through the w points of P that C; con-
strains.

3. Pick a random point x on C.

4. Pick a random line [, , passing through .
e Queries:

1. Let a be the result of asking IT; for P(x).
2. Let g be the answer from II, for P, ,.
3. Ask II5 for Pg, and call the result h.

o Tests:
1. Reject unless g(x) = h(z) = a.
2. Reject if C; is not satisfied by h(1),h(2), ..., h(w).
3. Accept otherwise.

Theorem 63.1 NP C MIP[3,0(logn), poly(logn)]

Proof sketch: First, it is fairly easy to see that for a YES instance of Gap PCS,
there are three provers which cause the verifier to accept with probability 1: these
provers are equipped with the low-degree polynomial satisfying our constraints.

Now, consider a NO instance. Let P be the function used by II;. If P is not d-close
to some low-degree polynomial P then the test g(z) = a will fail with probability
d/2, by our lemma on low-degree testing from the previous lecture.

If P is §-close to some low-degree polynomial P, then with probability at least (1 —¢)
the verifier has chosen a clause C; such that P does not satisfy C;. In this case,
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there are two possibilities. The first is that II3 responds with some h such that
h # Pl¢; but then with non-zero probability h(x) # P(x) but (since P is d-close to
P) P(z) = P(z), and we reject in test 1. Otherwise, if II5 responds with the curve
h = P|c then h will not satisfy C}, and so we will reject in test 2.

64 Reducing PCP Query Complexity for NP

On exercise 1 of Problem Set 7, we demonstrated that SAT € PCP[n? O(1)]. In this
section we’ll use the same techniques to show that C'SAT € PCP[poly, 1].

Since @, A, is a complete set of gates (which happens to arithmetize well), we’ll
focus on that version of C'SAT. An instance is a circuit K composed on k inputs,
composed of n — k AND, XOR, and NOT gates; the question is whether K has
a satisfying assignment. It is not too hard to see that C'SAT is NP-complete. One
simple witness for C'SAT is to provide a satisfying assignment to the inputs aq, ... , ax.
Since we know that C'V AL € P this assignment should suffice. But an easier witness
to verify presents not only a satisfying assignment to the inputs, but also the output
of all gates: ay,...,ak,...,a,. This is easy to verify: if gate j has inputs a;,, a;, and
output a;,, then the output should be consistent with the inputs and the behavior of
the correct gate type; also, the output gate should output 1.

The result is that we can express CSAT in terms of another low-degree polynomial
problem: QPSAT. An instance of QPSAT is a set of ¢ degree 2 (quadratic) poly-
nomials py,...,p; on n elements of Fy; the YES instances are those in which the
polynomials have a common zero. The reduction from C'SAT expresses the above
constraints, that is, an XOR gate with inputs a;,,a;, and output a,, results in the
polynomial a;, + a;, + a;,, an AND gate results in the polynomial a;, a;, + a;,, and
a NOT gate results in the polynomial a;, + a;, + 1. So to prove C'SAT it will be
sufficient to provide an appropriate encoding of aq,... ,a,.

Fortunately, from our homework we already know an appropriate encoding of an as-
signment aq, ... ,a, on a degree 2 polynomial. We’ll encode the assignment a4, ... ,a,
as two functions, a linear function ), a,x; (This is called the Hadamard encoding of
a) and a quadratic function ) ;. a;a;z;; (which we’ll call the Quadratic Functions or
QF encoding of a). In the homework we exhibited tests which allow us to determine
if a Hadamard encoding and a QF encoding are consistent, and we demonstrated
that we can self-correct in case the encodings are only d-close to linear and quadratic
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functions. By a slightly modified argument, we can form the random polynomial
P = Zj r;p; and test to see whether the given encoding causes P, to evaluate to
0; if K is satisfiable then a satisfying assignment will always cause P, to evaluate
to 0, whereas if K is not satisfiable then P, will evaluate to 0 with probability at
most % Summing the number of probes into the proof required, we see that 3 probes
each are required for linearity testing of the Hadamard and QF encodings (6 total), 4
probes (actually, one self-corrected probe of each) are required to test the consistency
of the Hadamard and QF encodings, and a single self-corrected probing of the QF
encoding is required to test whether P,.(a) = 0. Therefore we have a construction
which demonstrates NP C PCP[poly(n), 12].

65 Composition of PCPs

Recall that in section 1, we gave a 3-prover MIP for NP. This verifier had the ad-
vantage of reaching our goal of O(logn) random coins, but the answers (or query
complexity) were poly(logn) bits. One thing to notice about this verifier is that its
verdict is an easily computable function of the answers it gets: that is, it is com-
putable by a circuit of size poly(logn). On the other hand, our previous construction
yields a query-efficient verifier with soundness bounded away from 1, but which needs
exponential sized proofs, and verifies circuit satisfiability. What we would really like
is if there was some way to get the randomness complexity of the MIP verifier, but
with the query complexity of the PCP verifier.

But reading over our summary should lead to an idea: compose the verifiers. A
naive attempt might compose them in the following way: start with the 3-prover
MIP verifier. Prepare queries ¢, g2, and g3 as before, and construct the small circuit
(poly(logn) gates) C' that determines our verdict. Then send our queries to the
provers, but instead of asking for the responses ay, as, as, ask for a proof that a,, as, as
would satisfy C', using the 12-query PCP verifier. This is different from either of the
previous systems, because it queries only 12 bits, and uses only O(logn) randomness
for the MIP verifier and poly(poly(logn)) = poly(log n) bits of randomness for the PCP
verifier, that is, it uses only poly(log n) bits of randomness overall. Unfortunately this
naive approach is not quite good enough, because the verifier just described violates
the soundness condition: there’s nothing guaranteeing that the satisfying solution to
C wasn’t chosen to satisfy just C' and not any of the non-randomly chosen clauses.
This is sort of like asking a SAT prover to give assignments to a few clauses separately,
without checking to see whether the assignments are consistent between clauses.

Fortunately, we can overcome this difficulty with only a little extra work. The solution



156 66 THE PCP THEOREM

is to force the prover to commit to the response to the query ¢; (via a Hadamard
encoding A; of the resulting answer ;) as well as a QF + Hadamard encoding B
of a satisfying assignment to the circuit resulting from our choice of random coins.
Then we can still use the PCP 12-query verifier on the QF 4+ Hadamard encoding
of the satisfying assignment for completeness. To get soundness, we need to check
that each encoded answer A, A,, and Aj3 is consistent with the satisfying assignment
to our circuit. But since each A; is just a linear function encoding and we have a
linear function encoding of all of the variables in A; plus some extras, we can just test
that, for a random x with |a;| bits, A;(x) = self — correct(B(z)), where z is padded
appropriately in the linear function encoding B. Thus these extra consistency checks
take 3 queries each, and the entire construction makes 21 queries.

So in other words, a correct proof that x € Gap — PC'S for our verifier will have the
expected oracle form II, where T1(O, R, -) will serve as the oracle giving the Hadamard
+ QF encoding of the satisfying assignment to the inner PCP verifier when tossing
coins R; and II(7, ¢;, -) will serve as the Hadamard encoding of the response of prover
1 to question g; in the outer MIP verifier, for 1 < ¢ < 3. Thus the complete verifier
program will be:

e Toss random coins R as for the outer verifier

e Prepare the queries ¢i, g2, and ¢3 as for the outer verifier

e Construct the circuit C' which computes the response of the outer verifier as a
function of the responses to the queries ¢; constructed in the previous step.

e Run the inner verifier on the oracle I1(0, R, -) with input C'. if the inner verifier
rejects, then reject.

e Reject if T1(4, ¢;, -) is not consistent with IT1(0, R, -) for some 1 < i < 3.

e Accept otherwise.

This verifier has randomness complexity poly(logn) and query complexity 21, and
soundness bounded away from 1, so we get the result NP C PCP[poly(logn), 1].

66 The PCP Theorem

So far we’ve come very close to our goal of showing NP = PCP[logn, 1], but we're
not quite there yet: we need to get our verifier down to logarithmic randomness
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rather than polylogarithmic. The randomness requirement of the construction in the
previous section is polylogarithmic because the provers for the outer verifier return
answers of size poly(logn) and the inner verifier requires randomness polynomial in
the size of its input. So we need some way to make the circuit even smaller.

Note that we have introduced a general composition paradigm in which, given an outer
verifier and an inner verifier of the correct types, we can compose the two to get the
randomness efficiency of the outer verifier combined with the query efficiency of the
inner verifier, so long as we can force the proof to commit to an answer consistent with
the queries of the outer verifier. For the outer verifier, we require an MIP verifier with
a small number of provers and easy decision criterion (small accept/reject circuit),
which has low soundness error. For the inner verifier, we require a PCP with small
query efficiency, which can verify the commitment to a proof, and which admits a
self-corrector, for robustness.

Notice that our MIP[3, log, poly(log)] verifier can also be made into an inner-verifier for
the NP predicate which our PCP verifier evaluates, yielding an MIP[6, log, poly(loglog)]
verifier for NP. This is done by asking the second set of three provers for a proof that
the answers from the first three would have caused the verifier’s circuit to accept,
along with verifying the consistency of the second set of provers’ answers with the
answers of the first set. But now notice that the size of the acceptance circuit of
the inner verifier is poly(log(poly(logn))) = poly(loglogn). So we can compose the
MIP[6, log, poly(loglog)] verifier with our PCP[poly, 21] verifier, which will now require
poly(poly(loglogn)) = poly(loglogn) = O(logn) bits of randomness, add three more
consistency checks, and get a PCP[log, 30] verifier for NP. (Where we skip deduc-
ing the soundness constant) Thus, combined with our homework exercises showing
PCPllog, 1] € NP, we’ve shown that NP = PCP[log, 1].
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Lecture 23: Conditional/Unconditional Complexity

Lecturer: Adam Kalai Scribe: Jason Crawford / Editor: Shuchi Chawla

Synopsis: Conditional vs. unconditional complexity theory. Diagonal-
ization and simulation, and their limitations. Oracle results and circuit
complexity.

67 Conditional/Unconditional Complexity Theory

With this lecture we enter Phase III of the course. In Phase I, we studied basic defi-
nitions, building up an elaborate (hypothetical) world picture of complexity classes.
In Phase II, we studied randomness and its applications to complexity. Both of these
areas are conditional—their primary interest relies on unproven assumptions. (For
instance, showing a new problem NP-complete is interesting only if P # NP.)

In Phase 111 we will study unconditional complexity theory—that which we can prove
without any assumptions. Unfortunately, this will turn out to be: not much. For
instance, we can prove:

P £ PSPACE VV P # NC

P - SPACE(n)
P C TIME(n's")

Uniform NC; D SPACE(n)

We can’t even prove:

P £ PSPACE
PH # L
RP £ EXP

BPP # NEXP
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67.1 A Constrast of Methods

In unconditional complexity research, we are usually interested in discovering some-
thing true of every algorithm or circuit which computes a particular problem. In con-
ditional complexity, by contrast, we are primarily interested in showing relationships
among problems (e.g., reductions). Without knowing anything about any algorithm
to solve SAT, we can say that if SAT is easy, then many other problems (all of NP)
are easy.

To look at this another way: An algorithms researcher, for instance, may discover
(e.g., through a reduction) that some problem A being easy implies that another
problem B is easy. He publishes “A easy = B easy.” Even better for his line of work,
if A is known to be easy, he can conclude that B is easy.

A complexity theory researcher, on the other hand, proceeds as follows. He discovers
“A easy = B easy,” and publishes: “B hard = A hard.” If B is a problem suspected
to be hard (or if B is, say, all of NP), then this is strong formal evidence that A is
hard.

As the field stands today, conditional complexity is “a thriving, deep and important
area despite the fact that it sidesteps the issue of the existence of hard problems.”
Unconditional complexity, on the other hand, has not come nearly as far. Progress
has been slow and difficult.

In this part of the course, we will study results proved in unconditional complexity,
as well as meta-theoretic concerns about which lines of attack can and cannot be
fruitful.

68 On Diagonalization and Simulation

Diagonalization and simulation have had tremendous success in math and logic. Can-
tor first used the technique to prove the uncountability of the reals. Godel used it
later to prove his Incompleteness Theorem. Thus it is not unreasonable to think that
diagonalization and simulation can help us resolve the P = NP? question. However, a
1975 paper by Baker, Gill and Solovay [1] provides formal evidence that this technique
may not in fact be useful.
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68.1 Oracle Results

While there are many aspects of our world picture which we cannot prove, there are
many different (and conflicting) hypotheses which can be shown to be true relative
to a certain oracle. For instance, it can be shown that:

34 PA=NPA
JB PP £NPP
3C  PY #£ NPY A NPC = coNP¢
AD NPP # coNPP A PP = NPP N coNPP
JE  NPE # coNP® A PP £ NP¥ N coNPF

as well as many other similar results.
For concretization of the first two claims above, consider the following:

pTQBF _ \pTQBF

(as seen in Lecture 5, both are equal to PSPACE), but for a random oracle A,
P4 £ NP4

(as seen on Homework 7.4).7

68.2 Relativizing Proofs

It may not be obvious, but oracle results such as these are actually evidence that
diagonalization and simulation will not work to solve P = NP?. To see why, consider
(for instance), the Time Hierarchy theorem. It begins with a simulator theorem:
Any TM M running in time f(|z|) can be simulated by another TM running in time
f3(J(M, z)]). This is followed by a diagonalization theorem: We can create a TM Dy
which simulates any machine running in time f, and then does the opposite. Thus
deciding the set accepted by Dy is in TIME(f*), but not in TIME(f).

Now, notice that this argument would be unchanged if every machine and complexity
class in the argument were augmented with a given oracle O. Such an argument is
said to relativize. BGS’s paper pointed out that, because of the conflicting oracle
results mentioned above, no relativizing argument can resolve P vs. NP.8

"Baker, Gill and Solovay constructed such an oracle—by diagonalization!
8This does not necessarily mean that diagonalization and simulation will not eventually be used
to show P # NP, as we will see in a future lecture.
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Arguments which work by diagonalization and simulation typically treat the TM as
a black box, and hence these arguments relativize. These results are discouraging,
because most arguments, such as the Space Hierarchy Theorem as well as the Speed-
Up and Gap Theorems (and many more) all relativize.

69 Oracle Results and Circuit Complexity

In the late 1970s, complexity theory researchs had yet to prove two particular oracle
results in the spirit of those above:

JA PHA C PSPACE”
JA Vi SA£TA

Recall, however, as we have seen in previous lectures and on homework 4.5, that
there is a deep connection between classes like PH and PSPACE and certain types of
circuits. It is thus that, in trying to solve the first of these by diagonalization, Furst,
Saxe and Sipser ran into a question in circuit complexity:

uestion: Must any constant-depth circuit to compute parity have ' ates,
tion: Must tant-depth circuit t t ity have Q(2!°¢'") gat
for all 27

Furst, Saxe and Sipser [2] showed in a 1981 paper that the parity function is not in
ACP but this was not enough to prove the existence of the desired oracle. Yao[3]
and Hastad[4] proved successively better lower bounds which did establish the result.

Hastad finally showed that parity requires Q(Q(%)ﬁ d_%) gates to compute with a
depth d circuit family.

Hastad also proved that there exist functions fi, fo,... such that for all k, f is
computable by a poly-size depth-k circuit family, but requires superpolynomial-size
depth-(k — 1) circuits. This was sufficient to prove the second desired oracle result.

Remark: All that was required for the desired oracle results was a lower bound
for uniform AC°. All the proofs, however, show the stronger non-uniform bound.
Complexity theory researchers show non-uniform bounds because they can’t find any
use for uniformity outside of diagonalization.
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70 Hope For the Future?

In showing these circuit bounds, something more important than the oracle results
had been accomplished. The proofs of the circuit bounds were non-relativizing.
Rather than relying on black-box type arguments, these proofs actually dug around
in the guts of the circuit and made assertions about what the computation would
have to look like. This suggested that perhaps the P = NP? question can be resolved
by circuit complexity.

The rest of the course will concentrate on circuit lower bounds, concluding with
a lecture on “Natural Proofs,” an idea by Razborov and Rudich which shows the
inherent limitations of this approach.
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Lecture 24: Lower Bounds for Constant-Depth Circuits

Lecturer: Adam Kalai Scribe: Venk Natarajan / Editor: Chris Wallace

Synopsis: Discussion of lower bounds for constant-depth circuits. Has-
tad’s Switching lemma. Lower bound on circuit size for constant depth
parity circuit.

The main thrust of this lecture is to prove that there is no way to create a reasonably-
sized constant depth circuit to evaluate the parity function. First we will discuss two
concepts that will be very useful in proving this fact — Restrictions and Decision
Trees. Next, we’ll talk about the Hastad Switching lemma, which is the “hardest”
thing we’ll need to prove in order to accomplish our task.

71 Preliminaries

71.1 The Parity Function

As noted in the synopsis, we will prove that the parity function takes exponentially
many gates to compute in constant depth. For review:

Definition 71.1 (Parity Function) The parity function, denoted & or XOR, re-
turns 1 iff an odd number of the inputs are set to 1, and returns 0 otherwise.

Despite the very simple statement of parity, the parity function takes very many gates
to compute in a constant depth regardless. Why? Why is parity so hard? The main
reason is as follows — flipping a single bit of the input to the pairty function will
always change the output. We formalize this as follows:

71.2 Restrictions

Definition 71.2 (Restriction) A restriction p : [1.n] — {0,1,%} of f : 0,1" —
{0,1}, denoted f | p, is the function induced by x; — P(i) if P(i) =0 or P(i) =1,
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and x; — x; if P(i) = . We call a restriction interesting if p(i) = x for some i.

In other words, think of the numbers in [1..n] that are being set to “*” as being

“unset” bit positions. Then think of f | p as being the function that we get when
we only consider those inputs that are “consistent” with the values given to those bit
positions that are set. For instance, if p(5) = 1, then we only consider inputs to f
whose fifth bit is set to 1. But if p(5) = %, then we consider inputs regardless of what
the fifth bit is set to.

Now, any “reasonably sized” constant-depth AND/OR/NOT circuit has a possible
restriction to the inputs which induces a constant output. For example, we can
restrict the AND by setting the 1st bit to be 0. If the first bit of the input to any
AND function is forced to be zero, then the AND will never output anything other
than zero.

So, we are now ready to frame the “difficulty” of the parity functon in terms of
restrictions. That is, the only way to restrict the input to the parity function and
get a constant function, is if we restrict all of the bits of input. In other words, no
interesting restriction of the parity function produces a constant function.

So it is enough to see that if we van prove that, for any small constant-depth circuit,
that there is an interesting restrition that produces a constant function, then we will
be done.

How are we going to prove the existence of such a circuit? Randomness!

71.2.1 Why we Care about Restrictions

The idea of the Hastad Switching Lemma (we’ll formally state the lemma later) is
that, with high probability, a random restriction on a circuit will turn an OR of a
small number of ANDs into an ANDs of a small number of ORS. So even if we have
multiple such ORs of ANDs, we’ll be able to find at least one restriction that switches
all of these ORs of ANDs into ANDs of ORs. Why is this ability useful?
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AMND
OF

AMND
OR

OF

AMND
oR

The first two boxes in the above diagram respresent a circuit that has a layer of ORs,
followed by a layer of ANDS, then one of ORs, then one of ANDs. The second two
boxes represent what the circuit would look like if we were able to switch an OR of
ANDS (represented by the first box above) into an AND of ORs, without making
drastic changes to the number of gates. Then we would have two consecutive rows of
ANDs, as shown in the second pair of boxes, which we may then merge into one row
without any significant increase in circuit size.

We end this section by definining a class of restrictions of a certain type.

Definition 71.3 R_fl is the set of all restrictions on n varaibles that leave ¢ variables
unset.

This class of restrictions will come in handy when we talk about the Hastad Switching
Lemma.

71.3 Decision Trees

Definition 71.4 (Decision Tree) A decision tree is a binary tree whose nodes are
labelled with a bit positon of the input, and whose edges are labelled with 0 or 1. We
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traverse from the root of the tree to the leaf, following the 0 or 1 edge, depending on
what the value of the bit referred to by our current node is.

Now, let’s look at a decision tree, and consider what it does to a set of inputs. Suppose
that the tree has depth S. We output a 1 iff we go down some path to a leaf that
tells us to output 1. Each path represents an AND of z;’s (where some of these z;’s
may be negated), and there can only be S terms that we have to follow. So it’s easy
to see that a decision tree can be expressed as an OR of ANDS, where each AND has
at most S variables.

Using DeMorgan’s laws to create a complement tree, one can check that a decision
tree can also be exressed as an AND of ORs, where each OR has at most S variables.

Now, let us consider a formula F' that is given in DNF, so that the terms are preseneted
in some canonical order. (The particular choice of order isn’t important, but this
choice is made beforehand and fixed throughout all this).

That is,

F=CvCyVvCs---VC,

We can, as seen, also restrict this formula in the same way that we can restrict a
circuit or any boolean function. The remaining function is also in DNF, and will
usually be simpler. (An easy exercise to see this).

So

Fl=C\C,...C!

Where each C! = C; | p. Each C! will look like the original term C}, except that some
variables may be gone. But those variables that do remain are presented in the same
order as they are in the C;.

Example: Let F' = 1173z, V x12923. Let p(i) =1, p(2) = p(3) = . Then F | p =
ToXs V Tol3.

So let us come back to decision trees. We can, given a DNF formula F', inductively
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define the canonical decision tree for F' as follows (this is where we need to use the
fact that we have a canonical ordering to work with):

Definition 71.5 We inductively define the Caoninical Decision Tree for F: T(F) is
the tree that always returns 0 if F' has no terms. If FF = C\ V F', where Cy is the
empty term, then T(F) is the tree that returns 1. (Think of this as an empty and
always returning true...). Now, suppose that Cy uses variables x; ,x;, ...x;, . Then
T(F) is the tree represented below.

k Rows

Ok, so what is each Tg,?

The tree that we get should output 1 on any input that makes C true. So for all
paths of ) true, we do not have a Ty, after the first k& rows, and instead output 1.
On the other hand, if we take a path for which C; is 0, then we have to evaluate
F. So think of each S; as being a truth assignment on z;,...,; , and each T§; is
located by following the path down 7' as determined by the given truth assignment.
If we are given a truth assignment, then we don’t need to know all of F'. Having
gone down the given path, we already know what each of the z; ,...,x; are. So we
really only need to know what F” [ p; is, where p; is the restriction resulting from
setting x;,,...,x;, to be the values in the truth assignment ;.
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71.3.1 Why we care about Decision Trees

The nice thing about decision trees is that they can be computed as a small OR of
ANDs, or a small AND of ORs. So they give us a way of formalizing the “switching”
effect of restrictions that we talked about before.

72 Hastad Switching Lemma

The Hastad Switching Lemma tells us that with high probability, a restriction of a
large proportion of the variables will create a shallow decision tree:

Lemma 72.1 (Hastad Switching Lemma) Let F' be an OR of ANDS of size < r.

_ 1 .
For k>0, { =pn, p < =, we have:

{p € RY| DEPTH (T(F | p)) > k}|
7]

< (7pr)*

So if we restrict most of the variables (here,  of them), then the tree will very likely
have a small depth.

Example: Let us consider an OR of v variables from among n inputs. Let r = 1,

k =loguv, p = ﬁ, and ¢ = ;. Then the probability that we can’t do the restricted
1 1

OR by a decision tree of depth less than logv is at most %k = ==,

2log v v

For now, let us assume that the Hastad Switching Lemma is true, and see how that
will apply to the main theorem (i.e., there is no small constant-depth circuit family
computing the parity function). We will later return to proving the Hastad Switching
Lemma.

72.1 Application of the Hastad Switching Lemma

Theorem 72.2 There is no constant-depth circuit family that computes the parity
function.
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Proof:

Here’s a basic fact from probability theory:
Fact 3 (Boole’s Inequality) If Xi,..., X, are events, then:

Pr(X; V-V X,) <>
i=1

Example 72 showed us that if we restrict % of the inputs, then there is only probability
at most % that a restriction will fail to convert an OR into a decision tree of log S
depth. If we have S — 1 of these ORs, then by Boole’s Inequality, the probability that
a restriction will fail to convert all ORs into a depth log S decision tree is still less
than 1. Therefore there is a restriction in R/'* that will convert all of S — 1 ORs

into some tree of depth log S.

So, let’s take a circuit of n inputs, size S and depth d, and restrict ﬁths of the inputs.
Then we have a circuit that is size S, depth d, but with only {4 inputs. Each input
wire of depth 1 can be computed by a depth log.S decision tree, and thus can be
computed by both an OR of log S ANDs, and as an AND of log.S ORs.

Inductively, each wire at depth ¢ can be computed by a decision tree of depth log S.

So essentially, each time we are taking away 13/14 of the variables, and each time we
are creating a tree of depth logS. In this manner we can repeatedly switch ANDs
and ORs, and then merge as we showed above, to turn the circuit into a constant
size.

We can repeat the process here until we have a depth 2 circuit on m cari-
ables.

Now, remember from the homework that @ requires 2"~! gates to compute in a depth
two circuit, and this comes in the form of OR or ANDs of full size. We don’t have all

n variables left, but we do have MW variables left.

So, if S is the number of gates in any constant-depth circuit family computing parity,

then log S > W@s)d—?' Solving for S yields:
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72.2 Proof of Hastad Switching Lemma

We repeat the statment of the Hastad Switching Lemma given at the beginning of
this section:

Lemma 72.3 (Hastad Switching Lemma) Let F' be an OR of ANDS of size < r.

— 1 .
For k>0, {=pn, p <z, we have:

{0 € RL| DEPTH (I(F | p)) > k}|

< (7pr)F
i = ()

Proof:: Let S = {pR’ | DEPTH(T(F | p)) > s}. The statement of the lemma says
that S should be small, so clearly this is our aim. We will do this by giving a clever,
altermative method of describing the members of S.

In particular, what we are going to do is exhibit a 1-1 map from S to a small set.

Let STARS(r,s) be the collection of all sequences (f1,0s,...,8x), where (3; €
{x,—}" — {—}", and the total number of stars in (1, fa,...5a) equals s.

We will exhibit a 1 — 1 map from S into R:* x STARS(r, s) x {0,1}*. But this map
is only of use if we can establish that R’~* x STARS(r, s) x {0,1}* is actually a small
set. So let’s do that first:

1. R’ *: We can choose ¢ — s elements to be unset, and the remaining variables
(n — (£ — s) of them) can be set in 2"~(=%) ways. So there are (," )27~
elements in R’ °.

2. STARS(r,s): This is a trickier counting argument. In fact, to attempt to count
this exactly would be a difficult, if not hopeless task. Instead, we can use upper
bounds for the factorials and binomial coefficients to show that STARS(r, s) <

() -
3. {0,1}*: This clearly has size 2°.

So if we can find a map from S to R:* x STARS(r,s) x {0,1}* then |S]| is at most
the product of the three numbers we computed above, which is at most

2n—(€—s) (i) N 98
2
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The same argument that we gave in the first item above shows that ‘Rm = (Z) 2n—t,

Now arithmetic will give us, when p < %:

S 4
|'R)| = ( 5

Construction of 1-1 map: Let p € S. Then by definition of S, DEPTH(T(F' | p)) >
s. Let m be the lexicographically first path in T'(F [ p) with length at least s. If 7w
larger than s, then trim 7 to length S.

So we are going to use F', T(F [ p), and 7 to calculate the map.

As we saw earler, the tree is basically build by piling trees for circuits on top of one
another. So we can think of the path as being a sequence of pathsneeded for each
circuit. Since the path has length at least s, we know that we must conver enough
circuits of that length. In other words, we have the following

So we have the following:

Cy | pmy
Ci22rp7TQ =0

Cig [ pri---m =0

But, we know that C;, | pmy -+ - 77 is not equal to 0, since the path doesn’t end (length
is at least s). (7 above is just for expository terms — really what we’re interested is
the fact that the path has length s.)

Where each C' above represents the “next” surviving conjunction after we apply the
restriction p.

Consider the m; partitions that we had above. We can let o be what happens in
the case where we had to go the other way instead of what we did after m; ended.
Then we have that Cy [ poy =1, ..., C;, | pry... 7405 = 1, but if we then apply
the pattern to Cj,, we just get something nonzero, but perhaps not yet terminating
either.



172 72 HASTAD SWITCHING LEMMA

Let STARS; be so that the jth variable of C; is set by o; if the j'h entry is a “*”.

Then our map is p — (poy . ..ok, {STARS;,...,STARS},0), where § is the bitwise
XOR of the bits of 7 with those of ;... 0.

Since our path is of length 7, the scond coordinate will really have s stars in it.

We can then recover p from its image. C is the first clause set to 1 by poy . ..o
(“first” in the canonical ordering we referred to a long time ago). The STARS in each
sequence tells us which variables are in the o;, and the ¢ acts as a way of getting at
how the variables are set by o; by comparing these values in 7.

We can then inductively retrieve the rest of the variables.
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Lecture 26: Approximation Method, II

Lecturer: Rudich Scribe: Joshua Dunfield / Editor: EDITOR NAME

Synopsis: Razborov-Smolensky: a circuit lower bound for mod q. Voting
polynomials; weak and strong degree of functions. Aspnes et al.: a circuit
lower bound for parity.

73 Recap

We are in the middle of establishing a pair of circuit lower bounds by means of the
Approximation Method.

Theorem 73.1 (Razborov-Smolensky.) For all distinct primes p and q: Using AND,
OR, NOT and modp gates, we cannot approzimate modq with constant error in fewer
than 29Un'/9) gates, where k s the depth of the circuit.

In the previous lecture, it was shown that every circuit of this kind can be approxi-
mated with constant error by a small (o(y/n)-degree) polynomial.

Theorem 73.2 (Aspnes, Beigel, Furst, Rudich.) AC® circuits with a single “major-
ity” gate at the root cannot approrimate the parity function @.

In the previous lecture, we proved this theorem:

Theorem 73.3 Every AC? circuit with a single majority gate at the root can be ap-
prozimated to within € by the sign of a polynomial of degree O((log(S?%/€) log S)%).
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74 Razborov-Smolensky

Theorem 74.1 (Smolensky’s theorem.) For all p > 2, no degree-o(\/n) polynomial
over Ly, can approzimate parity with constant error.

The proof of this theorem is rather involved, so we will not prove it in full generality.
Instead, we will demonstrate that it holds when p = 3.

Encode true as —1 and false as 1. Then & on n inputs z,xs,...,x, is just the
product z12;...2,. (This choice of encoding is fully general — we know from Hwk.
6 that the degree of the resulting polynomial is invariant over encodings of true and
false.)

Let W be a set of true/false assignments to the n variables, and let w = |IW|. Now let
P(z1,...,x,) be a degree-d polynomial which agrees with z; ...z, on all true/false
assignments except those in W. Thus w is the number of assignments for which
P disagrees with ©. We will show that d and w cannot both be “small”—if P
is of low degree, then P must disagree with many assignments, making it a poor
approximation.

Lemma 74.2 Every multi-linear polynomial ¢ = q1 + - - - 4+ @ can be represented in
the following form:

r1T9 ... ZUngl + ‘62

where the degrees of {1 and Uy are at most n/2.

Proof: Break ¢ into ¢} + {5 according to the degree of each term ¢;:

0y = {¢: | ¢: has degree > n/2}
ly = {q; | ¢; has degree < n/2}

Now let
!/
él = T1T2... xnél
Since ¢ is multi-linear, each variable z; can appear in a term at most once. If z;

appears in /1, it appears squared in /;—but true? = (—1)> =1 and false? =12 =1,
so x; does not appear in ¢;. On the other hand, if z; does not appear in ¢, it will
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appear once in /1. Thus, if each term in ¢} has degree d’, d' > n/2, the degree of the
corresponding term in ¢ is n — d'. So the degree of ¢; is at most n/2.

Finally,
Ty Tl + Uy = 1To . Ty T1To . Tl + Uy
= 1T ToTs - - - TnTnl] + Lo
=0+l =q,
SO x1 ...x,l1 + I does in fact equal g¢. m

Corollary 74.3 If we ignore the assignments in W, any multi-linear polynomial q
can be represented as ply + Uy, where {1 and Uy have degrees of no more than n/2.

Proof: Represent ¢ as zixy...x,01 + ¢5. Since p agrees with z;...x, on every
assignment not in W, we obtain

q:$1$2...l’n£1+£2 :p€1+£2

for every assignment not in W. ]

We are working in Zs, so a function can produce any of three values for a particular
input. There are 2™ possible true/false assignments to n variables. Hence there are
32" multi-linear functions. Excluding the assignments in W, there are 32" ~* distinct
functions.

We represent each such function by a multi-linear polynomial q. By Corollary 74.3,
q can be represented as pl; + {5 (ignoring assignments in W). We chose p to have
degree d, and by Lemma 74.2, {1 + {5 is of degree < n/2. Hence q = pl; + {5 has
degree d +n/2.

How many functions exist that have degree d + n/2? If there are less than 32" % we
have a contradiction.

When d = o(y/n), the number of monomials is

n/2+d n
3 () 91 4 o(27)
im0 !
so the number of functions of degree < d +n/2 is 3*" ' +o2")

inequality to hold:

. We need the following

32”’1—1—0(2”) > 32"-w
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But:
32" +o(2") > 32"-w
2" +o(2") > 2" —w
2"t 4 0(2") > —w
2" —0(2") < w
012" <w
w = Q(2")

Thus the low-degree polynomial is wrong on a more-than-o(1) fraction of the inputs,
contradicting the assumption thatw was small.

75 Lower bound for ¢ in AC’

75.1 Voting polynomials
We will use “voting polynomials” to approximate &, the parity function.

Definition 75.1 A voting polynomial is a polynomial over R that represents a
Boolean function in the following way: the polynomaial is positive wherever the function
s 1 and negative wherever the function is 0.

Definition 75.2 The strong degree SD; of a Boolean function f is the degree of
the minimal-degree voting polynomial which represents it.

For example, the strong degree of parity on n variables, SDg, is n.

75.2 Low-Degree Approximation of @&

What degree do we need to reasonably approximate a given function, specifically &7

Suppose we have a degree k univariate polynomial f. Then f(X?_,z;) has the correct
sign when Y7 z; is between “5% and % (see Fig. 20).

Consider all the possible input strings of length n. There are few strings such that
the number of 1’s is close to 0 or close to n. Our function f(X? ;) is correct for the
inputs with sums near the center of width, k&, of the normal curve on Fig. 21.
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has correct sign here

- -
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Figure 20: Graph of f, a degree k univariate polynomial.

+—> > X
k

Figure 21: Distribution of Xz;

So if k grows faster than O(y/n), the function f approximates @ well.

Note that the degree of f(X7_,z;) is at most k.

Definition 75.3 The weak degree WD/ of a Boolean function f is the degree of
a minimal degree non-zero voting polynomial p which, for every assignment a; to its
variables, either has the correct sign (positive for true, negative for false) or equals
0. We say that such a polynomial p weakly expresses f.

We exclude the all-zeros polynomial from the definition because such a polynomial is
completely useless. (We still allow polynomials that are 0 at all but one place, but
such polynomials must have high degree, making them uninteresting here.)

Suppose p weakly expresses @. Observe that

1. p- @ > 0, because each term in X(p(z) @ x) is non-negative and we excluded
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the all-zeros polynomial.

2. For any p of degree less than n, p- @ = 0, because @ is orthogonal to every
monomial in p.

Therefore WDg = n.

75.3 Duality

Although this result is not used in the proof, it is interesting enough to be included
here:

Theorem 75.1 Duality. WD; + SDjg = n.

Suppose p weakly expresses f, and p' strongly expresses f@®. Then p x p’ weakly
expresses @ (consider the possible signs). So the degree of p x p' is at least n.

WD + SDyg < n can be shown using Farkas’ lemma (not included).

75.4 Finishing the proof

Lemma 75.2 There exists a “small” degree f' which is non-trivial but zero on all
points in W.

Proof: A degree k polynomial can have ©F (?) coefficients. Choose k so that
2F o(7) > [W|. Then choose the coefficients of f’ so that f’ sends all points in W
to 0, i.e. choose coefficients according to a homogeneous system of || equations
in v = X% (") variables. Since we chose k to be less than v, there is a non-trivial
solution. ]

Suppose a “low” degree f approximates @ “very well”. From this it will follow that
WDg is “low”. Assume f is @ on all but a “small” W. It follows from the above
lemma that (f’)? is a non-zero, “low” (2k) degree polynomial that is zero on W
(because f’ is zero on W) and non-negative elsewhere. Furthermore, since f is &
outside W, f - (f")? weakly expresses @& — inside W, (f')2 =0so f- (f')?> =0, and
outside W the sign of f - (f')? is the sign of f.
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Theorem 75.3 A degree k approzimation to f will be wrong on at least
(WD f—k—1)/2
> ()
, i
=0

points.

A function h is symmetric iff, for all z, y such that = and y are permutations of each
other, h(x) = h(y). Thus, a symmetric function depends only on the number of 1’s
in its input. Obviously, @ is symmetric.

Corollary 75.4 The best approzimation to @ is the symmetric scheme (Note: not
true for other symmetric functions.)

A proof of Corollary 75.4 can be found in Section 3 of [ABFR93].

Now, by Theorem 73.3, there is a voting polynomial of degree O((log(4s%) logs)?) =
O((log s)??) that approximates @ except in at most 2"/4 instances. It follows from
Theorem 75.3 that the polynomial’s degree must be Q(y/n):
(log 5)*! = Q(v/n)
(log s)*' > v/n
logs > (n'/2)1/C) — p1/(a)
¢ — 2Q(n1/(4d))

b

which is the result we originally set out to prove.

76 Concluding remarks

Some other known lower bounds:

1. For distinct primes p,q, mod p” can’t be computed by constant-depth, sub-
exponential size circuits with mod ¢" gates.

2. Majority can’t be computed with mod p gates.

Finally, if you'd like a Ph.D., answer this question:

Is there a constant-depth, sub-exponential size circuit built from AND, OR, NOT
and mod 6 gates that can compute SAT?
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Synopsis: Barriers in the efforts to show lower bounds. Even in surpris-
ingly simple models of computation the best known lower bounds seem to
be very weak; some of the simplest ways to state our ignorance. Valiant’s
barrier and open problems that might be the next step. A discussion
about counter-factual, non-relativizing diagonalization approaches.

77 Simple models and Lower Bounds

What is the current status in lower bounds? Here are some different kinds of
circuits

Depth-3 circuits with majority gates

Depth-3 circuits with A, Vv, = and + MODG6 gates

Logarithmic depth linear size circuits.

Depth-3 circuits with gates implementing x and + over a field F

These models may seem simple but no one knows how to show that a some function
in NP is not computable in these models.

An interesting ”biological” question. Our brain neurons are very slow, but we
are quite fast in many tasks! So, if our brain is reasonably modeled by a circuit, the
depth of our ”circuit” can not be very big. Is this an indication that small depth
circuits are very powerful? Or, is this related to our failure to get powerful lower
bounds?

181
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78 Valiant’s barrier

Question: Can all of functions in FNP be computed by logarithmic depth linear size
circuits? Our intuition is that this is not possible because the information can’t be
routed through the directed acyclic graph, which underlies the circuit.

The following lemma is in the core of Valiant’s approach.

Lemma 78.1 Let G be a directed, acyclic graph, with m edges, whose longest path
has length d. It is possible to remove fewer than km/[logd| edges so that the resulting
graph will have a longest path of length less than d/2% 1.

Before we proceed to the proof some definitions and propositions are needed.

Definition 78.1 Let G be a directed acyclic graph. A depth function d is a function
from the nodes of G to the set of naturals [0 . ..q] such that if there is an edge u — v,
then d(u) < d(v).

Notice that the definition includes the usual notion of depth, but it is broader. Two
easy consequences of the definition capturing these observations are given in the
following propositions.

Proposition: If G has a depth function d - G — [0...¢| then G has depth at most
q.

Proposition: The function d(v)="the length of longest path to v”, is a depth func-
tion onto [0... D], where D is the usual depth of the graph.

We now give a sketch of the proof.

Proof sketch: Let d(v) be the length of the longest path to v. Now do the following:
(i) mark each node v using depth function d(v) written in binary, using log d bits per

node, (ii) mark each edge u — v by the index of the most significant bit in which
d(u) and d(v) differ.

Notice that there are m edges and each edge is labeled with an index between 1 and
[log d]. By the pigeonhole principle it easily follows that there exists an index 4 that
occurs in less than n/[log d]| edges.
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Now we do the following two steps: (i) delete all edges labeled with ¢ from G, (ii)
adjust the labels of the nodes, by deleting their i"* bit to obtain a new labeling
d:G—[0...[logd]/2].

Claim: The new labeling d’ is a depth function. To prove this, we need to show
that if u — v is an edge in G then d'(u) < d'(v). This is in fact easy. Let A be the
index of the most significant bit on which d(u) and d(v) differ. There are three cases:
(i) if A = then the edge u — v was deleted, (ii) if A < ¢ then d'(u) and d'(v) are
produced from d(u) and d(v) by truncating some identical least significant bits, so
the property d'(u) < d'(v) is ”inherited” from d(u) < d(v), (iii) similarly, if A > 0 we
can only have d'(u) < d'(v) because otherwise we would have d(u) > d(v).

The above two steps can be repeated iteratively k times, to remove at most km/[log d|
edges and get a depth function into [0... [logd]/2*], from which it follows that the
resulting graph has depth at most d/2% 1. This concludes the proof. [

Corollary 78.2 Let C be a bounded family of logarithmic depth (clogn) and linear
size (¢'n) circuits. Let € be any positive real. We can cut O(nloglogn) wires so that
the resulting circuit has depth at most elogn.

Proof: We set k = log(c/€)+1 (a constant), so that we cut at most kO(n)/log(clogn) =
O(n/loglogn) wires. By Valiant’s lemma depth has been cut by a factor of 28 = ¢/e.
n

So, we can cut O(nloglogn) wires of C' so that it has depth at most elogn. It follows
that each output of the circuit C' depends on at most n¢ values, some inputs and some
cut wires. So, for showing a lower bound, i.e. a function that can’t be computed by
logarithmic depth linear size circuit, it is enough to invent a function that depends on
many inputs. Currently no such function is known. Are there any good candidates?

79 Interesting Open Problems

Definition 79.1 The rigidity of a matriz A over a field F denoted by Ra(r), is the
number of entries of A that must be changed to reduce the rank below r.

Valiant showed that almost all n x n matrices have rigidity (n—r)? over infinite fields,
and Q((n — r)?/logn), over finite fields. He also proposed the problem of finding an
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explicit family of matrices A such that R4(en) > n® for some § > 0. By his lemma
and some additional work it can be shown that A, can’t be computed by a linear
size logarithmic depth circuits with gates computing liner functions over F'. Another
relevant problem (which happens to be Avi Wigderson’s current favorite).

Definition 79.2 Define the gaussian complexity of a matriz A to be the number
of row operations performed by the shortest sequence of operations that gets A into
reduced form.

Proposition: For most n x n matrices the gaussian complexity is Q(n?).

Open problem: Find an explicit family of matrices A, such that the gaussian
complexity of A, is super-linear !

80 A simple way to state our ignorance

Definition 80.1 A polynomial f(x1,... ) over Ly, represents the OR(x1, ... ,Ty,),
if VX € {0,1}" , it is OR(X) =0« f(X) = 0. What is the lowest polynomial that
represents the OR ¢

It turns out that if m is a prime and f represents the OR over Z,, then the degree of
fis [n/(m —1)]. But this is not the case for m which is not a prime. If m =6, OR
can be represented by a O(y/n) degree polynomial, as showed by Barrington, Beigel
and Rudich in 1993. In 1994, Barrington and G. Tardos showed that the degree grows
faster than o(logn). So, an open problem is, what is the degree of the OR over Zg?
[t must be something in between [logn . ../n].

81 Discussion

As Baker, Gill, and Solovay observed in an 1975 paper, that all diagonalization proofs
to date, relativize, but the major open problems of the field do not. For example there
exist oracles A, B, such that P4 = NP4 and P? # NPZ. Does this mean that the
diagonalization is the wrong approach?

Some classes turn out to be the same for non-relativizing reasons. For example we

know that IP = PSPACE, but there exists an oracle A, such that IP4 # PSPACE“.
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But there have been counter-factual non-relativizing results that use diagonalization.
We begin assuming that classA = classB, we obtain other non-relativizing corollaries
for collapses, and then we point out that we have collapsed to classes known to be
different by diagonalization. And, Fortnow and van Melkebeek showed the following
theorem.

Theorem 81.1 SAT can’t be solved by a machine using n°Y space and n® time where
a < ¢ ~ 1.618, where ¢ is exactly the golden ration.

So, it is an open problem to give an updated version of the [BGS] paper that will
allow us to understand why we can’t prove P £ NP this way. But it still may possible
to prove NP # L by using counter-factual non-relativizing diagonalization.

Remark: This lecture gives at least two or three PhD topics!
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Synopsis: “Proof” that circuit complexity is hard: a meta-theoretic result
in circuit complexity, which suggests why current approaches may not be
able to prove important conjectures, such as 7 = NP.

82 Introduction

The previous lectures in this course have introduced and discussed many famous,
difficult, open problems: fversus NP | rversus PSPACE | and rfversus NC to name
a few.

In this lecture we will argue that these problems are “difficult”.

How can we argue that a mathematical question is difficult? One tempting way is
to say “smart people have tried and failed.” This is a very common and not very
convincing argument. Another approach is to reduce the question to a famous claim,
for example to prove that 7 ## NP implies the Riemann Hypothesis. Then you can
argue “for generations, smart people have tried and failed.” This lecture will take
a different approach, by proving that the current techniques in circuit complexity
are incapable of proving the desired theorems. A totally new technique could do the
trick, but we have to invent it, and smart people have tried and failed.

This argument is analogous to the relativizing oracle argument of Baker, Gill, Solovay
[BGS75], which showed that no relativizing proof can resolve fversus NP . Prior
to [BGS75], all known lower bounds were based on simulation and diagonalization
arguments. These arguments work for computation relative to any oracle. But / =
NP relative to TQBF, and relative to a random oracle /7 # NP. If a relativizing
argument resolved /versus NP one way or the other, it would be a problem for logic.

The Natural Proof theorem says that any circuit class incapable of computing func-
tions with a “natural” combinatorial property (to be defined shortly) has no pseudo-
random number generators. It is a constructive argument; any natural lower bound
yields an algorithm to break pseudo-random function generators for that class. Thus

186
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classes such as 7, NC!, and TC® which probably have pseudo-random number gen-
erators probably don’t have natural proofs against them.

The remainder of this lecture will proceed as follows. We will define natural combina-
torial properties and what it means for a combinatorial property to be useful against
a set complexity class. Then we will see how all known non-monotone, non-uniform
circuit lower bounds fit into the natural proof framework. Finally we will prove the
Natural Proof theorem and conclude with corollaries in conditional and unconditional
complexity theory.

83 Definitions

For this talk, think of a function f,,: {0,1}™ — {0,1} as a binary string of length 2",
called the truth table of f,.

Definition 83.1 The set of boolean functions on n bits, F,, is defined as,

Fo={fu| fa: {0,1}" — {0,1}}.

Definition 83.2 A combinatorial property of boolean functions is a sequence
of subsets of the set of boolean functions,

[Cy CF,|neND.

We will somtimes write C,,(f,) = 1 to indicate f, € C,. Thinking of membership in
a combinatorial property as a function on functions is central to the reasoning behind
the Natural Proof Theorem.

Definition 83.3 Let A be a complexity class. Then a combinatorial property C,, is
useful against A\ if for any sequence of functions f, € C,,

fn & A

In less formal terms, a combinatorial property is useful against a complexity class if
any function exhibiting the property is not in the complexity class.

These definitions allow us to formalize the framework for proving a circuit lower
bound for any complexity class A.
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Definition 83.4 A standard circuit lower bound argument is a proof of a
circuit lower bound that looks like:

1. Define a combinatorial property, C,,.
2. Prove C,, is useful against \.
3. Define a family of Boolean functions, {f,} and prove that f, € C,, for all n.

4. Conclude that {f,} & A.

An example helps make these definitions tangible. Let’s see how this framework plays
out in the restriction method for proving AC’ requires large circuits to compute
parity.

The complexity class A = AC°. The combinatorial property C,, is the set of functions
fn such that setting a certain number of inputs to constants does not make the
function constant. The certain number of inputs decreases from paper to paper,
starting high in [FSS81] and becoming sharply refined by [H86]. The lower the number
the harder it is to prove that C), is useful against A. Finally, the parity function &,
is the prototypical “function which is not constant if you set many of it’s inputs to
constants”, so ®,, € C,,.

Definition 83.5 A combinatorial property C,, is called natural if there exists a com-
binatorial property C% C C,, satisfying two conditions:

e Constructivity: C}(f,) is computable in time polynomial in |f,| = 2".

C*
e Largeness: |‘F"|‘ >
n

1

20(n) *

It appears at first glance that these conditions are too liberal, constructivity allowing
exponential time, and largeness demanding an exponentially small fraction. Don’t
worry. It all works out. The intuition is that we are working with truth tables of
functions, which are exponential sized objects.

We can generalize this definition by restricting the type of computation we use in the
constructivity condition.

Definition 83.6 Let I be a complexity class. Then a combinatorial property is called
I-natural if there ezists a combinatorial property C; C C,, satisfying two conditions:
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e Constructivity: C!(f,) is computable in T.

ICs
[

> 1

e Largeness: 5500

Definition 83.7 A natural proof is a standard circuit lower bound argument that
uses a natural combinatorial property of boolean functions.

84 Examples

All known non-monotone, non-uniform circuit lower bounds have natural proofs. We
will show this for three: AC" bounds for parity, AC°[3] bounds for parity, and voting
polynomial bounds for parity,

84.1 AC" bounds for parity

We commented above that in the AC® lower bounds for parity, the combinatorial
property C), is the set of functions f,, such that setting a certain number of inputs
to constants does not make the function constant. Now we will show that C,, is
AC’-natural.

Theorem 84.1 C,, is AC’-natural.

Proof: Take C}; = C,.

Largeness: The intuition is that the restriction of k£ inputs of a random function on
n inputs is a random function on n — k inputs. There are lots of functions and only
2 are constants.

We can formalize this with a little probabilistic calculation, but we have to get into
the details of exactly how many inputs we fix with the restriction. It is left as an
exercise to the reader.

Constructivity: f, is a truth table with length 2". So we have O(2") gates to work
with. We can “just do it”: list all of the (Z) 2n—k — 90(n) regtrictions. Then for each
restriction there is a depth 2 circuit of size 20" which decides if the restriction leaves
fn constant. n

Thus, this standard circuit lower bound argument is an AC’-natural proof:
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1. f, € C, if there exists no restriction leaving the appropriate number of unas-
signed variables which forces f,, to a constant function.

2. C, is useful against AC".
3. &, € C,.
4. Therefore, @, ¢ AC".

84.2 AC’[3] bounds for parity

Recall Smolensky’s proof that @, requires “large” AC°[3] circuits [S87]. There are
two parts to the argument. First we argue that any function computed by a “small”
ACP[3] circuit can be “reasonably approximated” by a “low” degree polynomial over
Zs. Then we argue that @, cannot be approximated by a “low” degree polynomial
over Zs.

The combinatorial property C, in this proof is the set of f, which can’t be “rea-
sonably” approximated by a “low” degree polynomial. Smolensky’s paper proves C),
is useful. We wish to prove it is natural. But to shed light on the art of proving
a combinatorial property is natural, we will make two false starts before using the
correct approach.

Theorem 84.2 C,, is natural

Proof Attempt 1: Let’s try C;; = C),. It worked last time.
We can prove largeness by a simple counting argument.

Unfortunately, no one know how to prove or disprove constructivity. It is an open
problem.
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Proof Attempt 2: We need to dig deep into Smolensky’s proof to come up with a
core combinatorial property that we can prove is constructible.

A key move was to use the fact that every polynomial can be written in the form
@n * p1 + P2, where p; and py are low degree polynomials. Maybe we can use this as
our core combinatorial property.

fu € C}if fr € C and every polynomial over Zj3 can be written in the form Fup1 + P2
where p; and p, are low degree polynomials. (Here f, is the polynomial representation
of fn in Zg)

With this C*, we have constructibility. We can calculate the value of C*(f,) by
calculating the rank of a 2" x 2" matrix, which is in NC?.

Unfortunately, we have achieved constructibility at too great a cost to largeness. It
may be that there is a sufficient fraction of F}, exhibiting this property, but no one
knows. It is another open question. But we’re getting closer.

Proof: If we take another look into the bowels of Smolensky’s proof at exactly what
property he requires of @, we get a C which works.

Intuitively, we take C}: to be the set of functions f,, for which “most” functions can
be written as f,p; + p2 where p; and p, are low degree polynomials.

We can formalize this by saying f, € Cy, iff the vector space of polynomials spanned
by f.L+ L > %N, where L is the set of low degree polynomials.

Largeness: f, € C}; or (®, A f,) € Cf, so |Co| > 3|Fl.

Constructivity: We can calculate the rank of f, using an NC? algorithm, as before.
n

Therefore, the AC°[3] bound is an NC?-natural proof. This result extends to cover
the AC"[¢] bounds of [S87].

In the next section, we will show that there is no AC -natural proof against AC°[q].
But now, one more example.
84.3 Voting polynomial bounds for parity

For constant depth circuits with AND, OR, and NOT gates, and a single majority
gate directly above the output, [ABFR91| proves a lower bound on the number of
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gates required to compute parity.
The combinatorial property C,, used in this argument is the set of f,, that cannot be

approximated by the sign of a “low” degree polynomial over the reals.

Theorem 84.3 C,, is natural.

Proof: Take C}: to be the f,, with weak degree appropriately high.
Largeness is proved in the original paper [ABFR91].

Constructivity: In the previous lecture, we commented that the strong degree and
weak degree are have a complimentary relationship: deg,(f,)+deg, (®,Afn) = n. We
can calculate the strong degree by linear programming, and obtain the weak degree

by degw(fn) =n-—- degs(®n N fn) u

Since checking membership of f, in C} requires linear programming, we can only say
that this argument is a /-natural proof.

85 Natural Proof Theorem

Recall the definition of a I'-secure pseudo-random function generator: G is a pseudo-
random function generator secure against ['-statistical tests, then for every statistical
test C, € T', for every random seed,

Pr [Cn(random function in F,)] = 1] — Pr [C’n(grandom seed) = 1] < 5o

We comment that pseudo-random function generators are know to exist for limited
computation models, and suspected to exist for more powerful models.

Theorem 85.1 (Nisan, [N90]) For all d, AC°[2] contains a pseudo-random func-
tion generator secure against depth d AC° circuits.

Theorem 85.2 ([GGM90], [RR97]) If 1/poly contains a 2™ -hard function then
1/poly contains a pseudo-random function generator secure against 1/poly.

Now we are ready to state and prove the Natural Proof Theorem.
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Theorem 85.3 If a complexity class A contains a pseudo-random function generator
G which is secure against I'-statistical tests, then there is no ['-natural combinatorial
property useful against \.

Proof: Let A be a complexity class containing a pseudo-random function generator
secure against all ['-statistical tests.

Assume for contradiction that C), is a [-natural combinatorial property useful against
A. Let C7 be the I'-computable core of C,.

For seed s, G generates the pseudo-random function g,. g, is not in C,, because it is
computable in A and C), is useful against A. So gs & C.

But a 1/2°M™ fraction of f € F, are in C because of the largeness requirement.

So C? is a I'-statistical test that breaks GG. Contradiction! ]

86 Conclusion

There are a number of conditional and unconditional corollaries to the Natural Proof
Theorem.

Corollary 86.1 If 1/poly contains a 2" -hard function (and we believe it does) then
there is no natural proof that SAT requires super-polynomial circuits.

Corollary 86.2 No AC-natural proof can work against AC°[p].

Corollary 86.3 There is no natural proof that discrete logarithm requires large cir-
cuits.

Corollary 86.4 If there is a natural proof that some function in NP requires n*

gates then there is a circuit for factoring smaller than currently known.

Theorem 86.5 (Naor, Reingold [NR95]) If factoring is suitably hard then TC°
contains sufficiently strong pseudo-random function generators.
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Corollary 86.6 If factoring is suitably hard then there is no natural proof against
TC.

But enough of that. Let’s be philosophical. Why do natural proofs arise? In a non-
uniform lower bound there is always a useful combinatorial property. Perhaps the
reason the combinatorial property has a constructible core is because it’s very hard
to work with non-constructible objects. Algorithmic proof techniques are certainly a
staple of complexity theoretic reasoning. We can do an even more convincing piece
of hand-waving regarding why the combinatorial property is large.

We will define a generalized notion of complexity

Definition 86.1 A formal complexity measure p : F, — N is a function such
that

1. u(f) <1 for “simple” functions like x;, ~x;,

2. u(f Ag) < u(f)+ulg) and p(fV g) < u(f) + ulg) (putting functions together
is not expensive).

Theorem 86.7 Let ji be a formal complezity measure with u(g) =t for some g € F,.
Then for at least 1 of f € Fy, u(f) > t/4.

Proof: g=(fA(=f®g))V(=fA(fDg)). ulg) =t so one of the four terms on the
right-hand side must have u(t) > t/4 by the pigeon-hole principle. m

So where do we stand for proving important theorems, like / versus NP7 We've
known since the 70s that diagonalization and simulation proves too little to do the
job. Now, the Natural Proof Theorem says that natural proofs prove too much to do
the job. There is probably not even a natural proof separating TC® from NC'.

What can we do? We can try returning to uniform computation. We can try to dream
up combinatorial properties which violate largeness. We can try to dream up com-
binatorial properties which violate constructiveness. Or we can take the pessimistic
route and invest in independence results, and try to show the problem is undecidable
in ZFC or some suitably powerful axiomatic framework.

But let’s end on a high note. It is also possible that we can return to diagonalization
and make it work with circuit lower bound techniques. Perhaps a diagonalization
argument with some non-relativizing step based on circuit theory can do the job.
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