
Chapter 2

Block Ciphers

Block ciphers are the central tool in the design of protocols for shared-key cryp-
tography. They are the main available “technology” we have at our disposal. This
chapter will take a look at these objects and describe the state of the art in their
construction.

It is important to stress that block ciphers are just tools—raw ingredients for
cooking up something more useful. Block ciphers don’t, by themselves, do something
that an end-user would care about. As with any powerful tool, one has to learn to use
this one. Even a wonderful block cipher won’t give you security if you use don’t use
it right. But used well, these are powerful tools indeed. Accordingly, an important
theme in several upcoming chapters will be on how to use block ciphers well. We
won’t be emphasizing how to design or analyze block ciphers, as this remains very
much an art. The main purpose of this chapter is just to get you acquainted with
what typical block ciphers look like. We’ll look at two examples, DES and AES.
DES is the “old standby.” It is currently (year 2001) the most widely-used block
cipher in existence, and it is of sufficient historical significance that every trained
cryptographer needs to have seen its description. AES is a modern block cipher,
and it is expected to supplant DES in the years to come.

2.1 What is a block cipher?

A block cipher is a function E: {0, 1}k×{0, 1}n → {0, 1}n that takes two inputs, a k-
bit key K and an n-bit “plaintext” M , to return an n-bit “ciphertext” C = E(K, M).
The key-length k and the block-length n are parameters associated to the block
cipher. They vary from block cipher to block cipher, as of course does the design
of the algorithm itself. For each key K ∈ {0, 1}k we let EK : {0, 1}l → {0, 1}l be
the function defined by EK(M) = E(K, M). For any block cipher, and any key
K, it is required that the function EK be a permutation on {0, 1}n. This means
that it is a bijection (ie., a one-to-one and onto function) of {0, 1}n to {0, 1}n.

33

34 BLOCK CIPHERS

Accordingly EK has an inverse, and we can denote it E−1
K . This function also maps

{0, 1}n to {0, 1}n, and of course we have E−1
K (EK(M)) = M and EK(E−1

K (C)) = C
for all M, C ∈ {0, 1}n. We let E−1: {0, 1}k × {0, 1}n → {0, 1}n be defined by
E−1(K, C) = E−1

K (C); this is the inverse block cipher to E.
The block cipher E is a public and fully specified algorithm. Both the cipher E

and its inverse E−1 should be easily computable, meaning given K, M we can readily
compute E(K, M), and given K, C we can readily compute E−1(K, C).

In typical usage, a random key K is chosen and kept secret between a pair of
users. The function EK is then used by the two parties to process data in some way
before they send it to each other. Typically, the adversary will be able to see input-
output examples for EK , meaning pairs of the form (M, C) where C = EK(M).
But, ordinarily, the adversary will not be shown the key K. Security relies on the
secrecy of the key. So, as a first cut, you might think of the adversary’s goal as
recovering the key K given some input-output examples of EK . The block cipher
should be designed to make this task computationally difficult. Later we will refine
this (fundamentally incorrect) view.

We emphasize that we’ve said absolutely nothing about what properties a block
cipher should have. A function like EK(M) = M is a block cipher (the “identity
block cipher”), but we shall not regard it as a “good” one. Only in the next chapter
do we start to take up what “goodness” means for a block cipher.

How do real block ciphers work? Lets take a look at some of them to get a sense
of this.

2.2 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the quintessential block cipher. Even
though it is now quite old, and on the way out, no discussion of block ciphers can
really omit mention of this construction. DES is a remarkably well-engineered algo-
rithm which has had a powerful influence on cryptography. It is in very widespread
use, and probably will be for some years to come. Every time you use an ATM
machine, you are using DES.

2.2.1 A brief history

In 1972 the NBS (National Bureau of Standards, now NIST, the National Institute
of Standards and Technology) initiated a program for data protection and wanted
as part of it an encryption algorithm that could be standardized. They put out a
request for such an algorithm. In 1974, IBM responded with a design based on their
“Lucifer” algorithm. This design would eventually evolve into the DES.

DES has a key-length of k = 56 bits and a block-length of n = 64 bits. It consists
of 16 rounds of what is called a “Feistel network.” We will describe more details
shortly.

Bellare and Rogaway 35

After NBS, several other bodies adopted DES as a standard, including ANSI (the
American National Standards Institute) and the American Bankers Association.

The standard was to be reviewed every five years to see whether or not it should
be re-adopted. Although there were claims that it would not be re-certified, the
algorithm was re-certified again and again. Only recently did the work for finding
a replacement begin in earnest, in the form of the AES (Advanced Encryption
Standard) effort.

DES proved remarkably secure. There has, since the beginning, been one pri-
mary concern, and that was the threat of key-search. But for a fairly long time, the
key size of 56 bits was good enough against all but very well-funded organizations.
Interesting attacks emerged only in the nineties, and even then they don’t break
DES in a sense more significant than the threat of exhaustive key search. But with
today’s technology, 56 bits is just too small a key size for many security applications,
as we will see.

2.2.2 Construction

The canonical description is FIPS 46 [7], but the construction is also described in
most books on cryptography. We intend, eventually, to have a full description with
pictures here, but meanwhile we suggest that you have in hand some description
such as Susan Landau’s article on DES [19], which is available from the course web
page, and use that to follow along.

The DES algorithm takes a 56 bit key and a 64 bit plaintext input. (Sometimes
it is said that the key is 64 bits long, but actually every eighth bit is ignored. It is
often mandated to be the xor of the previous seven bits.) Notice the algorithm is
public. You operate with a hidden key, but nothing about the algorithm is hidden.
The first thing that happens is that the 64-bit input is hit with something called
the initial permutation, or IP. This just shuffles bit positions. That is, each bit is
moved to some other position. How? In a fixed and specified way, indicated in
the standard. Similarly, right at the end, notice they apply the inverse of the same
permutation. From now on, ignore these. They do not affect security (as far as
anyone knows).

The essence of DES is in the round structure. There are 16 rounds. Each round
i has an associated subkey Ki which is 48 bits long. The subkeys K1, . . . , K16 are
derived from the main key K.

In each round, the input is viewed as a pair (Li, Ri) of 32 bit blocks, and these are
transformed into the new pair (Li+1, Ri+1), via a certain function f that depends on
a subkey Ki associated to round i. The structure of this transformation is important:
it is called the Feistel transformation.

The Feistel transformation, in general, is like this. For some function g known to
the party computing the transformation, it takes input (L, R) and returns (L′, R′)
where L′ = R and R′ = g(R) ⊕ L. A central property of this transformation is that
it is a permutation, and moreover if you can compute g then you can also easily
invert the transformation. Indeed, given (L′, R′) we can recover (L, R) via R = L′

36 BLOCK CIPHERS

and L = g(R) ⊕ R′. For DES, the role of g in round i is played by f(Ki, ·), the
round function specified by the subkey Ki. Since DESK(·) is a sequence of Feistel
transforms, each of which is a permutation, the whole algorithm is a permutation,
and knowledge of the key K permits computation of DES−1

K (·).
Up to now the structure has been quite generic, and indeed many block-ciphers

use this high level design: a sequence of Feistel rounds. For a closer look we need
to see how the function f(Ki, ·) works. This function maps 32 bits to 32 bits. See
the picture on page 90 of the FIPS document. Here Ki is a 48-bit subkey, derived
from the 56-bit key (just by selecting particular bits) in a way depending on the
round number. The 32-bit Ri is first expanded into 48 bits. How? In a precise,
fixed way, indicated by the table on the same page, saying E-bit selection table. It
has 48 entries. Read it as which inputs bits are output. Namely, output bits 32, 1,
2, 3, 4, 5, then 4, 5 again, and so on. It is NOT random looking! In fact barring
that 1 and 32 have been swapped (see top left and bottom right) it looks almost
sequential. Why did they do this? Who knows. That’s the answer to most things
about DES.

Now Ki is XORed with the output of the E-box and this 48 bit input enters the
famous S-boxes. There are eight S-boxes. Each takes 8 bits to 6 bits. Thus we get
out 32 bits. Finally, there is a P-box, a permutation applied to these 32 bits to get
another 32 bits.

What are the S-boxes? Each is a fixed, tabulated function, which the algorithm
stores as tables in the code or hardware. You can see them on page 93. How to read
them? Take the 6 bit input b1, b2, b3, b4, b5, b6. Interpret the first and last bits as a
row number (row 0, 1, 2, or 3). Interpret the rest as a column number (column 0,
1, ..., 15). Now look up what you get in the table and write down those four bits.

Well now you know how DES works. Of course, the main questions about the
design are: why, why and why? What motivated these design choices? We don’t
know too much about this, although we can guess a little. And one of the designers
of DES, Don Coppersmith, has written a short paper which gives information on
why (thought what Don wrote was information which had effectively been reverse-
engineered out of the algorithm in the previous years).

2.2.3 Speed

One of the design goals of DES was that it would have fast implementations relative
to the technology of its time. How fast can you compute DES? In roughly current
technology (well, nothing is current by the time one writes it down!) one can get well
over 1 Gbit/sec on high-end VLSI. Specifically at least 1.6 Gbits/sec, maybe more.
That’s pretty fast. Perhaps a more interesting figure is that one can implement each
DES S-boxes with at most 50?? two-input gates, where the circuit has depth of only
3??. Thus one can compute DES by a combinatorial circuit of about 8 ·16 ·50 = 640
gates and depth of 3 · 16 = 48 gates.

In software, on a fairly modern processor, DES takes something like 80(?) cycles
per byte. This is disappointingly slow—not surprisingly, since DES was optimized

Bellare and Rogaway 37

for hardware and was designed before the days in which software implementations
were considered feasible or desirable.

2.3 Advanced Encryption Standard (AES)

In 1998 the National Institute of Standards and Technology (NIST/USA) announced
a “competition” for a new block cipher. The new block cipher would, in time,
replace DES. The relatively short key length of DES was the main problem that
motivated the effort: with the advances in computing power, a key space of 256 keys
was just too small. With the development of a new algorithm one could also take
the opportunity to address the modest software speed of DES, making something
substantially faster, and to increase the block size from 64 to 128 bits (the choice
of 64 bits for the block size can lead to security difficulties, as we shall later see.
Unlike the design of DES, the new algorithm would be designed in the open and by
the public.

Fifteen algorithms were submitted to NIST. They came from around the world.
A second round narrowed the choice to five of these algorithms. In the summer of
2001 NIST announced their choice: an algorithm called Rijndael. The algorithm
should be embodied in a NIST FIPS (Federal Information Processing Standard) any
day now; right now, there is a draft FIPS. Rijndael was designed by Joan Daemen
and Vincent Rijmen (from which the algorithm gets its name), both from Belgium.
It is descendent of an algorithm called Square.

In this section we shall describe AES.
A word about notation. Purists would prefer to reserve the term “AES” to refer

to the standard, using the word “Rijndael” or the phrase “the AES algorithm” to
refer to the algorithm itself. (The same naming pundits would have us use the
acronym DEA, Data Encryption Algorithm, to refer to the algorithm of the DES,
the Data Encryption Standard.) We choose to follow common convention and refer
to both the standard and the algorithm as AES. Such an abuse of terminology never
seems to lead to any misunderstandings. (Strictly speaking, AES is a special case
of Rijndael. The latter includes more options for block lengths than AES does.)

The AES has a block length of n = 128 bits, and a key length k that is variable:
it may be 128, 192 or 256 bits. So the standard actually specifies three different
block ciphers: AES128, AES192, AES256. These three block ciphers are all very
similar, so we will stick to describing just one of them, AES128. For simplicity,
in the remainder of this section, AES means the algorithm AES128. We’ll write
C = AESK(M) where |K| = 128 and |M | = |C| = 128.

We’re going to describe AES in terms of four additional mappings: expand, S,
shift-rows, and mix-cols. The function expand takes a 128-bit string and produces
a vector of eleven keys, (K0, . . . , K10). The remaining three functions bijectively
map 128-bits to 128-bits. Actually, we’ll be more general for S, letting git be a map
on (({0, 1})8)+. Let’s postpone describing all of these maps and start off with the
high-level structure of AES, which is given in Figure 2.1.

38 BLOCK CIPHERS

function AESK(M)
begin

(K0, . . . , K10) ← expand(K)
s ← M ⊕ K0

for r = 1 to 10 do
s ← S(s)
s ← shift-rows(s)
if r ≤ 9 then s ← mix-cols(s) fi
s ← s ⊕ Kr

endfor
return s

end

Figure 2.1: The function AES128. See the accompanying text and figures for defi-
nitions of the maps expand, S, shift-rows, mix-cols.

Refer to Figure 2.1. The value s is called the state. One initizlizes the state to
M and the final state is the ciphertext C on gets by enciphering M . What happens
in each of lines 1–10 is called a round. So AES (remember this means AES128 in
this section) consists of ten rounds. The rounds are identical except that each uses
a different subkey Ki and, also, round 10 omits the call to mix-cols.

To understand what goes on in S and mix-cols we will need to review a bit
of algebra. Let us make a pause to do that. We describe a way to do arithmetic
on bytes. Identify each byte a = a7a6a5a4a3a2a1a0 with the formal polynomial
a7x7 + a6x6 + a + 5x5 + a4x4 + a3x3 + a2x2 + a1x + a0. We can add two bytes by
taking their bitwise xor (which is the same as the mod-2 sum the corresponding
polynomials). We can multiply two bytes to get a degree 14 (or less) polynomial,
and then take the remainder of this polynomial by the fixed irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1 .

This remainder polynomial is a polynomial of degree at most seven which, as before,
can be regarded as a byte. In this way can add and multiply any two bytes. The
resulting algebraic structure has all the properties necessary to be called a finite
field. In particular, this is one representation of the finite field known as GF(28)—
the Galois field on 28 = 256 points. As a finite field, you can find the inverse of
any nonzero field point (the zero-element is the zero byte) and you can distribute
addition over multiplication, for example.

There are some useful tricks when you want to multiply two bytes. Since m(x)
is another name for zero, x8 = x4 + x3 + x + 1 = {1b}. (Here the curly brackets
simply indicate a hexadecimal number.) So it is easy to multiply a byte a by the
byte x = {02}: namely, shift the 8-bit byte a one position to the left, letting the
first bit “fall off” (but remember it!) and shifting a zero into the last bit position.

Bellare and Rogaway 39

We write this operation a 〈〈 1. If that first bit of a was a 0, we are done. If the first
bit was a 1, we need to add in (that is, xor in) x8 = {1b}. In summary, for a a byte,
a · x = a · {02} is a 〈〈 1 if the first bit of a is 0, and it is (a 〈〈 1) ⊕ {1b} if the first
bit of a is 1.

Knowing how to multiply by x = {02} let’s you conveniently multiply by other
quantities. For example, to compute {a1} · {03} compute {a1} · ({02} ⊕ {01}) =
{a1} · {02} ⊕ {a1} · {01} = {42} ⊕ {1b} ⊕ a1 = {f8}. Try some more examples
on your own.

As we said, each nonzero byte a has a multiplicative inverse, inv(a) = a−1, The
mapping we will denote S : {0, 1}8 → {0, 1}8 is obtained from the map inv : a �→ a−1.
First, patch this map to make it total on {0, 1}8 by setting inv({00}) = {00}.
Then, to compute S(a), first replace a by inv(a), number the bits of a by a =
a7a6a5a4a3a2a1a0, and return the value a′, where a′ = a′7a′6a′5a′4a′3a′2a′1a′0 where




a′7
a′6
a′5
a′4
a′3
a′2
a′1
a′0




=




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




·




a7

a6

a5

a4

a3

a2

a1

a0




+




1
1
0
0
0
1
1
0




All arithmetic is in GF(2), meaning that addition of bits is their xor and multipli-
cation of bits is the conjunction (and).

All together, the map S is give by Figure 2.2, which lists the values of

S(0), S(1), . . . , S(255) .

In fact, one could forget how this table is produced, and just take it for granted.
But the fact is that it is made in the simple way we have said.

Now that we have the function S, let us extend it (without bothering to change
the name) to a function with domain {{0, 1}8}+. Namely, given an m-byte string
A = A[1] . . . A[m], set S(A) to be S(A[1]) . . . S(A[m]). In other words, just apply
S bytewise.

Now we’re ready to understand the first map, S(s). One takes the 16-byte state
s and applies the 8-bit lookup table to each of its bytes to get the modified state s.

Moving on, the shift-rows operation works like this. Imagine plastering the 16
bytes of s = s0s1 . . . s15 going top-to-bottom, then left-to-right, to make a 4 × 4
table:

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

40 BLOCK CIPHERS

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 2.2: The AES S-box, which is a function S : {0, 1}8 → {0, 1}8 specified by the
following list. All values in hexadecimal. The meaning is: S(00) = 63, S(01) = 7c,
. . ., S(ff) = 16.

For the shift-rows step, left circularly shift the second row by one position; the third
row by two positions; and the the fourth row by three positions. The first row is
not shifted at all. Somewhat less colorfully, the mapping is simply

shift-rows(s0s1s2 · · · s15) = s0s5s10s15s4s9s14s3s8s13s2s7s12s1s6s11

Using the same convention as before, the mix-cols step takes each of the four
columns in the 4×4 table and applies the (same) transformation to it. Thus we define
mix-cols(s) on 4-byte words, and then extend this to a 16-byte quantity wordwise.
The value of mix-cols(a0a1a2a3) = a′0a′1a′2a′3 is defined by:




a′0
a′1
a′2
a′3




=




02 03 01 01
01 02 03 01
01 02 02 03
03 01 01 02




·




a0

a1

a2

a3




An equivalent way to explain this step is to say that we are multiplying a(x) =
a3x3+a2x2+a1x1+a0 by the fixed polynomial c(x) = {03}x3+{01}x2+{01}x+{02}
and taking the result modulo x4 + 1.

At this point we have described everything but the key-expansion map, expand.
That map is given in Figure 2.3.

We have now completed the definition of AES. One key property is that AES is
a block cipher: the map is invertible. This follows because every round is invertible.

Bellare and Rogaway 41

function expand(K)
begin

K0 ← K
for i ← 1 to 10 do

Ki[0] ← Ki−1[0] ⊕ S(Ki−1[3] 〈〈 8) ⊕ Ci

Ki[1] ← Ki−1[1] ⊕ Ki[0]
Ki[2] ← Ki−1[2] ⊕ Ki[1]
Ki[3] ← Ki−1[3] ⊕ Ki[2]

od
return (K0, . . . , K10)

end

Figure 2.3: The AES128 key-expansion algorithm maps a 128-bit key K into
eleven 128-bit subkeys, K0, . . . , K10. Constants (C1, . . . ,C10) are ({02000000},
{04000000}, {08000000}, {10000000}, {20000000}, {40000000}, {80000000},
{1B000000}, {36000000}, {6C000000}). All other notation is described in the ac-
companying text.

That a round is invertible follows from each of its steps being invertible, which is a
consequence of S being a permutation and the matrix used in mix-cols having an
inverse .

In the case of DES, the rationale for the design were not made public. Some
explanation for different aspects of the design have become more apparent over time
as we have watched the effects on DES of new attack strategies, but fundamentally,
the question of why the design is as it is has not received a satisfying cipher. In the
case of AES there was significantly more documentation of the rationale for design
choices. (See the book The design of Rijndael by the designers [9]).

Nonetheless, the security of block ciphers, including DES and AES, eventually
comes down to the statement that “we have been unable to find effective attacks,
and we have tried attacks along the following lines” If people with enough
smarts and experience utter this statement, then it suggests that the block cipher is
good. Beyond this, it’s hard to say much. Yet, by now, our community has become
reasonably experienced designing these things. It wouldn’t even be that hard a game
were it not for the fact we tend to be agressive in optimizing the block-cipher’s speed.
(Some may come to the opposite opinion, that it’s a very hard game, seeing just
how many reasonable-looking block ciphers have been broken.) Later we give some
vague sense of the sort of cleverness that people muster against block ciphers.

2.4 Some modes of operation

Fix a block cipher E, and assume two parties share a key K for this block cipher.
This gives them the ability to compute the functions EK(·) and E−1

K (·). These

42 BLOCK CIPHERS

functions can be applied to an input of n-bits. An application of EK is a called
enciphering and an application of E−1

K is called deciphering.
Typically the block size n is 64 or 128. Yet, in practice, we may want to process

much larger inputs, say text files to encrypt. To do this one uses a block cipher in
some mode of operation. There are several well-known modes of operation. We will
illustrate by describing three of them, all intended for message privacy. We look at
ECB (Electronic Codebook), CBC (Cipher Block Chaining) and CTR (Counter).
In each case there is an encryption process which takes an nm-bit string M , usually
called the plaintext, and returns a string C, usually called the ciphertext. (If the
length of M is not a positive multiple of n then some appropriate padding can
be done to make it so. We’re not going to worry about that here; we’ll simply
assume that each plaintext M has a length which is some positive multiple of n.)
An associated decryption process recovers M from C.

If M is a string whose length is a multiple of n then we view it as divided into
a sequence of n-bit blocks, and let M [i] denote the i-th block, for i = 1, . . . , |M |/n.
That is, M = M [1] . . . M [m] where m = |M |/n.

2.4.1 Electronic codebook mode

Each plaintext block is individually enciphered into an associated ciphertext block.

Algorithm EK(M [1] · · ·M [m])
For i = 1, . . . , m do

C[i] ← EK(M [i])
Return C[1] . . . C[m]

Algorithm DK(C[1] . . . C[m])
For i = 1, . . . , m do

M [i] ← E−1
K (C[i])

Return M [1] · · ·M [m]

2.4.2 Cipher-block chaining mode

CBC mode processes the data based on some initialization vector IV which is an
l-bit string, as follows.

Algorithm EK(IV, M [1] · · ·M [m])
C[0] ← IV
For i = 1, . . . , n do

C[i] ← EK(C[i − 1] ⊕ M [i])
Return C[0]C[1] · · ·C[m]

Algorithm DK(C[0]C[1] . . . C[n])
For i = 1, . . . , n do

M [i] ← E−1
K (C[i]) ⊕ C[i − 1]

Return M [1] . . . M [n]

Unlike ECB encryption, this operation is not length preserving: the output is n-bits
longer than the input. The initialization vector is used for encryption, but it is then
made part of the ciphertext, so that the receiver need not be assumed to know it a
priori.

Different specific modes result from different ways of choosing the initialization
vector. Unless otherwise stated, it is assumed that before applying the above en-
cryption operation, the encryptor chooses the initialization vector at random, anew
for each message M to be encrypted. Other choices however can also be considered,

Bellare and Rogaway 43

such as letting IV be a counter that is incremented by one each time the algorithm
is applied. The security attributes of these different choices are discussed later.

CBC is the most popular mode, used pervasively in practice.

2.4.3 Counter mode

CTR mode also uses an auxiliary value, an “initial value” IV which is an integer
in the range 0, 1, . . . , 2n − 1. In the following, addition is done modulo 2n, and [j]n
denotes the binary representation of integer j as an n-bit string.

Algorithm EK(IV, M [1] · · ·M [m])
For i = 1, . . . , m do

C[i] ← EK([IV + i]n) ⊕ M [i]
Return [IV]n C[1] · · ·C[n]

Algorithm DK([IV]nC[1] . . . C[m])
For i = 1, . . . , m do

M [i] ← EK([IV + i]n) ⊕ C[i]
Return M [1] . . . M [m]

Notice that in this case, decryption did not require computation of E−1
K , and in fact

did not even require that EK be a permutation. Also notice the efficiency advantage
over CBC: the encryption is parallelizable.

Again, there are several choices regarding the initial vector. It could be a counter
maintained by the sender and incremented by m = |M |/n after message M has
been encrypted. Or, it could be chosen anew at random each time the algorithm is
invoked. And there are still other possibilities.

2.5 Key recovery attacks on block ciphers

Historically, cryptanalysis of block ciphers E: {0, 1}k×{0, 1}n → {0, 1}n has always
focused on key-recovery. The cryptanalyst may think of the problem to be solved as
something like this. A k-bit key K is chosen at random. Let q ≥ 0 be some integer
parameter.

Given: The adversary has a sequence of q input-output examples of EK , say

(M1, C1), . . . , (Mq, Cq)

where Ci = EK(Mi) for i = 1, . . . , q and M1, . . . , Mq are all distinct n-bit strings.

Find: The adversary must find the key K.

Some typical kinds of “attack” that are considered within this framework:

Known-message attack: M1, . . . , Mq are any distinct points; the adversary has
no control over them, and must work with whatever it gets.

Chosen-message attack: M1, . . . , Mq are chosen by the adversary, perhaps even
adaptively. That is, imagine it has access to an “oracle” for the function EK . It can
feed the oracle M1 and get back C1 = EK(M1). It can then decide on a value M2,
feed the oracle this, and get back C2, and so on.

44 BLOCK CIPHERS

Clearly a chosen-message attack gives the adversary much more power, but is
also less realistic in practice.

The most obvious attack is exhaustive key search.

Exhaustive key search: Go through all possible keys K ′ ∈ {0, 1}k until you find
one that explains the input/output pairs. Here is the attack in detail, using q = 2,
meaning two input-output examples. For i = 1, . . . , 2k let Ki denote the i-th k-bit
string (in lexicographic order).

For i = 1, . . . , 2k do
If E(Ki, M1) = C1

then if E(Ki, M2) = C2 then return Ki

The key returned by the above procedure is not necessarily equal to the target
key K under which the input-output examples were generated; it might be that we
found a key K ′ that happened to agree with K on the target examples but was
different from K. In practice, it turns out that this is very rare, meaning that the
key returned by the above is almost always the right one.

How long does exhaustive key-search take? In the worst case, 2k computations
of the block cipher. For the case of DES, even if you use the above mentioned 1.6
Gbits/sec chip to do these computations, the search takes about 6,000 years. So key
search appears to be infeasible.

Yet, this conclusion is actually too hasty. We will return to key search and see
why later.

Differential and linear cryptanalysis: For DES, the discovery of theoret-
ically superior attacks (assuming one has massive amount of plaintext/ciphertext
pairs) waited until 1990. Differential cryptanalysis is capable of finding a DES key
using about 247 input-output examples (that is, it requires q = 247). However,
differential cryptanalysis required a chosen-message attack.

Linear cryptanalysis [?] improved differential in two ways. The number of input-
output examples required is reduced to 244, but also only a known-message attack
is required. (An alternative version uses 242 chosen plaintexts [24].)

These were major breakthroughs in cryptanalysis. Yet, their practical impact is
small. Why? Ordinarily it would be impossible to obtain 244 input-output examples.
Furthermore, simply storing all these examples requires about 280 terabytes.

Linear and differential cryptanalysis were however more devastating when ap-
plied to other ciphers, some of which succumbed completely to the attack.

So what’s the best possible attack against DES? The answer is exhaustive key
search. What we ignored above is parallelism.

Key search machines: A few years back it was argued that one can design a $1
million machine that does the exhaustive key search for DES in about 3.5 hours.
More recently, a DES key search machine was actually built, at a cost of $250,000.
It finds the key in 56 hours, or about 2.5 days. The builders say it will be cheaper
to build more machines now that this one is built.

Bellare and Rogaway 45

Thus DES is feeling its age. Yet, it would be a mistake to take away from this
discussion the impression that DES is weak. Rather, what the above says is that it
is an impressively strong algorithm. After all these years, the best practical attack
known is still exhaustive key search. That says a lot for its design and its designers.

Later we will see that we would like security properties from a block cipher that
go beyond resistance to key-recovery attacks. It turns out that from that point of
view, a limitation of DES is its block size. Birthday attacks “break” DES with about
q = 232 input output examples. (The meaning of “break” here is very different from
above.) Here 232 is the square root of 264, meaning to resist these attacks we must
have bigger block size. The next generation of ciphers—things like AES—took this
into account.

2.6 Limitations of key-recovery based security

As discussed above, classically, the security of block ciphers has been looked at
with regard to key recovery. That is, analysis of a block cipher E has focused
primarily on the following question: given some number q of input-output examples
(M1, C1)), . . . , (Mq, Cq), where K is a random, unknown key and Ci = EK(Mi), how
hard is it for an attacker to find K? A block cipher is viewed as “secure” if the best
key-recovery attack is computationally infeasible, meaning requires a value of q or
a running time t that is too large to make the attack practical. In the sequel, we
refer to this as security against key-recovery

However, as a notion of security, security against key-recovery is quite limited.
A good notion should be sufficiently strong to be useful. This means that if a
block cipher is secure, then it should be possible to use the block cipher to make
worthwhile constructions and be able to have some guarantee of the security of these
constructions. But even a cursory glance at common block cipher usages shows that
good security in the sense of key recovery is not sufficient for security of the usages
of block ciphers.

Take for example the CTR mode of operation discussed in Section 2.4. Suppose
that the block cipher had the following weakness: Given C, FK(C + 1), FK(C + 2),
it is possible to compute FK(C + 3). Then clearly the encryption scheme is not
secure, because if an adversary happens to know the first two message blocks, it can
figure out the third message block from the ciphertext. (It is perfectly reasonable to
assume the adversary already knows the first two message blocks. These might, for
example, be public header information, or the name of some known recipient.) This
means that if CTR mode encryption is to be secure, the block cipher must have
the property that given C, FK(C +1), FK(C +2), it is computationally infeasible to
compute FK(C + 3). Let us call this property SP1, for “security property one”.

Of course, anyone who knows the key K can easily compute FK(C + 3) given
C, FK(C +1), FK(C +2). And it is hard to think how one can do it without knowing
the key. But there is no guarantee that someone cannot do this without knowing
the key. That is, confidence in the security of F against key recovery does not imply

46 BLOCK CIPHERS

that SP1 is true.
This phenomenon continues. As we see more usages of ciphers, we build up a

longer and longer list of security properties SP1, SP2, SP3, . . . that are necessary
for the security of some block cipher based application.

Furthermore, even if SP1 is true, CTR mode encryption may still be weak. SP1
is not sufficient to guarantee the security of CTR mode encryption. Similarly with
other security properties that one might naively come up with.

This long list of necessary but not sufficient properties is no way to treat security.
What we need is one single “MASTER” property of a block cipher which, if met,
guarantees security of lots of natural usages of the cipher.

A good example to convince oneself that security against key recovery is not
enough is to consider the block cipher E: {0, 1}k ×{0, 1}n → {0, 1}n defined for all
keys K ∈ {0, 1}k and plaintexts x ∈ {0, 1}n by F (K, x) = x. That is, each instance
FK of the block cipher is the identity function. Is this a “good” block cipher? Surely
not. Yet, it is exceedingly secure against key-recovery. Indeed, given any number of
input-output examples of FK , an adversary cannot even test whether a given key is
the one in use.

This might seem like an artificial example. Many people, on seeing this, respond
by saying: “But, clearly, DES and AES are not designed like this.” True. But that
is missing the point. The point is that security against key-recovery alone does not
make a “good” block cipher. We must seek a better notion of security. Chapter 3
on pseudorandom functions does this.

2.7 Problems

Exercise 2.1 Show that for all K ∈ {0, 1}56 and all x ∈ {0, 1}64

DESK(x) = DESK(x) .

This is called the key-complementation property of DES.

Exercise 2.2 Explain how to use the key-complementation property of DES to
speed up exhaustive key search by about a factor of two. Explain any assumptions
that you make.

Exercise 2.3 Find a key K such that DESK(·) = DES−1
K (·). Such a key is some-

times called a “weak” key.

Exercise 2.4 As with AES, suppose we are working in the finite field with 28

elements, representing field points using the irreducible polynomial m(x) = x8 +
x4 + x3 + x + 1. Compute the byte that is the result of multiplying bytes:

{e1} · {05}

Exercise 2.5 For AES, we have given two different descriptions of mix-cols: one
using matric multiplication (in GF(28)) and one based on multiplying by a fixed

Bellare and Rogaway 47

polynomial c(x) modulo a second fixed polynomial, d(x) = x4 + 1. Show that these
two methods are equivalent.

Exercise 2.6 Verify that the matrix used for mix-cols has as its inverse the matrix



0e 0b 0d 09
09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e




Explain why all entries in this matrix begin with a zero-byte.

Exercise 2.7 How many different permutations are there from 128 bits to 128 bits?
How man different functions are then from 128 bits to 128 bits?

Exercise 2.8 Upper and lower bound, as best you can, the probability that a
random function from 128 bits to 128 bits is actually a permutation.

Problem 2.1 Without consulting any of the numerous public-domain implementa-
tions available, implement AES, on your own, from the spec or from the description
provided by this chapter. Then test your implementation according to the test
vectors provided in the AES documentation.

Problem 2.2 Justify and then refute (both) the following proposition: enciphering
under AES can be implemented faster than deciphering.

48 BLOCK CIPHERS

