
Chapter 5

Hash Functions

A hash function usually means a function that compresses, meaning the output is
shorter than the input. Often, such a function takes an input of arbitrary or almost
arbitrary length to one whose length is a fixed number, like 160 bits. Hash functions
are used in many parts of cryptography, and there are many different types of hash
functions, with differing security properties. We will consider them in this chapter.

5.1 The hash function SHA1

The hash function known as SHA1 is a simple but strange function from strings of
arbitrary length to strings of 160 bits. The function was finalized in 1995, when a
FIPS (Federal Information Processing Standard) came out from the US National
Institute of Standards that specified SHA1.

The function SHA1: {0, 1}∗ → {0, 1}160 is conveniently described in terms of a
lower-level function, sha1: {0, 1}512 × {0, 1}160 → {0, 1}160 called its compression
function. Let’s begin by defining the sha1 compression function, and then we’ll
define SHA1 from it.

First we need some notation and definitions. If A and B are 32-bit strings then
we let A+B denote the 32-bit string that you get by treating A and B as nonnegative
numbers, adding them modulo 232, and treating the result as a 32-bit strings. This is
just the usual notion of “computer addition.” If A = A0A1 . . . A31 is a 32-bit string
(each Ai a bit) and i ∈ [0 .. 32] is a number, then we let A 〈〈〈 i be the circular left shift
of A = A0A1 . . . A31 by i positions, meaning Ai mod 32Ai+1 mod 32 . . . Ai+31 mod 32.

For 0 ≤ t ≤ 19, set Kt = 0x5a827999 and ft(B, C, D) = (B ∧ C) ∨ (B ∧ D). For
20 ≤ t ≤ 39 set Kt = 0x6ed9eba1 and ft(B, C, D) = B ⊕ C ⊕ D. For 40 ≤ t ≤ 59
set Kt = 0x8f1bbcdc and ft(B, C, D) = (B∧C)∨(B∧D)∨(C∧D). For 60 ≤ t ≤ 79
set Kt = 0xca62c1d6 and ft(B, C, D) = B ⊕ C ⊕ D. Now the SHA1 compression
function is defined in Figure 5.1.

139

140 HASH FUNCTIONS

algorithm sha1(X, H) // where |X| = 512 and |H| = 160
10 Parse X into W1 · · ·W16 where |W1| = · · · = |W16| = 32
11 Parse H into H0H1H2H3H4 where |H0| = |H1| = |H2| = |H3| = |H4| = 32
12 for t ← 16 to 79 do Wt ← (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) 〈〈〈 1
13 A ← H0, B ← H1, C ← H2, D ← H3, E ← H4

14 for t ← 0 to 79 do
15 T ← A 〈〈〈 5 + ft(B, C, D) + E + Wt + Kt

16 E ← D, D ← C, C ← B 〈〈〈 30, B ← A, A ← T
17 H0 ← H0 + A, H1 ← H1 + B, H2 ← H2 + C, H3 ← H3 + D, H4 ← H4 + E
18 return H0H1H2H3H4

Figure 5.1: The function sha1, the compression function of SHA1.

algorithm SHA1(M)
20 M∗ ← M ‖ 10i ‖ [|M |]64 where i ≥ 0 is the smallest

such that |M | + 1 + i + 64 is divisible by 512
21 Partition M∗ into M1 . . . Mm

22 Y0 ← 0x67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
23 for i ← 1 to m do
24 Yi ← SHA(Mi, Yi−1)
25 return Ym

Figure 5.2: The function SHA1.

To build SHA1 out of sha1 is easy. The method is defined in Figure 5.2. Recall
that when � ≥ 0 is a number, [�]64 is the 64-bit string that is the binary encoding
of � mod 264.

Now that we have defined SHA1, it is natural to ask where such a strange
function comes from—why is it the way that it is? Such questions don’t really
have answers. SHA1 is derived from a function called MD4 that was proposed by
Ron Rivest in 1990, and the key ideas behind SHA1 are already in MD4. Besides
SHA1, another well-known “child” of MD4 is MD5, which was likewise proposed
by Rivest. The MD4, MD5, and SHA1 are all quite similar in structure. The first
two produce a 128-bit output, and work by “chaining” a compression function that
goes from 512 + 128 bits to 128 bits, while SHA1 works by chaining a compression
function from 512 + 160 bits to 160 bits.

So what is SHA1 supposed to do? First and foremost, it is supposed to be
the case that nobody can find distinct strings M and M ′ such that SHA1(M) =
SHA1(M ′). This property is called collision resistance.

Stop for a moment and think about the collision-resistance requirement, for it
is really quite amazing to think that such a thing could be possible. The function
SHA1 maps strings of any length to strings of 160 bits. So even if you restricted the

Bellare and Rogaway 141

domain of SHA1 just to “short” strings—let us say strings of length 256 bits—then
there must be an enormous number of pairs of strings M and M ′ that hash to the
same value. This is just by the pigeonhole principle: if 2256 pigeons (the 256-bit
messages) roost in 2160 holes (the 160-bit hash values) then some two pigeons (two
distinct strings) roost in the same hole (have the same hash). Indeed countless
pigeons must share the same hole. The difficult is only that nobody knows how to
identify even two such pigeons!

In trying to define this collision-resistance property of SHA1 we immediately
run into “foundational” problems. We would like to say that it is computationally
infeasible to output a pair of distinct strings M and M ′ that collide under SHA1.
But in what sense could it be infeasible? There is a program—indeed a very short an
simple one, having just two “print” statements—whose output specifies a collision.
It’s not computationally hard to output a collision; it can’t be. The only difficulty
is our human problem of not knowing what this program is.

Mathematics doesn’t care about what us humans know and it has no way to talk
about such things. It would thus seem to be impossible to make a mathematical
definition that captures the idea that human beings can’t find collisions in SHA1.
In order to reach a mathematically precise definition we are going to have to change
the very nature of what we conceive to be a hash function. This is unfortunate, in
some way, because it distances us from concrete hash functions like SHA1. But no
alternative is know.

5.2 Collision-resistant hash functions

Although one often thinks of a hash function as a single function, in our formulation,
a hash function is a family of functions H: Keys(H)×Dom(H) → Range(H). Later
we will see why it is important to consider families rather than merely consider
single functions.

Here is some notation we use in this chapter. Let H: Keys(H) × Dom(H) →
Range(H) be a hash function. For any key K and y ∈ Range(H) we let

H−1
K (y) = { x ∈ Dom(H) : HK(x) = y }

denote the pre-image set of y under HK . Let

Image(HK) = { HK(x) : x ∈ Dom(H) }
denote the image of HK .

Let us begin with the most popular class, namely collision-resistant hash func-
tions. Let H: Keys(H) × Dom(H) → Range(H) be a hash function. A collision for
an instance HK of H is a pair x1, x2 ∈ Dom(H) of distinct points in the domain
such that HK(x1) = HK(x2). The most basic security property of a hash function
is collision-resistance, which measures the ability of an adversary to find a collision
for HK . There are different notions of collision-resistance, varying in restrictions
put on the adversary in its quest for a collision.

142 HASH FUNCTIONS

Pre-key attack phase A selects 2 − s points

Key selection phase A key K is selected at random from Keys(H)

Post-key attack phase A is given K and returns s points

Winning condition The 2 points selected by A form a collision for HK

Figure 5.3: Framework for security notions for collision-resistant hash functions.
The three choices of s ∈ {0, 1, 2} give rise to three notions of security.

To introduce the different notions, we imagine a game, parameterized by an
integer s ∈ {0, 1, 2}, and involving an adversary A. It consists of a pre-key attack
phase, followed by a key-selection phase, followed by a post-key attack phase. The
adversary is attempting to find a collision for HK , where key K is selected at random
from Keys(H) in the key-selection phase. Recall that a collision consists of a pair
x1, x2 of (distinct) points in Dom(H). The adversary is required to specify 2 − s
points in the pre-key attack phase, before it has any information about the key.
(The latter has yet to be selected.) Once the adversary has specified these points
and the key has been selected, the adversary is given the key, and will choose the
remaining s points as a function of the key, in the post-key attack phase. It wins if
the 2 = (2 − s) + s points it has selected form a collision for HK .

Figure 5.3 summarizes the framework. The three choices of the parameter s
give rise to three notions of security. The higher the value of s the more power
the adversary has, and hence the more stringent is the corresponding notion of
security. Figure 5.4 provides in more detail the experiments underlying the three
attacks arising from the above framework. We represent by st information that the
adversary wishes to maintain across its attack phases. It will output this information
in the pre-key attack phase, and be provided it at the start of the post-key attack
phase.

In a variant of this model that we consider in Section 5.7, the adversary is not
given the key K in the post-key attack phase, but instead is given an oracle for
HK(·). To disambiguate, we refer to our current notions as capturing collision-
resistance under known-key attack, and the notions of Section 5.7 as capturing
collision-resistance under hidden-key attack. The notation in the experiments of
Figure 5.4 and Definition 5.1 reflects this via the use of “kk”, except that for CR0,
known and hidden key attacks coincide, and hence we just say cr0.

The three types of hash functions we are considering are known by other names
in the literature, as indicated in Figure 5.5.

Definition 5.1 Let H: Keys(H) × Dom(H) → Range(H) be a hash function and
let A be an algorithm. We let

Advcr2-kk
H (A) = Pr

[
Exmtcr2-kk

H (A) = 1
]

Bellare and Rogaway 143

Exmtcr2-kk
H (A)

K $← Keys(H) ; (x1, x2)
$← A(K)

If x1 �= x2 and HK(x1) = HK(x2) then return 1 else return 0

Exmtcr1-kk
H (A)

(x1, st)
$← A() ; K $← Keys(H) ; x2

$← A(K, st)
If x1 �= x2 and HK(x1) = HK(x2) then return 1 else return 0

Exmtcr0
H (A)

(x1, x2)
$← A() ; K $← Keys(H)

If x1 �= x2 and HK(x1) = HK(x2) then return 1 else return 0

Figure 5.4: Experiments defining security notions for three kinds of collision-
resistant hash functions under known-key attack.

Advcr1-kk
H (A) = Pr

[
Exmtcr1-kk

H (A) = 1
]

Advcr0
H (A) = Pr

[
Exmtcr0

H (A) = 1
]

.

For any t we define

Advcr2-kk
H (t, m) = max

A
{Advcr2-kk

H (A)}

Advcr1-kk
H (t, m) = max

A
{Advcr1-kk

H (A)}

where the maximum is over all A having time-complexity t and where the sum of the
lengths of the two messages in the collision found by A is at most m bits. Finally,
we let

Advcr0
H = max

A
{Advcr0

H (A)}

where the maximum is over all A, regardless of A’s time-complexity. All these
definitions assume adversaries are legitimate in the sense that the points that they
output are in the domain of the hash function.

We use our usual conventions. Time-complexity refers to the worst-case running
time of the entire experiment, including the running time of the adversary, the size of
its code, and the time for the various hash function computations in the experiment.
Although there is formally no definition of a “secure” hash function, we will talk
of a hash function being CR2, CR1 or CR0 with the intended meaning that its
associated advantage function is small for practical values of the time-complexity.

144 HASH FUNCTIONS

Type Name(s) in literature

CR2-KK collision-free, collision-resistant, collision-intractable

CR1-KK universal one-way [29] (aka. target-collision resistant [?])

CR0 universal, almost universal

Figure 5.5: Types of hash functions, with names in our framework and corresponding
names found in the literature.

There is no time parameter in the CR0 case since the optimal adversary has very low
time-complexity. It simply has hardwired into its code a “best” choice of distinct
points x1, x2, meaning a choice for which

Pr
[
K $← Keys(H) : HK(x1) = HK(x2)

]

= max
y1 �=y2

Pr
[
K $← Keys(H) : HK(y1) = HK(y2)

]
.

Note this value equals Advcr0
H .

Clearly, a CR2 hash function is also CR1 and a CR1 hash function is also CR0.
The following states the corresponding relations formally and quantitatively. The
proof is trivial and is omitted. Here t is assumed large enough that the trivial CR0
adversary discussed above has time-complexity bounded above by t.

Proposition 5.2 Let H: Keys(H) × Dom(H) → Range(H) be a hash function.
Then

Advcr0
H ≤ Advcr1-kk

H (t, m) ≤ Advcr2-kk
H (t, m) .

5.3 One-wayness of collision-resistant hash functions

We briefly considered the notion of one-wayness of a function h in the context
of the Unix password hashing scheme in Section 3.10. Here we consider the more
general notion of one-wayness of a family of functions H and its relation to collision-
resistance.

Intuitively, a family H is one-way if it is computationally infeasible, given HK

and a range point y = KK(x), where x was chosen at random from the domain, to
find a pre-image of y (whether x or some other) under HK . (Definition 3.18 can be
viewed as the special case that the family contains exactly one function, meaning
the key-space has size one.) Since this definition too has a hidden-key version, we
indicate the known-key in the notation below.

Definition 5.3 Let H: Keys(H) × Dom(H) → Range(H) be a family of functions
and let A be an algorithm. We consider the following experiment:

Bellare and Rogaway 145

Exmtow-kk
H (A)

K $← Keys(H) ; x $← Dom(H) ; y ← HK(x) ; x′ $← A(K, y)
If HK(x′) = y then return 1 else return 0

We let

Advow-kk
H (A) = Pr

[
Exmtow-kk

H (A) = 1
]

.

For any t we define

Advow-kk
H (t) = max

A
{Advow-kk

H (A)}

where the maximum is over all A having time-complexity t. This definition assumes
adversaries are legitimate in the sense that the point x′ that they output is in the
domain of the hash function.

We now ask ourselves whether collision-resistance implies one-wayness. It is easy
to see, however, that, in the absence of additional assumptions about the hash
function than collision-resistance, the answer is “no.” For example, let H be a
family of functions every instance of which is the identity function. Then H is
highly collision-resistant (the advantage of an adversary in finding a collision is
zero regardless of its time-complexity since collisions simply don’t exist) but is not
one-way.

However, we would expect that “genuine” hash functions, meaning ones that
perform some non-trivial compression of their data (ie. the size of the range is more
than the size of the domain) are one-way. This turns out to be true, but needs to be
carefully quantified. To understand the issues, it may help to begin by considering
the natural argument one would attempt to use to show that collision-resistance
implies one-wayness.

Suppose we have an adversary A that has a significant advantage in attacking
the one-wayness of hash function H. We could try to use A to find a collision via
the following strategy. In the pre-key phase (we consider a type-1 attack) we pick
and return a random point x1 from Dom(H). In the post-key phase, having received
the key K, we compute y = HK(x1) and give K, y to A. The latter returns some
x2, and, if it was successful, we know that HK(x2) = y. So HK(x2) = HK(x1) and
we have a collision.

Not quite. The catch is that we only have a collision if x2 �= x1. The probability
that this happens turns out to depend on the quantity:

PreImH(1) = Pr
[
K $← Keys(H) ; x $← Dom(H) ; y ← HK(x) : |H−1

K (y)| = 1
]

.

This is the probability that the size of the pre-image set of y is exactly 1, taken
over y generated as shown. The following Proposition says that a collision-resistant
function H is one-way as long as PreImH(1) is small.

146 HASH FUNCTIONS

Proposition 5.4 Let H: Keys(H)×Dom(H) → Range(H) be a hash function, and
assume Dom(H) contains strings of length at most m. Then

Advow-kk
H (t) ≤ 2 · Advcr1-kk

H (t, m) + PreImH(1) .

The result is about the CR1 type of collision-resistance. However Proposition 5.2
implies that the same is true for CR2.

A general and widely-applicable corollary of the above Proposition is that collision-
resistance implies one-wayness as long as the domain of the hash function is signifi-
cantly larger than its range. The following quantifies this.

Corollary 5.5 Let H: Keys(H) × Dom(H) → Range(H) be a hash function, and
assume Dom(H) contains strings of length at most m. Then

Advow-kk
H (t) ≤ 2 · Advcr1-kk

H (t, m) +
|Range(H)|
|Dom(H)| .

In particular, we will later see hash functions like SHA-1 where the range consists
of 160 bit strings but the domain consists of strings of length up to 2512 bits. We
would apply the above by letting Dom(H) be the {0, 1}� for � and letting H be the
family containing just one function, this being the restriction of SHA-1 to inputs of
length �. The ratio of range size to domain size is 2160−� thus we see that collision-
resistance implies one-wayness for such functions, with the added term in bound of
Corollary 5.5 getting smaller as � increases.

There are some natural hash functions, however, for which Corollary 5.5 does
not apply. Consider a hash function H every instance of which is two-to-one. The
ratio of range size to domain size is 1/2, so the right hand side of the equation
of Corollary 5.5 is 1, meaning the bound is vacuous. However, such a function is
a special case of the one considered in the following example, and by direct use
of Proposition 5.4 one can show that collision-resistance does in fact imply one-
wayness.

Example 5.6 Suppose 1 ≤ r < d and let H: Keys(H) × {0, 1}d → {0, 1}r be a
hash function which is regular, meaning that for every key K, all points in the
image of HK have the same pre-image size. In other words, |H−1

K (y)| = 2d−r for
every y ∈ Image(HK). (Above we discussed the case d = r + 1.) The assumption
d > r then implies that PreImH(1) = 0. So Proposition 5.4 tells us that

Advow-kk
H (t) ≤ 2 · Advcr1-kk

H (t, d) .

In other words, if H is collision-resistant then it is a OWF with hardly any loss of
security.

Bellare and Rogaway 147

We now turn to proving the above claims, beginning with Corollary 5.5 and then
moving to Proposition 5.4.

Proof of Corollary 5.5: For any key K, the number of points in the range of HK

that have exactly one pre-image certainly cannot exceed |Range(H)|. This implies
that

PreImH(1) ≤ |Range(H)|
|Dom(H)| .

The corollary follows from Proposition 5.4.

Proof of Proposition 5.4: We associate to a given adversary B an adversary A
such that

Advow-kk
H (B) ≤ 2 · Advcr1-kk

H (A) + PreImH(1) (5.1)
and furthermore the time-complexity of A is that of B. The Proposition follows.
Here’s how A works:

Pre-key phase

Adversary A()
x1

$← Dom(H) ; st ← x1

Return (x1, st)

Post-key phase

Adversary A(K, st)
Retrieve x1 from st

y ← HK(x1) ; x2
$← B(K, y)

Return x2

Consider the experiment

x1
$← Dom(H) ; K $← Keys(H) ; y ← HK(x1) ; x2

$← B(K, y) .

Let Pr [·] denote the probability of event “·” in this experiment. Define the following
events:

C : HK(x1) = HK(x2)

D : x1 = x2

G : |H−1
K (y)| ≥ 2 .

Then

Advow-kk
H (B) = Pr [C]

= Pr [C ∧ D ∧ G] + Pr
[
C ∧ D ∧ G

]
+ Pr

[
C ∧ G

]

≤ Pr [C ∧ D ∧ G] + Pr
[
C ∧ D ∧ G

]
+ Pr

[
G

]

= Pr [C ∧ D ∧ G] + Pr
[
C ∧ D ∧ G

]
+ PreImH(1)

If G and C are true then the probability of D cannot be more than the probability
of D because there are at least two points in the set H−1

K (y). Thus

Pr [C ∧ D ∧ G] = Pr [D | C ∧ G] · Pr [C ∧ G]

148 HASH FUNCTIONS

≤ Pr
[
D | C ∧ G

]
· Pr [C ∧ G]

= Pr
[
C ∧ D ∧ G

]
.

From the above we now get

Advow-kk
H (B) ≤ 2 · Pr

[
C ∧ D ∧ G

]
+ PreImH(1)

= 2 · Advcr1-kk
H (A) + PreImH(1) .

This yields Equation (5.1) and concludes the proof.

5.4 The MD transform

Let Keys be a finite set and let b, c ≥ 1 be integers called, respectively, the block-
length and the chaining-length. Let H: Keys × {0, 1}b+c → {0, 1}c be a given hash
function that we will call the compression function, having, as the notation indicates,
key-space Keys, domain {0, 1}b+c and range {0, 1}c. Our goal is to build a hash
function H over the larger domain

Db = { M [1] . . .M [n] : 1 ≤ n < 2b and M [i] ∈ {0, 1}b for 1 ≤ i ≤ n } .

The constructed hash function H: Keys×Db → {0, 1}c has the same set of keys and
range as H. To define it, we fix an element IV ∈ {0, 1}c, for example IV = 0c. We
recall that [i]b denotes the b bit binary representation of the integer i ∈ {0, . . . , 2b −
1}. (We stress that the length of the string [i]b is always exactly b bits: left-padding
with zeros is used if the binary representation of i is strictly less than b-bits long.)
Given a key K and an input M = M [1] . . . M [n] ∈ Db, we define

HK(M [1] . . . M [n])
C[0] ← IV ; M [n + 1] ← [n]b
For i = 1, . . . , n + 1 do C[i] ← HK(M [i] ‖ C[i − 1]) EndFor
Return C[n + 1]

We refer to this process of turning H into H as the MD transform.
The value of the MD transform is that it preserves CR2. In other words, if

the compression function H is CR2 then so is the hash function H. The following
theorem states this more formally.

Theorem 5.7 Let H: Keys × {0, 1}b+c → {0, 1}c be a compression function and
H: Keys × Db → {0, 1}c the hash function resulting from the MD transform as
above. Then

Advcr2-kk
H

(t, m) ≤ Advcr2-kk
H (t′, b + c)

where t′ = t + O(m).

Bellare and Rogaway 149

Proof of Theorem 5.7: Let A be an adversary attacking H. We associate to it
an adversary A attacking H such that

Advcr2-kk
H

(A) ≤ Advcr2-kk
H (A)

and furthermore the time-complexity of A is that of A plus an amount proportional
to the length of the two messages output by A as its collision. This proves the
theorem. We now proceed to construct and analyze A. It works as follows:

Adversary A(K)

(M1, M2)
$← A(K)

Break M1 into b-bit blocks as M1[1] . . . M1[n1]
Break M2 into b-bit blocks as M2[1] . . . M2[n2]
M1[n1 + 1] ← [n1]b ; M2[n2 + 1] ← [n2]b
C1[0] ← IV ; C2[0] ← IV
For i = 1, . . . , n1 + 1 do C1[i] ← HK(M1[i] ‖ C1[i − 1]) EndFor
For i = 1, . . . , n2 + 1 do C2[i] ← HK(M2[i] ‖ C2[i − 1]) EndFor
If n1 �= n2 then return (M1[n1 + 1] ‖ C1[n1], M2[n2 + 1] ‖ C2[n2])
Else

For i = n1, . . . , 1 do
If M1[i] ‖ C1[i − 1] �= M2[i] ‖ C2[i − 1]

then return (M1[i] ‖ C1[i − 1], M2[i] ‖ C2[i − 1])
EndFor

EndIf

5.5 Polynomial evaluation is an almost-universal hash
function

5.6 The CBC MAC is an almost-universal hash function

We show that if M, M ′ ∈ ({0, 1}n)+ are distinct then Pr[ρ $← Rand(n) : CBCρ(M) =
CBCρ(M ′)] is small. By “small” we mean a slowly growing function of m = ‖M‖n

and m′ = ‖M ′‖n. We use another game-playing argument.

Lemma 5.8 [CBC Collision Bound] Fix n, m, m′ ≥ 1 and let M ∈ ({0, 1}n)m

and M ′ ∈ ({0, 1}n)m′
be distinct strings. Then

Collm, m′
CBC[Rand(n)] ≤ mm′

2n
+

max{m, m′}
2n

150 HASH FUNCTIONS

Proof: If the lengths of M and M ′ differ then, without loss of generality, let M
name the shorter of the two strings and let M ′ name the longer. Then write M =
M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ where each Mi and each M ′

j is n-bits long and
m′ ≥ m. Write M as M = N ‖I and write M ′ as M ′ = N ‖I ′ where N is the longest
common prefix of M and M ′ whose length is divisible by n. Let k = ‖N‖n. Note
that k = m if M is a prefix of M ′ and otherwise k is the largest nonnegative integer
such that M1 · · ·Mk = M ′

1 · · ·M ′
k but Mk+1 �= M ′

k+1. By definition, if M1 �= M ′
1

then k = 0. Further note that k < m′.

Consider game C1, as defined in Figure 5.6. This game realizes one way to compute
Ym = CBCρ(M) and Y ′

m′ = CBCρ(M ′) for a random ρ ∈ Rand(n), and so we
would like to bound the probability, in game C1, that Ym = Y ′

m′ . Also depicted in
Figure 5.6 is game C2, obtained by eliminating the shaded statements.

Before taking up the analysis of the games in earnest, we give a bit of intuition about
what they aim to capture. We are interested in the probability that Ym = Y ′

m′ . This
can happen due either to an internal collision between Xm and X ′

m′ , where Ym was
produced as ρ(Xm) and Y ′

m′ was produced as ρ(X ′
m′), or Ym might equal Y ′

m′ even
in the absence of this collsion between Xm and X ′

m′ . Intuitively, the latter seems
unlikely, and it is. The former is unlikely too, but to prove this we generalize and
consider a broader set of internal collisions than just Xm coinciding with X ′

m′ . That
is, consider the X1, . . . , Xm values that get fed to ρ as we process M = M1 · · ·Mm,
and consider the X ′

1, . . . , X
′
m′ values that get fed to ρ as we process M ′ = M ′

1 · · ·M ′
m′ .

Accounting for the fact that Xi = X ′
i for all i ∈ [1 .. k] (that is, the Xi-values that

occur as we process the common prefix N of M and M ′), we don’t really expect
to see collisions among X1, . . . , Xm, X ′

i+1, . . . , X
′
m′ . To get a better bound, we will

“give up” in the analysis for some of these possibilities, but not all. Specifically, the
internal collisions that we focus on are (a) collisions that occur while we process N
(meaning collisions among any of X1, . . . , Xk); (b) collisions that occur between N
and I (those between one of X1, . . . , Xk and one of Xk+1, . . . , Xm); (c) collisions that
occur between N and I ′ (one of X1, . . . , Xk coincides with one of X ′

k+1, . . . , X
′
m′);

and (d) collisions that occur between I ′ and I (one of Xk+1, . . . , Xm coincides with
one of X ′

k+1, . . . , X
′
m′). There is nothing “magical” about giving up exactly on

these internal collisions—it is simply that the more internal collisions one gives up
on the worse the bound but the easier the analysis. The proof we give formalizes
the intuition of this paragraph and does all the necessary accounting.

Now look at game C1. It works not by growing a single random function ρ but
by growing three random functions: η, ι, and ι′. The function η keeps track of the
association of points that arise during the processing of N , the function ι keeps track
of the association of points that arise during the processing of I, and the function ι′

keeps track of the association of points that arise during the processing of I ′. If a
value X should get placed in the domain of two or more of these three functions
then we regard the corresponding range value as that specified first by η if such a
value has been specified, and as the value secondarily by ι otherwise. Game C1 can

Bellare and Rogaway 151

01 bad ← false
02 for X ∈ {0, 1}n do η(X) ← ι(X) ← ι′(X) ← undef

10 Y0 ← 0n

11 for i ← 1 to k do
12 Yi

$←{0, 1}n

13 Xi ← Yi−1 ⊕ Mi

14 if Xi ∈ Domain(η) then Yi ← η(Xi), bad ← true else η(Xi) ← Yi

20 for i ← k + 1 to m do
21 Yi

$←{0, 1}n

22 Xi ← Yi−1 ⊕ Mi

23 if Xi ∈ Domain(ι) then Yi ← ι(Xi) else ι(Xi) ← Yi

24 if Xi ∈ Domain(η) then Yi ← η(Xi), bad ← true

30 Y ′
k ← Yk

40 for j ← k + 1 to m′ do
41 Y ′

j
$←{0, 1}n

42 if Y ′
j = Ym then bad ← true

43 X ′
j ← Y ′

j−1 ⊕ M ′
j

44 if X ′
j ∈ Domain(ι′) then Yj ← ι′(X ′

j) else ι′(X ′
j) ← Y ′

j

45 if X ′
j ∈ Domain(ι) then Y ′

j ← ι(X ′
j), bad ← true

46 if X ′
j ∈ Domain(η) then Y ′

j ← η(X ′
j), bad ← true

Figure 5.6: Game C1, as written, and game C2, after eliminating the shaded state-
ments. Game C1 provides a way to compute the CBC MAC of distinct messages
M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ that are identical up to block k. The com-

puted MACs are Ym and Y ′
m′ .

thus be seen to provide a perfect simulation of the CBC algorithm over a random
function ρ ∈ Rand(n), and we seek to bound the probability, in game C1, that
Ym = Y ′

m′ .

We first claim that, in game C1, any time that Ym = Y ′
m′ it is also the case that

flag bad gets set to true. Focus on line 42. Since m′ ≥ k + 1 we know that the loop
covering lines 40–46 will be executed at least once and Y ′

m′ will take its value as
a result of these statements. When a preliminary Y ′

m′ value gets chosen at line 41
for iteration j = m′ we see that if Y ′

m′ = Ym then line 42 will set the flag bad.
But observe that the initially chosen Y ′

m′ value is not necessarily the final Y ′
m′ value

returned by game C1—the Y ′
m′ value chosen at line 42 could get overwritten at any

of lines line 44, 45, or 46. If the value gets overwritten at either of line 45 or line 46

152 HASH FUNCTIONS

then bad will get set to true. If Y ′
m′ gets overwritten by Ym at line 44 then Ym had

earlier been placed in the range of ι′ and it could only have gotten there (since ι′

grows only by the else -clause of line 44) by Y ′
m′ being equal to Y ′

j for an already
selected j ∈ [k + 1 .. m′ − 1]. In that case the flag bad would have already been set
to true by an earlier execution of line 42: when the Y ′

j value was randomly selected
at line 41 and found to coincide with Ym the flag bad is set. We thus have that
every execution of game C1 that results in Ym = Y ′

m′ also results in bad being true.

Let Pr1[·] denote the probability of an event in game C1 and let Pr2[·] denote the
probability of an event in game C2. Let B be the event (whether in game C1 or
game C2) that the flag bad gets set to true. By the contents of the last para-
graph, Prρ[CBCρ(M) = CBCρ(M ′)] ≤ Pr1[B]. Also note that games C1 and C2
are identical until the flag bad gets set to true (meaning that any execution in
which a highlighted statement is executed it is also the case that bad is set to
true in that execution) and so, in particular, Pr1[B] = Pr2[B]. We thus have that
Prρ[CBCρ(M) = CBCρ(M ′)] ≤ Pr2[B]. We now proceed to bound Pr2[B], showing
that Pr2[B] ≤ mm′/2n+max{m, m′}/2n. This is done by summing the probabilities
that bad gets set to true at lines 14, 24, 42, 45, and 46.

The probability that bad gets set at line 14 of game C2 is at most 0.5 k(k −
1)/2n. This is because every point placed into the domain of η is of the form
Xi = Yi−1 ⊕ Mi where each Yi−1 is randomly selected from {0, 1}n (at line 12) with
the single exception of Y0, which is a constant. So for any i and j with 1 ≤ i < j ≤ k
we have that Pr[Yi−1 ⊕ Mi = Yj−1 ⊕ Mj] = 2−n and there are 0.5 k(k − 1)/2n such
(i, j) pairs possible.

The probability that bad gets set at line 24 of game C2 is at most k(m − k)/2n.
Each point Xi whose presence in the domain of η we test is of the form Xi =
Yi−1 ⊕ Mi, as defined at line 22. Each of these Yi−1 values with the exception of Yk

is uniformly selected at line 21, independent of the now-determined domain of η. As
for Xk+1 = Yk ⊕ Mk+1, the value Yk was just selected uniformly at random (at the
last execution of line 12) and is independent of the domain of η. Thus each time
line 24 executes there is at most a k/2n chance that bad will get set, and the line is
executed m − k times.

The probability that bad gets set at line 42 of game C2 is at most (m′ − k)/2n.
This is because the line is executed m′− k times and each time the chance that bad
gets set is 1/2n since Y ′

j was just selected at random from {0, 1}n.

The probability that bad gets set at line 45 of game C2 is at most (m−k)(m′−k).
Each point X ′

j whose presence in the domain of ι is being tested is of the form
X ′

j = Y ′
j−1 ⊕ M ′

j , as defined at line 43. Each of these Y ′
i−1 values with the exception

of Y ′
k was uniformly selected at line 41, independent of the now-determined domain

of ι. As for X ′
k+1 = Y ′

k ⊕ M ′
k+1, the value Y ′

k was just selected uniformly at random
back at line 12 and is independent of the domain of ι apart from the domain point
Yk ⊕ Mk+1, which is guaranteed to be distinct from Y ′

k ⊕ M ′
k+1 by our criterion for

Bellare and Rogaway 153

choosing k. Thus each time line 45 executes there is at most a (m − k)/2n chance
that bad will get set, and the line is executed m′ − k times.

The probability that bad gets set at line 46 of game C2 is at most k(m′ − k) for
reasons exactly analogous to that argument used at line 24.

We conclude by the sum bound that the probability that bad gets set somewhere in
game C2 is at most (k(k−1)/2+k(m−k)+(m′−k)+(m−k)(m′−k)+k(m′−k))/2n =
mm′ + m′ − k(k − 3)/2. Since k can be zero, this value is at most (mm′ + m′)/2n.
Recalling that m′ is the block length of the longer of M and M ′, the proof is
complete.

5.7 Collision-resistance under hidden-key attack

In a hidden-key attack, the adversary does not get the key K in the post-key attack
phase, but instead gets an oracle for HK(·). There are again three possible notions
of security, analogous to those in Figure 5.3 except that, in the post-key attack
phase, A is not given K but is instead given an oracle for HK(·). The CR0 notion
however coincides with the one for known-key attacks since by the time the post-key
attack phase is reached, a cr0-adversary has already output both its points, so we
get only two new notions. Formal experiments defining these two notions are given
in Figure 5.7.

Definition 5.9 Let H: Keys(H) × Dom(H) → Range(H) be a hash function and
let A be an algorithm. We let

Advcr2-hk
H (A) = Pr

[
Exmtcr2-hk

H (A) = 1
]

Advcr1-hk
H (A) = Pr

[
Exmtcr1-hk

H (A) = 1
]

.

For any t, q, µ we define

Advcr2-hk
H (t, q, µ) = max

A
{Advcr2-hk

H (A)}

Advcr1-hk
H (t, q, µ) = max

A
{Advcr1-hk

H (A)}

where the maximum is over all A having time-complexity t, making at most q oracle
queries, the sum of the lengths of these queries being at most µ. All these definitions
assume adversaries are legitimate in the sense that the points that they query to
their oracle are in the domain of the hash function.

5.8 Problems

Problem 5.1 Hash functions have sometimes been constructed using a block ci-
pher, and often this has not gone well. Let E: K×{0, 1}n → {0, 1}n be a block cipher

154 HASH FUNCTIONS

Exmtcr2-hk
H (A)

K $← Keys(H) ; Run AHK(·)()
If there exist x1, x2 such that
– x1 �= x2

– Oracle queries x1, x2 were made by A
– The answers returned by the oracle were the same
then return 1 else return 0

Exmtcr1-hk
H (A)

(x1, st)
$← A() ; K $← Keys(H) ; Run AHK(·)(st)

If there exists x2 such that
– x1 �= x2

– Oracle queries x1, x2 were made by A
– The answers returned by the oracle were the same
then return 1 else return 0

Figure 5.7: Experiments defining security notions for two kinds of collision-resistant
hash functions under hidden-key attack.

and consider constructing H: K×({0, 1}n)+ → {0, 1}n by way of the CBC construc-
tion: let the hash of M1 · · ·Mm be Ym where Y0 = 0n and Yi = EK(Hi−1 ⊕ Mi) for
i ≥ 1. Here we select K to be some public constant. Show that this hash function
is not collision-resistant (no matter how good is the block cipher E).

Problem 5.2 Let H : K × {0, 1}a → {0, 1}n be an ε-AU hash-function family.
Construct from H an ε-AU hash-function family H ′ : K × {0, 1}2a → {0, 1}2n.

Problem 5.3 Let H : K × {0, 1}a → {0, 1}n be an ε-AU hash-function family.
Construct from H an ε2-AU hash-function family H ′ : K2 × {0, 1}a → {0, 1}2n.

