Problem Set 1 Solutions

ECS 227 - Phil Rogaway — Winter 2009
An excellent solution turned in by a student

Problem 1

Is the following notion of privacy achievable by a stateless, probabilistic encryption scheme? Scheme $\Pi=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is perfectly private against an adversary that asks two queries if for all distributions on plaintexts \mathcal{M} and all $m_{1}, m_{2} \in \mathcal{M}$ and all $c_{1}, c_{2} \in \mathcal{C}$,

$$
\operatorname{Pr}\left[M_{1}=m_{1} \wedge M_{2}=m_{2} \mid C_{1}=c_{1} \wedge C_{2}=c_{2}\right]=\operatorname{Pr}\left[M_{1}=m_{1} \wedge M_{2}=m_{2}\right]
$$

where M_{1} and M_{2} are sampled independently from \mathcal{M} and C_{1} and C_{1} are obtained by encrypting them. (Assume that c_{1}, c_{2} are restricted such that $\left.\operatorname{Pr}\left[C_{1}=c_{1} \wedge C_{2}=c_{2}\right]>0\right]$.)
Solution. No. Suppose there exists a scheme satisfying the above definition. Let $c_{1}=c_{2}, m_{1} \neq m_{2}$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[M_{1}=m_{1} \wedge M_{2}=m_{2} \mid C_{1}=c_{1} \wedge C_{2}=c_{2}\right]=0, \\
& \operatorname{Pr}\left[M_{1}=m_{1} \wedge M_{2}=m_{2}\right]=\operatorname{Pr}\left[M_{1}=m_{1}\right] \operatorname{Pr}\left[M_{2}=m_{2}\right] \neq 0,
\end{aligned}
$$

which is a contradiction to the fact that

$$
\operatorname{Pr}\left[M_{1}=m_{1} \wedge M_{2}=m_{2} \mid C_{1}=c_{1} \wedge C_{2}=c_{2}\right]=\operatorname{Pr}\left[M_{1}=m_{1} \wedge M_{2}=m_{2}\right] .
$$

Problem 2

Secrecy from a random shuffle. Alice shuffles a deck of cards and deals it out to herself and Bob so that each gets half of the 52 cards. Alice now wishes to send a secret message M to Bob by saying something aloud. Eavesdropper Eve is listening in: she hears everything Alice says (but Eve can't see the cards).

Part A. Suppose Alice's message M is a string of 48-bit. Describe how Alice can communicate M to Bob in such a way that Eve will have no information about what is M.
Solution. The shuffle of the 52 cards provides us with a key space \mathcal{K}. We have the following three observations:

- $|\mathcal{K}|=C_{52}^{26}$, since we have C_{52}^{26} different combinations for the cards in Alice's hand.
- Bob also knows \mathcal{K}, since the cards are dealt out evenly to two persons.
- \mathcal{K} has a uniform distribution, since the cards are randomly shuffled.

Let \mathcal{M} denote the message space of 48-bit strings, and \mathcal{C} denote the ciphertext space s.t. $|\mathcal{C}|=|\mathcal{K}|$. Since $|\mathcal{M}|=2^{48}<C_{52}^{26}=|\mathcal{K}|$, we have $|M|<|\mathcal{C}|=|\mathcal{K}|$.

Consider the cryptosystem $(\mathcal{M}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$. Define the encryption algorithm as

$$
\mathcal{E}_{k}(m)=(m+k) \quad \bmod C_{52}^{26},
$$

for each $k \in \mathcal{K}, m \in \mathcal{M}$. Correspondingly, define the decryption algorithm as

$$
\mathcal{D}_{k}(c)=(c-k) \quad \bmod 2^{48}
$$

for each $k \in \mathcal{K}, c \in \mathcal{C}$.
Both \mathcal{E} and \mathcal{D} are deterministic.
This scheme achieves the perfect secrecy. This is true because for each $m \in \mathcal{M}, c \in \mathcal{C}$,

$$
\operatorname{Pr}[\text { Alice says } c \mid M=m]=\operatorname{Pr}\left[k=(c-m) \quad \bmod C_{52}^{26}\right]=1 / C_{52}^{26} .
$$

This implies that

$$
\operatorname{Pr}\left[\text { Alice says } c \mid M=m_{1}\right]=\operatorname{Pr}\left[\text { Alice says } c \mid M=m_{2}\right],
$$

for all $m_{1}, m_{2} \in \mathcal{M}, c \in \mathcal{C}$.
Therefore, the event "Alice says c " is independent of the event " $M=m$ ". Hence the perfect secrecy.

Part B. Now suppose Alice's message M is 49-bit. Prove that there exists no protocol that allows Alice to communicate M to Bob in such a way that Eve will have no information about M.
Proof. Let \mathcal{M} denote the message space of 49-bit strings. Unfortunately, we have $|\mathcal{M}|=$ $2^{49}>C_{52}^{26}=|\mathcal{K}|$. Suppose we have a protocol that achieves the perfect secrecy. Let $c \in \mathcal{C}$ s.t. $\operatorname{Pr}[$ Alice says $c] \neq 0$. Define the set

$$
D_{c}=\left\{m \in \mathcal{M} \mid \mathcal{D}_{k}(c)=m, k \in \mathcal{K}\right\} .
$$

Since \mathcal{D} is deterministic, we can only have one $m \in \mathcal{M}$ for each $k \in \mathcal{K}$. Hence $\left|D_{c}\right| \leq|K|$.
Therefore, $\left|D_{c}\right|<|M|$. It follows that there exists at least a $m^{*} \in \mathcal{M}$ s.t. $m^{*} \notin D_{c}$. Hence, we have

$$
\operatorname{Pr}\left[M=m^{*} \mid \text { Alice says } c\right]=0
$$

We also have

$$
\operatorname{Pr}\left[M=m^{*}\right] \neq 0
$$

which implies that

$$
\operatorname{Pr}\left[M=m^{*} \mid \text { Alice says } c\right] \neq \operatorname{Pr}\left[M=m^{*}\right] .
$$

This is a contradiction to the definition of the perfect secrecy.

