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An excellent solution turned in by a student

Problem 1

Is the following notion of privacy achievable by a stateless, probabilistic encryption scheme? Scheme
Π = (K, E ,D) is perfectly private against an adversary that asks two queries if for all distributions
on plaintexts M and all m1,m2 ∈M and all c1, c2 ∈ C,

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2] = Pr[M1 = m1 ∧M2 = m2]

where M1 and M2 are sampled independently from M and C1 and C1 are obtained by encrypting
them. (Assume that c1, c2 are restricted such that Pr[C1 = c1 ∧ C2 = c2] > 0].)

Solution. No. Suppose there exists a scheme satisfying the above definition. Let c1 = c2, m1 6= m2,
we have

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2] = 0,

Pr[M1 = m1 ∧M2 = m2] = Pr[M1 = m1] Pr[M2 = m2] 6= 0,

which is a contradiction to the fact that

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2] = Pr[M1 = m1 ∧M2 = m2].

Problem 2

Secrecy from a random shuffle. Alice shuffles a deck of cards and deals it out to herself and
Bob so that each gets half of the 52 cards. Alice now wishes to send a secret message M to Bob
by saying something aloud. Eavesdropper Eve is listening in: she hears everything Alice says (but
Eve can’t see the cards).

Part A. Suppose Alice’s message M is a string of 48-bit. Describe how Alice can communicate M
to Bob in such a way that Eve will have no information about what is M .

Solution. The shuffle of the 52 cards provides us with a key space K. We have the following three
observations:

• |K| = C26
52 , since we have C26

52 different combinations for the cards in Alice’s hand.

• Bob also knows K, since the cards are dealt out evenly to two persons.

• K has a uniform distribution, since the cards are randomly shuffled.
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Let M denote the message space of 48-bit strings, and C denote the ciphertext space s.t.
|C| = |K|. Since |M| = 248 < C26

52 = |K|, we have |M | < |C| = |K|.
Consider the cryptosystem (M, C,K, E ,D). Define the encryption algorithm as

Ek(m) = (m + k) mod C26
52 ,

for each k ∈ K,m ∈M. Correspondingly, define the decryption algorithm as

Dk(c) = (c− k) mod 248,

for each k ∈ K, c ∈ C.
Both E and D are deterministic.
This scheme achieves the perfect secrecy. This is true because for each m ∈M, c ∈ C,

Pr[Alice says c | M = m] = Pr[k = (c−m) mod C26
52 ] = 1/C26

52 .

This implies that

Pr[Alice says c | M = m1] = Pr[Alice says c | M = m2],

for all m1,m2 ∈M, c ∈ C.
Therefore, the event “Alice says c” is independent of the event “M = m”. Hence the perfect

secrecy.

Part B. Now suppose Alice’s message M is 49-bit. Prove that there exists no protocol that allows
Alice to communicate M to Bob in such a way that Eve will have no information about M .
Proof. Let M denote the message space of 49-bit strings. Unfortunately, we have |M| =
249 > C26

52 = |K|. Suppose we have a protocol that achieves the perfect secrecy. Let c ∈ C s.t.
Pr[Alice says c] 6= 0. Define the set

Dc = {m ∈M | Dk(c) = m, k ∈ K} .

Since D is deterministic, we can only have one m ∈M for each k ∈ K. Hence |Dc| ≤ |K|.
Therefore, |Dc| < |M |. It follows that there exists at least a m∗ ∈ M s.t. m∗ /∈ Dc. Hence, we

have
Pr[M = m∗ | Alice says c] = 0.

We also have
Pr[M = m∗] 6= 0,

which implies that
Pr[M = m∗ | Alice says c] 6= Pr[M = m∗].

This is a contradiction to the definition of the perfect secrecy.
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