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An excellent solution turned in by a student

Problem 1

Is the following notion of privacy achievable by a stateless, probabilistic encryption scheme? Scheme
IT1 = (K, &, D) is perfectly private against an adversary that asks two queries if for all distributions
on plaintexts M and all m1,mo € M and all ¢1,¢co € C,

Pr[Mlzml/\Mgzmg]C1:cl/\CQ:cQ]:Pr[Mlzml/\Mgzmg]

where My and My are sampled independently from M and C7 and Cy are obtained by encrypting
them. (Assume that ¢y, co are restricted such that Pr[C; = c; A Ca = ¢2] > 0].)

Solution. No. Suppose there exists a scheme satisfying the above definition. Let ¢; = ¢a, my # ms,
we have

PI‘[Ml =mi1 A My =mgy | (& :CIACQZCQ] =0,
PI‘[Ml =mq A My = mQ] = PI‘[Ml = ml] PI‘[MQ = mg] #0,

which is a contradiction to the fact that

Pr[Mlzml/\MQZmQ‘01201/\02:C2]:Pr[Mlzml/\MQZmQ].

Problem 2

Secrecy from a random shuffle. Alice shuffles a deck of cards and deals it out to herself and
Bob so that each gets half of the 52 cards. Alice now wishes to send a secret message M to Bob
by saying something aloud. Eavesdropper Eve is listening in: she hears everything Alice says (but
Eve can’t see the cards).

Part A. Suppose Alice’s message M is a string of 48-bit. Describe how Alice can communicate M
to Bob in such a way that Eve will have no information about what is M.

Solution. The shuffle of the 52 cards provides us with a key space K. We have the following three
observations:

e |K| = C2%, since we have C2§ different combinations for the cards in Alice’s hand.
e Bob also knows K, since the cards are dealt out evenly to two persons.

e /C has a uniform distribution, since the cards are randomly shuffled.



Let M denote the message space of 48-bit strings, and C denote the ciphertext space s.t.
IC| = |K|. Since |M| =28 < C2§ = |K|, we have |M| < |C| = |K]|.
Consider the cryptosystem (M,C, K, E, D). Define the encryption algorithm as

Ex(m) = (m+k) mod CZ25,
for each k € K,m € M. Correspondingly, define the decryption algorithm as
Di(c) = (¢ — k) mod 2%,

for each k € KC,c € C.
Both € and D are deterministic.
This scheme achieves the perfect secrecy. This is true because for each m € M, c € C,

Pr[Alice says ¢ | M = m] = Pr[k = (c—m) mod C25] = 1/C25.
This implies that
Pr[Alice says ¢ | M = mq] = Pr[Alice says ¢ | M = my],

for all my,ms € M,c €C.
Therefore, the event “Alice says ¢
secrecy.

)7

is independent of the event “M = m”. Hence the perfect

Part B. Now suppose Alice’s message M is 49-bit. Prove that there exists no protocol that allows
Alice to communicate M to Bob in such a way that Eve will have no information about M.
Proof. Let M denote the message space of 49-bit strings. Unfortunately, we have |M| =
249 > (28 = |K|. Suppose we have a protocol that achieves the perfect secrecy. Let ¢ € C s.t.
Pr[Alice says c| # 0. Define the set

D, ={m e M| Dy(c) =m,k € K}.

Since D is deterministic, we can only have one m € M for each k € K. Hence |D,| < |K]|.
Therefore, |D.| < |M]|. It follows that there exists at least a m* € M s.t. m* ¢ D.. Hence, we
have
Pr[M = m™ | Alice says c| = 0.

We also have
Pr[M = m*] # 0,

which implies that
Pr[M = m* | Alice says c|] # Pr[M = m™].

This is a contradiction to the definition of the perfect secrecy.



