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Background

Given a basis of linearly independent vectors B = b1, . . . , bn in Rm, the lattice L is the set of integer linear
combinations of the basis vectors.

L = {
n∑

i=1

aibi|ai ∈ Z}

When your basis is far from orthogonal, it can be difficult to imagine what this set of points in space will look like,
especially when the dimension spanned by the subspace is high.

The Shortest Vector Problem (SVP) is the problem of finding a lattice point u which minimizes ‖u‖ i.e.
the shortest nonzero lattice point. A similar problem is when you are given a vector w not in the lattice, to find
the closest lattice point u ∈ L which minimizes ‖u − w‖, this is called the Closest Vector Problem (CVP)
. As the dimension n of the lattice grows these problems become computationally expensive, in fact they are NP
hard.

There is also the problem of finding approximate solutions to the SVP and CVP, ie to within some multiple of
the minimal solution. This can be written as SVPf , and will return a vector v ∈ L such that for some function
f : N→ R≥1

‖v‖ ≤ f(n)‖u‖ for all u ∈ L
since the shortest vector is among the lattice points we can consider this to be no more that a multiple of f(n) off
from the actual shortest vector. CVPf is defined similarly.

There is also a decisional version of this problem called GapSVPf where the input is (L, d) a lattice and a guess
at the minimal distance d. A GapSVPf solver will distinguish between the cases where there exists a vector with
‖v‖ ≤ d and of the cases where no vector ‖v‖ ≤ f(n) · d exists. GapCVPf is defined to run similarly on the input
(L,w, d).

Reduction of SVP to CVP

In the paper Approximating shortest lattice vectors is not harder than approximating closest lattice vectors by
Goldreich, Micciancio, Safra and Seifert, there is a very nice reduction of the SVP to the CVP.

Since the zero vector is a lattice point, it won’t work to supply a CVP oracle with w = 0, because the closest
lattice point is 0 itself. The paper uses a cute trick which is based on the idea that if we knew shortest vector
u =

∑n
i=1 aibi then surely the ai ∈ Z cannot all be even. If aj is odd then the by taking a sub-lattice which replaces

bi with 2bi to create a new basis B(j). By finding inputting w = bi as the vector which is not in the sub-lattice, we
can find a closest lattice point v which will have minimal ‖v − bi‖. If we tried doing this for each of the n basis
vectors we could take the solution from whichever gave us the shortest distance. Clever tricks like this make me
love computer science and math.

Approximate version

The authors of the paper also have a randomized reduction of GapSVPf to GapCVPf . This reduction is not as
nice as the reduction from SVP to CVP, but it uses an argument that reminded me of the reductions from this
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class.
The proof relies on the fact that if GapSVPf was a yes case there is a shortest vector that satisfied ‖v‖ ≤ d,

from this you could construct a vector with the use of randomly sampled 0’s and 1’s to create a vector which has
probability at least 1

2 of being a lattice point within distance d of a target vector. It seems backwards at first, to
show that the construction of this point required a solution to the SVP, but it is ok, because it is only used to show
the existence of a solution to GapSVPf .

The paper did not provide a version of the proof that would extend this to a reduction from SVPf to CVPf . It
might seem strange that we could be able to reduce SVPf to CVPf without explicitly constructing an instance of
CVPf which solves another instance SVPf . The reduction of GapSVPf to GapCVPf used a family of instances of
GapCVPf , and showed that each one had a bounded probability. Perhaps the logic behind the reduction from SVPf

to CVPf is similar to the hybrid arguments we used in class, where without explicitly constructing an adversary
with a certain advantage we can assume that one exists, which is enough.

Some other ideas

The GapCVPf might seem to provide very little information about what the actual solution is. Something that
GapCVPf does allow you to do, is cover a ball of radius d around the target vector provided and say conclusively
that no lattice point exists in that ball. Depending on the norm that you are using the ball will have a different
shape. In the paper Covering Cubes and the Closest Vector Problem by Friedrich Eisenbrand, Nicolai Hahnle,
Martin Niemeier the authors use turn these GapCVP solvers as the idea for some cool covering problems.
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