ECS227 Paper Writeup
Partial Signatures and their Applications (1]

Ryan Stevens

11 March 2012

Goals

The goal of this paper is to provide a digital signature scheme that allows the signer of a
message to preserve their anonymity until they want to claim that the message was really sent
by them. Thus it becomes up to the signer when the message can be verified and the identity of
the signer known. Such a scheme has applications in anonymous bidding, for example, where
a bidder wishes to place a bid but wants to remain anonymous until they know they have won
the auction. The authors lay out three goals for such a scheme: anonymity, unambiguity, and
unforgeability. This differs from the goals of traditional public-key digital signature schemes
in that these schemes do not guarantee the anonymity of the signer; in fact traditional digital
signatures are designed to make it easy to verify the identity of the signer assuming the public
key of the signer is known.

Partial Signatures

To achieve these goals, the authors outline a type of digital signature scheme called partial
signatures in which the signature consists of two parts: a “stub” ¢ and a “de-anonymizer” k.
The stub is sent with the message to be verified and is insufficient to verify the identity of the
signer. Only when the signer provides the de-anonymizer can the public key of the signer be
used to verify the message, and thus the identity of the signer known. If Alice wishes to use
such a partial signature scheme to sign a message anonymously, she must generate a secret
key sk and a public key vk (verification key) just like a traditional public key digital signature
scheme. With the secret key and the message, Alice produces the signature (o, k) and sends
(M, o) to the receivers, who cannot verify Alice’s identity with o and M alone. If she wishes
to reveal her identity, she can send k to the receivers who can use vk to verify the message
really was from Alice.

The authors provide constructions for creating a partial signature scheme from a digital
signature scheme and a commitment scheme. A commitment scheme allows a sender to commit



to a decision but hide what decision they made until they want to reveal it. Before we go into
detail, digital and partial signature schemes must be defined as well as commitment schemes:

e Digital Signature Scheme: A digital signature scheme DS is a triple of algorithms
(SKG, SIG, SVF). SKG is the key generation algorithm that produces the (sk,vk) pair of
keys. SIG is the signature generation algorithm that takes as input a message M and
secret key sk and produces the signature s. Lastly, SVF takes a message M, signature
s, and public key vk and outputs a boolean whether the message and secret key were
used to produce s.

e Partial Signature Scheme: A partial signature scheme PS is a triple of algorithms
(PKG, PSIG, PVF) that is similar to a digital signature scheme, except PSIG now outputs
s=(0,kK).

o Commitment Scheme: A commitment scheme CMT is a pair of algorithms (CMT, CVF).
The commitment algorithm CMT takes a message M as input and returns the com-
mitment value o and the decommital value w. The verification algorithm CVF takes
(o,w, M) as input and returns a boolean that reveals if the tuple is valid.

The three security notions the authors outline for secure partial signature scheme are:
anonymity, unambiguity, and unforgability. These are defined as follows:

o Anonymity: The identity of the signer should not be able to be determined from the
tuple (M, o) alone. What this means is that assuming the adversary has access to a
number of verification keys (at worst two), then they should not be able to determine
which of the verification keys should be used to verify (M, o) until £ is known.

Advay(A) = 2% Pr[b & {0, 1}; (vko, sko, vky, ski) & PKG();
APSIG(eske) (y ko, sko, vk, sky) = d:d=1b] — 1

o Unambiguity: The stub o needs to be linked with the signer’s secret key in an unambigu-
ous way. The authors point out that using the empty string as ¢ and the full signature
as Kk ensures anonymity, but an adversary could easily produce a valid x under their ver-
fication key, leading to the adversary claiming ownership of the original message. Thus,
o must be tied to the signers private key. This notion is defined in the following way:
the adversary picks two distinct verification keys vky and vk;, any two messages M, and
M, and two de-anonymizers ko and k;. They win if they are able to produce a singe o
that is valid for both (vko, Mo, ko) and (vky, My, K1).

Advis(A) = Pr[A() — (vko, vki, My, My, 0, ko, k1) : PVF(vkg, My, 0, ko) = 1A
PVF(’Uk’l, Ml, g, :‘il) =1A ’Uko 7£ ’Ukl]



e Unforgeability: In the above definition, the adversary was able to use its own verification
key instead of the signer’s to forge a message. This differs from traditional unforgability
in that the adversary should not be able to forge a message under the signer’s verifi-
cation key; that is, given the message and stub, the adversary cannot compute the de-
anonymizer. The notion here is defined as follows: the adversary can query an oracle O,
that gives a stub for some input message and an oracle O, that gives the de-anonymizer
for some stub. If the adversary can provide a de-anonymizer for a stub that it got from
O, which it did not use as input to, O,, than it wins.

Advi(A) = Pr[(vk, sk) < PKG(); A% (®0x() (vk) — (M, 0, k) :
PVF(vk, M,o,r) =1 A\ A did not ask O(0)]

Now we go over the simplest of the authors’ constructions of partial signature schemes.

Designing Partial Signature Schemes

The authors propose a partial signature scheme called Sign-then-Commit (StC) that lever-
ages both a commitment scheme and a digital signature scheme. Assuming we have DS =
(SKG, SIG, SVF) and CMT = (CMT, CVF) we construct PS = (PKG, PSIG, PVF) in the fol-

lowing way:

Alg PKG(): Alg PSIG(sk, M): Alg PVF(vk, M, o, K):
(vk, sk) < SKG() s & SIG(sk, M) (8,w) < K)
return(vk, sk) (0, ) k3 CMT (s [uk) if ;\/SUI(:I(,SIUUSIC,ALZ[)) i 11 ?}1121:1
K+ (s,w) 7 N
return(o) tretu(ror;(l)
return

We use the key generation algorithm from the digital signature scheme directly as our key
generation algorithm. To make the stub and de-anonymizer, we use the stub generation scheme
from the commitment scheme and give it the signature of our message concatenated with the
verification key. Lastly to verify the message, we check that de-anonymizer is the correct
commit value for the commitment scheme and that the signature is the correct signature for
the message and public key.

The authors’ proof of the unforgeability notion of StC is quite complicated and I could only
understand it very loosely, so I will not attempt to recreate the proof here. The proofs of
anonymity and unambiguity are easier to understand and I go over both below, although they
are very similar.



Proof of Anonymity

The proof that the StC achieves the anonymity security notion goes as follows:

CMT is hiding — PS is anonymous
Adversary A gets good advantage against PS anonymity security —
Adversary B gets good advantage against CMT hiding security

To continue, we must define the CM7T hiding security notion. A commitment scheme is good
at the hiding security notion if an adversary is not able to determine whether a commitment
value o belongs to a particluar message. Stated formally:

Advlilr(A) = Prib & {0, 1} [AMTaE) () = d: d = b]

Now, we design the adversary B that breaks hiding security when given an adversary A that
breaks partial signature anonymity:

(vko, sko, vky, sky) & CMT()
Run A(vky, sko, vk, sky)
When A queries for the stub of M
so < SIG(sko, M)
S1 g SlG(Skl, M)
Query B’s CMT left-right oracle with parameters sq||vko and s1||vk; to get o
Give o to A
When A outputs its guess d, return d

From this we conclude that the probability that B outputs that it is in the “left” oracle world
is exactly the probability that A is able to determine it is in the “left” oracle world. Thus, if
A is good at distinguishing which message the stub belongs to for partial signatures, B will
be able to do so for commitment schemes as well.

Proof of Unambiguity

The proof that the StC achieves the unambiguity security notion goes as follows:

CMT is binding — PS is unambiguous
Adversary A gets good advantage against PS unambiguity security —
Adversary B gets good advantage against CMT binding security

To continue, we must define the CMT binding security notion. A commitment scheme is good
at the binding security notion if an adversary is able to produce a pair of messages and a pair
of decommit values that are both valid for a single stub. Stated formally:

4



Adveir(A) = PrlA() — (Mo, My, wo, w1, 0) :
CVF(M(),CL)0,0') =1A CVF(Ml,(.Ul,O'> =1A MO 7é Ml]

Now, we design the adversary B that breaks binding security when given an adversary A that
breaks partial signature unambiguity:

Run A()
When A outputs (vkg, vky, My, My, 0, Ko, k1), return (so||vko, s1||vky, wo, w1, o)

It is easy to see that because of how StC is constructed, the value B returns will always be
valid for the commitment scheme if A returns a correct tuple.

Concluding Thoughts

I have shown how and why the authors chose to design partial signature schemes. They laid
out a number of security notions that are appropriate to partial signatures and how these
notions are defined formally. Lastly, they describe how to build partial signature schemes
from existing digital signature schemes, which is covered at a high level in this writeup.

The remaining parts in the paper I did not cover involve how to build a partial signature
scheme from a digital signature algorithm directly and how to build a commitment scheme
from a partial signature scheme. The authors use a protocol called Schnorr [2] and modify it
slightly to produce a very fast partial signature scheme. Since we did not cover how Schnorr
operates in class, I chose to ignore the part of the paper that deals with this protocol. The
section that describes how to make a commitment scheme from a partial signature scheme is
straightforward, but since I did not cover how to build a partial signature scheme without a
commitment scheme, this construction seemed pointless. Lastly, there is an analysis of the
performance of each scheme the authors proposed as well as a more efficient version of the
scheme I described in this writeup, however I didn’t think it would add much to include it
here.

References

[1] M. Bellare and S. Duan. Partial signatures and their applications, 2009.

[2] C.P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161-174, 1991.



