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In our course, we have been introduced to CPA and CCA security in various senses (semantic, indistinguishability, etc.), and
under various encryptions schemes. The authors Abdalla, Bellare, and Neven define a different sort of security in their paper
“Robust Encryption.”

Encryption robustness arises in the following setting: suppose I am a sender routinely communicating with a group of people,
id1, . . . , idn. Often I may want to anonymously communicate with a single individual of the group; that is, not only do I
want my message to remain private, but I also desire the identity of the sender to remain anonymous. I am not allowed a
private channel to communicate with this one member without revealing his identity.

One solution to this scenario is to assign a separate key eki (or, in the asymmetric setting, key pair (eki, dki)) to each member
idi in the group. However, this may lead to miscommunication: if I encrypt a message using a particular member idi’s key
eki, all other members idj will attempt to decrypt this message using their respective keys dkj , which may easily result in
miscommunication. Hence, we desire an encryption scheme that achieves the following:

• Privacy of messages (in the CPA or CCA setting)

• Anonymity of message recipient

• Prevention of miscommunication.

The authors solve the last two problems by requiring that for any key eki, encryption scheme Enceki(·) and decryption
scheme Decdkj (·), Decdkj (Enceki(M)) = M if j = i and ⊥ otherwise; that is, any cipher text C should only be a valid cipher
text for a particular encryption key eki. They call this idea “robustness.”

As always, we need a notion of adversarial advantage. Suppose we have a general encryption scheme GE equipped with a
parameter generator PG, a key generator KG, and encryption and decryption oracles Enc and Dec. We also define M to
be the message space, The authors define two notions of security in this setting:

AdvWROB
GE (A) = P ((msk, par)

$←−; id0, id1 ← A; (ek0, dk0), (ek1, dk1)
$←− KG(par, idb);m← A : Decdk1

(Encek0
(m)) ∈M).

AdvSROB
GE (A) = P ((msk, par)

$←−; id0, id1 ← A; (ek0, dk0), (ek1, dk1)
$←− KG(par, idb);C ← A : Decdk0

(C), Decdk1
(C) ∈M).

The first thing to notice here is that weak or strong robustness does not imply CPA or CCA security in itself: nowhere in
the definition of adversarial advantage is it explicitly stated that a message remains private, or that no bits of the message
is leaked. In fact, one may imagine a modification of a robust encryption scheme that appends the entire message to the
ciphertext. The this ciphertext is still only valid under a single encryption key in the altered encryption scheme (since the
original text was), but clearly we violate privacy in the worst way.

When I first read the requirement, adding robustness to an existing secure scheme seemed to be a gargantuan feat. Fortunately,
the authors did not find this so, and have methods to add strong or weak robustness to a general encryption scheme (possibly
public key) while maintaining privacy.

The first sense of robust encryption, weak “robustness,” can be satisfied by adding carefully adding redundancy to the
encryption oracle. By carefully here, we encrypt m||r, where r is a redundancy tag that depends on some random key K.
To add weak robustness to any general encryption scheme GE, the authors recommend letting r = K. While I would have
liked to see some other methods here (perhaps there are times when appending K to the message is unwise), the robustness
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addition is a simple one. Further, if the original scheme is CCA or CPA secure, adding the redundancy tag will not yield
additional advantage to the adversary. The authors omit this, but it is easy to see: if our original encryption of m was secure,
then the encryption of m||r will be as well.

A more curious point in the paper is that while weak robustness can be added with no loss of CPA/CCA security, strong
robustness cannot. In fact, the authors call upon the notions of hiding security, as well as the addition of weak-robustness
to the initial scheme GE to achieve strong-robustness. The scheme they deliver then has CPA/CCA security lower than the
original general encryption. They give the adversary at least three times the advantage given by the original scheme; whether
this is consequential is left unexamined, though I assume it is not. Their addition of strong-robustness also first requires the
addition of weak-robustness; though left unexplored, I assume there is no substantial increase in runtime that arises from the
alteration of the encryption scheme.

The authors give several applications of robustness, and in particular, they modify the Cramer-Shoup PKE scheme to
accommodate strong-robustness in a more efficient manner than outlined by their general alteration. They also show other
schemes are or are not SROB or WROB secure. It’s curious to see that many known encryption schemes do satisfy this notion
of security, since the idea is first formalized in this paper. It should, however, be reassuring: no “accidental” decryptions
take place under existing encryption schemes.

I’m curious on the following generalization of the problem the authors open with: suppose I wanted to send a message to
some subset S of the userbase N without unmasking the identity of any member of S, even to other members of the subset.
The authors don’t address this problem, and so I will do so here.

I desire the following from our encryption scheme GE:

• GE maintains message privacy

• for any subset S of the userbase N , the scheme GE may encipher a message m with some key ekS such that
Decdkj

(EncekS
(m)) = m if j ∈ S and ⊥ otherwise.

A notion of adversary advantage is given by the following:

Advwsub
GE (A) = P ((pars,msk)

$←− PG;S = (idk1
, . . . , idkj

), id0 ← A;

(ekS , dkS)
$←− KG(pars, idk1 , . . . , idkj ); (ek0, dk0)

$←− KG(pars, id0);m← A : Decdk0(EncekS
(m)) ∈M).

Advssub
GE (A) = P ((pars,msk)

$←− PG;S = (idk1 , . . . , idkj ), id0 ← A;

(ekS , dkS)
$←− KG(pars, idk1 , . . . , idkj ); (ek0, dk0)

$←− KG(pars, id0);C ← A : Decdk0(C), DecdkS
(C) ∈M).

It is assumed here that the adversary is unable to allow id0 ∈ S. The idea expressed in the former case is that given any
subset of the adversaries choosing, and any “outsider” of that subset, the adversary should be unable to develop a message
that is encryped using the key associated to the subset S that produces a valid message under decryption by the outsider.
In the latter case, the adversary should be unable to produce a cipher text that decrypts to a valid message for a subset of
our group N and an outsider of that subset.

Note that if an encryption scheme is weak or strong subset secure, it is naturally weakly or strongly robust. I don’t offer any
encryption scheme capable of delivering this security. A primary difficulty in ensuring such a scheme would be ensuring that
for every subset S, every member of that subset would be allowed to decrypt messages sent under that subset’s collective
key. Further, since there are 2|N | − 1 subsets of N , this may not be a practical request: it could be the keyspace required
will be far largely than our encryption scheme can efficiently handle to achieve subset security under any substantially sized
N .

It also seems that this situation may be irrelevant—the sender might merely encrypt and send the same message |S| times,
each time using a key specific to a particular member of S. The runtime of this simple solution would never be larger than
|N | times the runtime of GE, and so may be acceptable in practice.
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