
ECS 227: Modern Cryptography Handout ps1
UC Davis — Phillip Rogaway January 12, 2012

Problem Set 1

Please turn in your solutions at the beginning of class on Thursday, January 26, 2012. Remember that if you
work with someone on a solution to any problem, you should please turn in a single solution for it.

Some problem(s) may need you to employ a “hybrid argument,” which I am hoping you manage to “invent”

for the need, but which you can always look up, now that I have given you this term. The mathematical tool

underlying a hybrid argument is just the triangle inequality: |a− b| ≤ |a− c|+ |b− c|.

Problem 1.

Part A. A natural way to formalize a probabilistic Turing machine is to provide it a distinguished state q$
out of which it transitions to a state qH with probability 0.5, transitioning to a state qT otherwise. Show
that such a formulation is inadequate to enable a TM M that runs in any fixed amount of time T to
perfectly shuffle a deck of cards.1

Because of the above, we should henceforth assume a different formulation of probabilistic Turing machines, where

the machine can write positive numbers n,m, n ≤ m, on a distinguished query tape and then it enters state qH
with probability n/m, and state qT otherwise.

Part B. Alice shuffles a deck of cards and deals it out to herself and Bob so that each gets half of the
52 cards. Alice now wishes to send a secret message M to Bob by saying something aloud. Eavesdropper
Eve is listening in: she hears everything Alice says (but Eve can’t see the cards).

Suppose Alice’s message M is a string of 48-bits. Describe how Alice can communicate M to Bob in such
a way that Eve will have no information about what is M . You do not need to concern yourself with
“encoding-level” details.

Part C. Now suppose Alice’s message M is 49 bits. Explain why there exists no protocol that allows
Alice to communicate M to Bob in such a way that Eve will have no information about M .

Problem 2. Let g : {0, 1}n → {0, 1}N be a function (a “pseudorandom generator”, or PRG), and let A
be an adversary. In class we defined the advantage A gets in attacking g as

Advprg
g (A) = Pr[Ag($) ⇒ 1]− Pr[A$ ⇒ 1]

In the first experiment the oracle responds to each query by computing s
$←{0, 1}n and returning g(s);

in the second experiment the oracle responds to each query by computing y
$←{0, 1}N and returning y.

Part A. Suppose there exists an adversary A that, making q queries, manages to obtain prg-advantage δ.
Describe and analyze an adversary B, about as efficient as A, that gets advantage δ′ = δ/q while asking
only a single query.

Part B. Consider a different kind of advantage for g : {0, 1}n → {0, 1}N , the “next-bit-test” advantage.
The adversary A makes a query ` ∈ [0..N − 1] and is then given the first ` bits of y = g(s) for a

random s
$←{0, 1}n. The adversary tries to predict the next bit, y[`+ 1], outputting its guess b as to this

bit. The adversary’s nbt-advantage, Advnbt
g (A), is twice the probability that she correctly predicts this

bit, minus one.

Formalize and demonstrate that security in the prg-sense is equivalent, up to some factor you compute,
to security in the nbt-sense.

Part C. Suppose you have a “good” PRG g : {0, 1}n → {0, 1}n+1. Construct from it a “good” PRG
G : {0, 1}n → {0, 1}2n. Formalize and prove a result that captures the idea that G is secure if g is.

1To perfectly shuffle a deck of cards means that the machine outputs a uniformly random list of distinct numbers from 1
to 52.

