ECS 494: Selected Topics—Theory of Computation Handout 2S
CMU — Phillip Rogaway August 8, 2000

Problem Set 2 Solutions
Problem 1.

Part A. Show that there is a deterministic finite automata with n+ 1 states that recognizes the
language (1™)*. (The alphabet is ¥ = {0,1}.)

Part B. Show that there does not exist a smaller deterministic finite automaton for this language.

Assume to the contrary that there exists a DFA M = (Q,X, 0, qo, F') with n or fewer states
such that L(M) = L,. Consider the n + 1 strings x_ 1 = 0, &, = 1%, for 0 < i < n — 1.
By the pigeonhole principle, 6*(qo,x;) = 6*(qo, ;) for some —1 < i < j < n — 1. But then
§*(qo, 2;1™77) = 6*(x;19"=7). However, x;1"7 € L, while 2;1"7 & L,. Thus the machine M
has “made a mistake” on either x; 1"J or z;1"77, since it either accepts both of these strings
or neither of them. This contradicts the assumption that L(M) = Lj,.

Problem 2. Suppose that L is DFA-acceptable. Show that the following language is DFA ac-
ceptable, too:

Maz(L) = {x € L : there does not exist a y € X" for which zy € L}.

Given a finite automaton M = (Q, X, 4, qo, F) for L, a finite automaton M = (Q, X, d, qo, F') is
constructed for Max(L) by “pruning” the final state set; we define F” to be the set of all states
q € F such that there exists no nontrivial path from ¢ to some final state of M. Then 2 € L(M’)
iff z € L and there is no y € £ such that zy € L(M).

Problem 3. Same instructions as the last problem, for:

Echo(L) = {ajaiazas - - - anan, € ¥* : ayag---a, € L}.

The idea is to add a state “in the middle of each arrow,” to ensure that a symbol a € ¥ is always
followed by another symbol a, and the same destination is then reached. A dead state is also
added, in case the symbol a is not followed by a. More formally, let M = (Q, %, 4, qo, F') be a
DFA accepting L. Then a DFA M' = (Q',X,0, ¢(, F") is constructed for Echo(L) by setting

2 ECS 494 Handout 2S: Problem Set 2 Solutions

Q=Q U Qx3% U {dead},
8'(q,0) = (q,0) for g € Q,

, | (g, 1) ifo=1
0((g.0),7) _{ dead ifo#T’

4 = qo, and
F' =F.

It easy to see that this construction is correct; it can be formally argued by induction.

Problem 4. Page 85, Fxercise 1.12.

Part A.
state a b
{1} [{1,2}] {2}
{1,2} | {1,2} | {1,2}
{2} 0 {1}
0 0 0
Part B.
Similarly ...

Problem 5. Construct a regular expression for each of the languages from Problem Set 1, prob-
lem 1:

ECS 494 Handout 2S: Problem Set 2 Solutions 3

1. The set of all strings with 010 as a substring
This one is easy! — (0U 1)*010(0 U 1)*.
2. The set of all strings which do not have 010 as a substring

I think it’s easiest to do this one by looking at the DFA in the solution to PS #1 and converting
it to a regular expression using the method described in class. Don’t think too much! Of course
you will get different answers depending on the order in which you kill states, combine parallel
arcs, and eliminate obvious redundancies. Here is one answer:

(1U00*11)*(e UOO* U0O0*1)

3. The set of all strings which have an even number of 0’s or an even number of 1’s
(1*01*01*)* U (0*10*10*)*

4. The complement of {1,10}*

Again, consult the solution to PS #1 for a DFA for this language. By inspection, we can turn
it into a regular expression:

(11*0)*0(0 U 1)*

5. The binary encodings of numbers divisible by 3

Consult the solution to PS#1 for a DFA. Then convert to get:
(0OU 1(01*0)*1)*

