Problem Set 6 — Due 21 September 2000

Problem 1.

Part A. Show that

 $L_A = \{ \langle M, k \rangle : M \text{ is a TM which accepts at least one string of length } k \}$

is not decidable.

Part B. Prove that

 $L_B = \{ \langle M, k \rangle : M \text{ is a TM that loops on at least one string of length } k \}$

is not decidable.

Part C. Let

 $L_C = \{ \langle M, k \rangle : M \text{ is a TM which accepts some string of length } k, \\ \text{but } M \text{ loops on some (other) string of length } k \}.$

Show that L_C is not r.e.. (Assume the underlying alphabet has at least two characters.)

Part D. Show that L_C is not co-r.e., either.

- **Problem 2.** Classify the following languages as **decidable**, **r.e.** (but not co-r.e.), **co-r.e.** (but not r.e.), or **neither** r.e. nor co-r.e.. Prove all your answers, giving decision procedures, acceptance procedures, or reductions.
- **A.** $L = \{ \langle M \rangle : M \text{ accepts some even-length string} \}.$

B. $L = \{ \langle M \rangle : M \text{ accepts some palindrome} \}.$

- **C.** $L = \{ \langle M \rangle : M \text{ never prints a "0" (regardless of the input)} \}.$
- **D.** $L = \{ \langle \alpha \rangle : \alpha \text{ is shortest regular expression for } L(\alpha) \}.$