Quiz 3

1. As with Rijndael, suppose we are working in the finite field with 2^8 elements, representing field points using the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$ Compute the byte which is the result of multiplying bytes:

'E1' • '03'

That is, the first byte, 11100001 in binary, corresponds to polynomial $x^7 + x^6 + x^5 + 1$; while the second byte, 00000011 in binary, corresponds to the polynomial x + 1. You are to find the byte which is the product.

- 2. Block cipher DES has 56-bit keys and a 64-bit blocksize: DES : $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$.
 - How many different DES keys are possible?
 - Here is the number of permutations on 64-bits (that is, |Perm(n)|):
 - At most how many different values for $DES_K(\mathbf{0})$ are possible (here $\mathbf{0} = 0^{64}$)?
 - Clearly define an adversary A, having oracle f, that asks one query and gets advantage $\mathbf{Adv}_{\mathrm{DES}}^{\mathrm{prp}}(A) \geq 255/256.$

- 3. About how many random 80-bit strings x_1, x_2, \ldots do you need to choose until you expect to see the first "collision": some $x_i = x_j$, where $i \neq j$.
- 4. Definition. Let A be an adversary attacking the symmetric encryption scheme $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$. Then

 $\mathbf{Adv}_{\Pi}^{\mathrm{rr}}(A) =$

End of quiz!