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Abstract—State-of-the-art solutions for FPGA bitstream pro-
tection rely on encryption and authentication of the bitstream to
both ensure its confidentiality, thwarting unauthorized copying
and reverse engineering, and prevent its unauthorized modifica-
tion, maintaining a root of trust in the field. Adequate protection
of the FPGA bitstream is of paramount importance to sustain
the central functionality of dynamic reconfiguration in a hostile
environment.

In this work, we propose a new solution for authenticated
encryption (AE) tailored for FPGA bitstream protection. It is
based on the recent proposal presented at DIAC’12: the AES-
based authenticated encryption scheme ALE. Our comparison to
existing AES-based schemes reveals that ALE is at least twice
more resource-efficient than the best AE modes of operation
instantiated with AES. In the view of the recent successful
side-channel attacks on Xilinx Virtex bitstream encryption, we
investigate the possibility for side-channel resistant implementa-
tions of all these AES-based AE algorithms using state-of-the-art
threshold masking techniques. Also in this side-channel resistant
setting, the protected ALE design is about twice more resource-
efficient than the best AE modes of operation with the same
countermeasure.

We conclude that the deployment of dedicated AE schemes
such as ALE significantly facilitates the real-world efficiency
and security of FPGA bitstream protection in practice: Not only
our solution enables authenticated encryption for bitstream on
low-cost FPGAs but it also aims to mitigate physical attacks
which have been lately shown to undermine the security of the
bitstream protection mechanisms in the field.
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I. INTRODUCTION

A. Authenticated encryption and FPGA bitstream

The functionality of customizing the logic gates of a device
in the field is fundamental to reconfigurable hardware such
as FPGAs. The reliability of reconfiguration is gaining in
importance as applications go pervasive, the connectivity
increases, and the environments get more hostile. The basic
threats the encryption of a FPGA bistream aims to mitigate
are unauthorized copy and reverse engineering. It was not
until recently though that the major FPGA manufacturers
included authentication as an additional protection mech-
anism for the bitstream. Authentication targets to prevent
unauthorized bitstream from being executed by the device
or replay of older bitstreams that might contain bugs. A
failure to provide authenticity for the bitstream can result in
a tampered bitstream leaking confidential data stored on the
device or giving away the bitstream itself. Therefore, it is

always authenticated encryption that should be implemented
for bitstream protection in the field.

A lot of security protocols and data formats for bitstream
update are thinkable [6], [9]–[11], which may vary for every
individual product and vendor. However, what all of them
have in common is that a cryptographic core is required to
implement the authenticated encryption. It is also the authen-
ticated encryption engine that accounts for the performance
bottleneck at reconfiguration time since the bulk of bitstream
has to be decrypted and verified in real time with reason-
able hardware resources. For instance, Xilinx [12] reports
the deployment of AES-256 in CBC mode for bitstream
encryption and HMAC based on the SHA-256 hash function
for bitstream authentication in the authenticate-then-encrypt
manner for Virtex-6 (on the device, the decryption is followed
by the MAC verification on the bitstream plaintext). However,
this requires the implementation of both AES-256 decryption
and SHA-256 engines which is quite costly in terms of area
requirements.

As a matter of fact, much more efficient and compact
authenticated encryption schemes exist than that both in
terms of underlying algorithms and modes. We will confine
ourselves to the U.S. encryption standard AES in the stan-
dardized modes [2], [4] of operation such as OCB, GCM and
CCM as reference points in the remainder of the paper. Note
that some non-AES-based algorithms such as Grain-128a [3]
and Hummingbird-2 [5] are out of scope here. AES-CCM
and AES-GCM have been proposed and evaluated for the
authenticated encryption of FPGA bitstreams in [7] and [8],
respectively.

In this paper, we suggest to deploy the novel AES-based
authenticated encryption ALE proposed in [1] for authenti-
cated bitstream encryption. It turns out that ALE is not only
much more efficient than the AES-256-CBC/HMAC-SHA-
256 solution of Virtex-6 but also beats AES-OCB, AES-GCM
and AES-CCM by a considerable margin.

B. Side-channel attacks and FPGA bitstream

The classical adversary attacking bitstream confidentiality
and authenticity has access to the communication between
the legitimate bitstream source and the reconfigurable device.
Therefore, it is enough to use cryptographically sound mecha-
nisms for authenticated encryption to thwart a classical attack.
Clearly, all solutions mentioned above are sound constructions
and the classical adversary do not pose any serious threat here.



However, in the real world, the attacker can also gain
physical access to the device which changes the attack setting
significantly. Here, not only mathematical but also physical
cryptanalysis becomes possible ranging from passive side-
channel analysis over fault injection to invasive attacks.
Recently, it has been shown [13], [14] that the bistream
encryption of Xilinx Virtex II as well as Virtex 4 and 5 is
vulnerable to passive side-channel analysis such as Corre-
lation Power Analysis (CPA). These attacks have practical
complexities and recover the key of bitstream encryption.

Thus, in the view of these newly arised threats, we think
that any new practical solution for the authenticated bitstream
of FPGA bitstreams should come with an option of powerful
side-channel countermeasures that at least mitigate the passive
side-channel attacks reported in [13], [14].

In this paper, we implement ALE along with AES-OCB,
AES-GCM and AES-CCM using the threshold masking coun-
termeasure based on secret sharing and multiparty com-
putation [20] and [22]. We demonstrate that the masked
implementation of ALE is much less resource-consuming than
those of AES-OCB, AES-GCM and AES-CCM with the same
countermeasure.

C. Our contributions
The contributions of this paper are as follows:
• We propose a new solution for authenticated encryp-

tion (AE) tailored for FPGA bitstream protection. It is
based on the novel AES-based authenticated encryption
scheme ALE (Section II). With the standard bitstream
update rate of 800 Mbps at 100 MHz, our comparison
to existing AE schemes such as AES-256-CBC/HMAC-
256, AES-OCB, AES-GCM, and AES-CCM reveals that
ALE is at least twice more resource-efficient than its
closest competitor AES-OCB (a patent pending on the
OCB mode of operation) and requires at least three times
less resources compared to other royalty-free schemes:
AES-GCM and AES-CCM (Section III).

• In the view of the recent successful side-channel attacks
on Xilinx Virtex-II, Virtex-4 and Virtex-5 bitstream en-
cryption, there is an increasing demand for the bitstream
AE to come with adequate side-channel countermea-
sures. To address this need, we explore the costs of side-
channel resistant implementations of all these AES-based
AE algorithms using the state-of-the-art threshold mask-
ing technique based on secret sharing and multiparty
computation. Also in this side-channel resistant setting,
though inevitably increasing the resource occupation and
decreasing the rate to 256 Mbps at 100 MHz, our results
suggest that the protected ALE design is about twice
more resource-efficient than AES-OCB or AES-GCM
and requires three times less resources than AES-CCM
(Section IV).

We work with both ASIC and FPGA implementations for
the designs. We conclude that the deployment of dedicated AE
schemes such as ALE significantly facilitates the real-world
efficiency and security of FPGA bitstream protection in prac-
tice: Not only our solution enables authenticated encryption

for bitstream on low-cost FPGAs but it also aims to mitigate
physical attacks which have been lately shown to undermine
the security of the bitstream protection mechanisms in the
field.

II. ALE: AES-BASED AUTHENTICATED LIGHTWEIGHT
ENCRYPTION

Authenticated encryption modes of operation for block
ciphers have closely reached their theoretically attainable
limit of one block cipher call per one block of encrypted and
authenticated data. For instance, OCB [27] needs only one
AES execution per block of data for long messages. Thus, to
achieve performance and efficiency improvements compared
to the modes of operation, dedicated designs appear necessary.
The approach was taken by Bogdanov, Mendel, Regazzoni
and Rijmen in [1] who have recently designed the lightweight
authenticated encryption algorithm based on AES components
called ALE (Authenticated Lightweight Encryption).

Essentially, ALE can be viewed as Pelican MAC [29] keyed
in all rounds that leaks parts of the state in every round like the
LEX stream cipher [28] to produce stream. It has an internal
state of 256 bits that depends on both key and nonce. ALE is
an online single-pass nonce-based authenticated encryption
algorithm with associated data [1]. In FPGA bistream en-
cryption, the nonce of ALE is implemented as a monotonic
counter stored in a non-volatile memory which guarantees
freshness.

The encryption/authentication procedure of ALE accepts
a 128-bit master key K, a message M , associated data
A and a 128-bit nonce N . The encryption/authentication
procedure outputs the ciphertext C of exactly the same bit
length as the message M and the authentication tag T of
128 bits for both the message M and associated data A. Its
decryption/verification procedure accepts key K, ciphertext
C, associated data A, nonce N , and tag T . It returns the
decrypted message M if tag is correct or ⊥ otherwise.

The encryption/authentication operation is given in Fig-
ure 1 [1] (for the case that the message length is not a multiple
of 128 bits). The decryption/verification operation is exactly
the same except that the ciphertext chunks get decrypted first
and the resutling data is input into the state for verification.
For space limitations, we refer the interested reader to the
original paper [1] for a detailed specification of ALE and a
security analysis.

III. EFFICIENT IMPLEMENTATION

We have implemented our ALE core (and other cores for
comparison) on both ASIC and FPGA platforms. The ASIC
implementation is the main target, since the bitstream encryp-
tion modules are meant to be implemented as an independent
IP on the FPGA silicon. However, FPGA implementation may
provide the flexibility to implement ALE on an existing FPGA
without any modifications on it. Furthermore, FPGA numbers
will be useful in determining the necessary resources required
for evaluation of security and side-channel attack resistance
on FPGA-based platforms.
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Figure 1. The operation of ALE [1]

In the implementation of the ALE core, we have focused on
minimizing the area, while maintaining the target bitstream
update rate of 800 Mbps at 100 MHz clock. The configuration
clock frequency of 100 MHz in the Virtex-5 and Virtex-6
family of devices together with the 16-bits configuration data
width and 50 MHz speed of Platform Flash XL determine
the basic specifications of the core: Each 128-bit block of
plaintext data can be read from the flash memory in 8 cycles
of the 50 MHz clock of Flash XL, which correspond to 16
clock cycles of the 100 MHz clock of FPGA. This, in fact,
corresponds to the target rate of 800 Mbps, which also means
that each plaintext block has to be processed within 16 clock
cycles by the target ALE core.

Since ALE processes plaintext blocks in 4 rounds, each
round has to be completed within 4 cycles. Since the rounds
are regular AES rounds, 16 SubByte operations have to
completed for state processing in each round, which cor-
responds to 4 SubByte operations per cycle. This can be
achieved using 4 SubByte modules in parallel. However,
the ShiftRows operation requires all 16 SubByte outputs.
Therefore, it can be completed at the end of all 4 cycles
per round. MixColumns stage of AES can be reduced to a
single MixColumn operation by choosing the bytes of each
cycle to correspond to a full column of the AES state matrix.
In summary, state processing stage of the ALE core can
be realized by only 4 SubByte modules (s-boxes), a single
MixColumn module, a full ShiftRows module and 128-bit
registers. In addition, a first-in-first-out (FIFO) register is also
required in order to store the 16-bit plaintext words read from
the memory, since the processing order of the state bytes do
not correspond to the reading order of the plaintext bytes they
are to be XORed with in order to obtain ciphertext bytes (or
vice versa during decryption).

On the key processind side, things are a bit more complex.
Unlike the 4 rounds needed for state processing, each ALE
block encryption (or decryption) requires 5 rounds of key
processing. This corresponds to a total of 20 SubByte
operations per block to be completed within 16 cycles, which
can be accomplished by �20/16� = 2 SubByte modules in
theory. However, in practice, since the last 4 bytes of the key
state have to be SubByte’d before all else, this theoretical

number does not hold. In a straigtforward implementation
use of 4 SubByte modules for key processing would solve
this problem (albeit with 25% efficiency). Unfortunately,
the extra key round makes this unapplicable. Either another
set of 4 SubByte modules have to be deployed, or the
required SubByte operations have to be precomputed and
stored in extra registers. This results in a key processing
module implementation using 4 SubByte modules and 192-
bit registers instead of 128-bits (32 of which are used for
precomputation result storage and the other extra 32-bits for
alignment of precomputed data with actual results). In fact,
it is also possible to realize a precomputed key processing
scheme that uses only 2 SubByte modules, but this solution
would quadruple the register usage, which is far worse than
the 2 extra SubByte modules in area cost.

Figure 2 shows the block diagram of the ALE core. The
implementation uses a single 100 MHz clock. The data words
read at 50 MHz from the flash is sampled by the 100 MHz
clock before pushed into the FIFO. SubByte modules are
implemented using the composite field s-box structures over
GF (((22)2)2). In a 90nm implementation, the whole circuit
occupies less than 8Kgates.

Although, several different implementations of existing
schemes (OCB, CCM and GCM) have been reported in the
literature, a fair comparison is only possible with modules that
have been implemented using the same design specifications,
performance goals, technology and methodology. Therefore,
we have also implemented OCB, CCM and GCM cores that
can process 800 Mbps at 100 MHz. In each of these cores, key
expansion are performed on-the-fly as in the ALE core. This
is primarily intended to keep the design RAM-free, without
which pre-computed round keys would have to be stored on
registers, resulting in a much higher area cost than on-the-fly
key processing. Furthermore, all three cores deploy the full
set of 16 SubByte and 4 MixColumn modules, resulting
in a fully parallel round-based implementation. Although
this would make it possible to complete the plaintext (or
ciphertext) block processing in 10 rounds, all three cores
still require 16 clock cycles for block data processing. This
is primarily due to the data access speed from the flash
memory, which is limited to 128 bits in 16 cycles. However,
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Figure 2. Block Diagram of the ALE Core

we have used this to our advantage by moving some non-
round operations (such as the extra AddRoundKey and
tweak XORS in OCB) to these cycles, thereby reducing the
hardware area at zero additional time cost.

Other core specific features can be summarized as follows:

• The OCB core requires support for both AES encryption
and AES decryption operations. This is accomplished
by sharing the finite field inverter of the s-box between
both SubByte and InvSubByte functions, resulting in
a SubByte/InvSubByte module. However, the same
could not be accomplished for the other core elements.
Therefore, two seperate paths are implemented: One
with ShiftRows + MixColums and the other with
InvMixColumns + InvShiftRows multiplexed be-
tween modes. Tweaks are pre-computed and stored in
the tweak register.

• A global hash (GHASH) module is implemented with
the GCM core. It is a partial finite field multiplier
(8× 128) which computes the 128× 128-bit finite field
multiplication within the 16 clock cycles present for each
data block.

• In order to keep up with the target speed achieved by
other cores, the CCM module deploys two parallel state
processing paths: One for the counter (CTR) mode and
the other for the CBC mode. Key processing path is
shared between the two.

• AES-CBC/HMAC-SHA-256 core has an independent
HMAC-SHA-256 core running in parallel with the AES-
CBC core, making it the largest of all.

Table I gives the gate count comparison results for un-

Table I
AREA RESULTS FOR ALL AUTHENTICATED ENCRYPTION SCHEMES

(UNPROTECTED VERSIONS)

Area Area Area Area
Scheme in GE in GE in GE in slices

(130nm) (90nm) (45nm) (V6)
ALE 7.9K 7.1K 8.2K 594
OCB 23.1K 18.1K 20.0K 2776
CCM 24.4K 20.4K 21.9K 1947
GCM 24.9K 21.6K 23.2K 2049

CBC/HMAC 34.3K 29.9K 33.5K 2201

protected versions of all five schemes in three different
technologies: UMC 130nm, UMC 90 nm, Nangate 45nm and
Virtex-6 LX240T. All implementations are synthesized for
area at a target frequency of 100 MHz using Cadence En-
counter RTL Compiler v10.1 and Xilinx ISE v14.1 for ASIC
and FPGA, respectively. During all design phases, Mentor
Graphics Modelsim v6.5 have been used for verification.

We have also synthesized all versions of our design for
maximum frequency. Again, ALE resulted in the best perfor-
mance with a maximum operating frequency of 326 MHz for
90 nm technology, corresponding to a throughput of 2.6 Gbps.
For the 45 nm technology, the maximum operating frequency
and throughput exceeds 500 MHz and 4 Gbps, respectively.

IV. SIDE-CHANNEL RESISTANT IMPLEMENTATION

As stated, the decryption module embedded into the FPGAs
to realize the bitstream encryption feature is in danger of
being attacked by a side-channel adversary, which as reported
in [13] and [14] may lead to entirely overcoming the expected
security. Therefore, protecting the target module against such
an adversary is of crucial importance. Masking which is



amongst the popular side-channel countermeasures aims at
randomizing the intermediate values processed by the cryp-
tographic module thereby avoiding the relation between the
side-channel leakages and the intermediate values expected
by the adversary [15]. A popular masking scheme which is
quite efficient for linear operations is known as boolean (also
called additive) masking. However, providing the boolean
masked version of the nonlinear operations, e.g., S-box of
symmetric ciphers, is not trivial. Although there exists a
couple of different schemes on how to implement a masked
AES S-box in hardware, e.g., in [16] and [17], the practical
side-channel evaluations have shown still vulnerability of
such schemes to power analysis attacks [18], [19]. On the
other hand, threshold implementation (TI) which is a provably
secure scheme against first-order attacks has been proposed
in [20]–[22]. It makes use of the multi-party computation
concept and boolean masking, and provides a roadmap how
to implement a masked S-box with the minimum number of
shares which is in a direct relation with the algebraic degree
of the underlying S-box.

Although a threshold implementation of small (e.g., 4-bit)
S-boxes can be made relatively straight forward (see [23]
and [24]), it is a challenging task to deal with the larger S-
boxes which have high algebraic degree. For example, making
a threshold implementation of the AES S-box that follows
all the requirements is still an open problem. However, the
implementation reported in [25] has been provided by means
of a heuristic scheme which makes use of fresh masks
during the S-box computations. This design employs five
pipelining stages and realizes the TI scheme with minimum
number of shares, i.e., three. The design has been practically
implemented on a Virtex-II pro FPGA and it side-channel
vulnerability has been investigated practically. As short, no
first-order attack could be successfully mounted using up to
100 million traces [25], but a mutual information analysis
attack and a second-order DPA attack could recover the secret
using around 20 million traces [26]1.

We have taken this design in order to increase the side-
channel immunity of our proposed scheme. Table II gives
the gate count comparison results for protected versions of
all five schemes in three different technologies. Note that
these numbers have been obtained by interpolation of gate
counts for the protected S-boxes from [23] into our designs
implemented with three parallel paths. As a consequence of
the 3-cycle operation of these S-boxes, the throughput of each
core drops to 256 Mbps from 800 Mbps. It is still possible
to achieve over 800 Mbps with an operating frequency of
300 MHz. It should also be noted that no protection is applied
for the GHASH and HMAC-SHA cores.

V. CONCLUSIONS

In this paper, we propose to deploy the recently designed
AES-based authenticated encryption scheme ALE [1] for
authenticated bitstream encryption on FPGAs. It turns out

1These numbers strongly depend on the development platform and the
measurement setup.

Table II
AREA RESULTS FOR ALL AUTHENTICATED ENCRYPTION SCHEMES

(PROTECTED VERSIONS)

Area Area Area Area
Scheme in GE in GE in GE in slices

(130nm) (90nm) (45nm) (V6)
ALE 48.1K 45.7K 49.0K 7122
OCB 133.1K 118.3K 123.8K 48150
CCM 173.0K 161.1K 165.5K 33500
GCM 138.5K 128.6K 133.4K 23900

CBC/HMAC 165.9K 152.7K 164.7K 18900

that ALE is not only much more efficient than the AES-256-
CBC/HMAC-SHA-256 solution of Virtex-6 but also beats
AES-OCB, AES-GCM and AES-CCM by a considerable
margin. We implement the unprotected versions of ALE
along with AES-OCB, AES-GCM and AES-CCM as well as
explore their protected implementations using the threshold
masking countermeasure based on secret sharing and mul-
tiparty computation. In both cases, our results suggest that
ALE beats the nearest competition by more than a factor
of 2 in terms of area efficiency. Even the protected version
of ALE results in gate counts that are close to unprotected
versions of authenticated encryption schemes commonly used
on commercial FPGAs while still reaching one third of the
highest attainable bitrates for the unprotected case (256 vs
800 Mbps).
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